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Secure Control of Autonomous Systems

Security researcher Charlie Miller attempts to extract a Jeep Cherokee
from a ditch after its brakes were remotely disabled by a cyber attack in
a controlled test (Andy Greenberg/Wired).
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Secure Control of Autonomous Systems

Security researcher Jahshan Bhatti examines the wreckage of an au-
tonomous helicopter after its GPS receiver was captured and manipu-
lated by a field attack in a slightly less-controlled test.
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What are Field Attacks?
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GPS Spoofing
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GPS spoofing has been demonstrated against
(i) an autonomous helicopter,
(ii) a phasor measurement unit, and
(iii) a 65-meter superyacht.

Jahshan Bhatti (UT/ASE) Ph.D. Defense August 19, 2015 6 / 60



GPS Jamming
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Dissertation Contributions

The underlying theme of this dissertation is the detection and
localization of GNSS-based field attacks.
To that end, this dissertation makes two primary contributions:

1 a novel GNSS deception detection technique that operates at the
sensor fusion level, and

2 estimation algorithms using Monte-Carlo sampling methods for
direct geolocation of radio-frequency emitters.
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GPS Spoofing Against a Maritime Surface Vessel

Ship GPS AntennaSpoofer
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Modern Integrated Bridge System
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Detection Problem

L
zm (t)

H1H0

t0 What is the optimal detection
test for fixed time-to-detect

if t0 and zm (t) are known?
if only zm (t) is known?
if only t0 is known?
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Detection Problem

L

Ts

zm (t)

q (k)
H1

≷
H0

λ

What are near-optimal
detection procedures for
unknown t0 and
zm (t)? (Willsky, 1976)
What detection procedures
take into account integrity
risk? (Joerger and Pervan,
2013; Khanafseh et al., 2014)
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Integrity Risk

A hazardously misleading information (HMI) event is defined as

E =
∨

t≥t0


‖zm (t)‖ > L ∧


 ∧

t0<kTs<t

q (k) < λ






=
∧

t0<kTs≤tL

q(k) < λ,

where
q (k) is a test statistic that monitors the presence of spoofing,
t0 is the start time of the spoofing attack, and
tL is the first time hazardous conditions are encountered.

The mean integrity risk of the detection framework is given by

IR =

∫ 1

0
P (E|t0 = βTs) dβ.
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Framework Optimization

The optimal sampling time T ?s minimizes the worst-case integrity
risk I?R.
T ?s and I?R are the solution to the optimization problem given by

min
Ts

max
vmax

IR

s.t. a ≤ vmax ≤ b
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Ship Dynamics Model

The continuous-time ship dynamics model is given by

η̇(t) = Aη(t) +Bu(t) + Eṽ(t),

where

η =
[
x y dx dy

]T is the state vector,

A =

[
0 I
0 − 1

Td
I

]
, B =

[
I
0

]
, E =

[
0
I

]
,

u = U
[
sinψ cosψ

]T is the control, and

ṽ =
[
vx vy

]T is AWGN with intensity Qc = σ2dI.
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GPS Measurement Model

The GPS measurement model for sampling time Ts is given by

z(k) = Hη(kTs)− zm(kTs) + w(k),

where

zm (t) is the spoofer-induced modulation,

H =
[
I 0

]
,

w (k) ∼ N (0, R) , and

R = σ2pI.
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Estimation Error

The optimal sequential estimator for the system model under
deception-free conditions (i.e. ∀t zm (t) = 0) is the Kalman filter.
The a posteriori estimation error and innovation are defined as

ε̂ (k) , η (kTs)− η̂ (k)

ν (k) , z (k)−Hη̄ (k) .

The expected value of the estimation error and innovation are
given by (in steady state)

E [ε̂(k)] = (I −KH)FE [ε̂(k)]−Kzm (kTs)

E [ν (k)] = HFE [ε̂ (k)]− zm (kTs) ,

where F = eATs and K is the Kalman gain.
The estimation error and innovation are clearly biased under a
spoofing attack.
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Detection Statistic

For an arbitrary spoofing profile, the optimal statistic (for a
generalized likelihood ratio test) has the form

q (k) = ν (k)T S−1ν (k) ∼ χ2
(
nz,E [ν (k)]T S−1E [ν (k)]

)
,

and is typically used for innovations-based fault detection.
No claims of optimality of the normalized innovation squared (NIS)
detection statistic with respect to the current framework are made.
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Integrity risk IR vs. sampling time Ts
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Other parameters are umax = 0.03 m/s2, MF = 1 month,
L = 3 km, σp = 6 m, Td = 200 s, and σd = 0.02 m/s1.5.
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Minimax integrity risk I?R vs. L and MF
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Experimental Results
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NIS Time History for Ts = 250 s

0

200

400

600

800
|z

m
|
(m

)

Time (min)

lo
g 1

0
[q
]

10 15 20 25 30 35 40
−1

0

1

2

3

|zm| < 200 m ∧ q > λ

|zm| < 700 m ∧ q > λ

td = 0 s

td = 50 s

td = 100 s

td = 150 s

td = 200 s

Jahshan Bhatti (UT/ASE) Ph.D. Defense August 19, 2015 27 / 60



Open Questions

Some open questions remain:
Can the framework be applied to an inertial measurement unit or
clock model, which both have drift parameters governed by
Gauss-Markov processes?
Can the integrity risk optimization problem be recast so that the
detection statistic and attack profile are free parameters?
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Passive Emitter Geolocation

Table : Strengths and weaknesses of different measurement types.

RSS AOA T/FDOA
Antenna and RX complexity Low High Medium

Localization accuracy Low Medium High
Time synchronization ms ms ns
Network throughput Low Low High
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Two-Step Emitter Geolocation

Traditional two-step geolocation approach (Stein, 1981).

CAF Geolocation

T/FDOA

Raw
Data
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Direct Emitter Geolocation

State
Space

CAF
Space

(Sidi and Weiss,
2014)

The dissertation extends the prior art in the
following ways:

Theory

Relaxed constant Doppler assumption.
Developed hybrid Monte-Carlo sampling
Kalman filter.
Used path-constrained dynamic models.

Practice

Conducted three experiments.
Elucidated important implementation
details.
Used CDGNSS to extend coherent
integration time.
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Emitter Dynamics Model

Table : Description of three different types of emitter dynamics models.

Type State Space Time History

NS η =

[
x0
y0

]
x (t) = x0

y (t) = y0

NCV η =




x0
ẋ
y0
ẏ




x (t) = x0 + ẋt

y (t) = y0 + ẏt

NCVP η =

[
s0
ṡ

]
x (t) = Tx (s0 + ṡt)

y (t) = Ty (s0 + ṡt)
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Emitter Dynamics Model

Table : Description of three different types of emitter dynamics models.

Type Update Matrix Definitions

NS
η (k + 1) = F0η (k) + v (k)

v (k) ∼ N (0, Q0)

F0 = I2×2

Q0 = q0I2×2T

NCV
η (k + 1) = F1η (k) + v (k)

v (k) ∼ N (0, Q1)

F1 =

[
F2 0
0 F2

]

Q1 = q1

[
Qcv 0
0 Qcv

]

NCVP
η (k + 1) = F2η (k) + v (k)

v (k) ∼ N (0, Q2)

F2 =

[
1 T
0 1

]

Q2 = q2Qcv

Qcv =

[
1
3T

3 1
2T

2

1
2T

2 T

]
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Likelihood Function

Consider the simplified signal model for the ith receiver

ri = αiHi (η) s+ ni,

where s and ni ∼ CN
(
0, σ2nI

)
are the complex baseband emitter

signal and noise vectors, respectively, αi is the complex path
attenuation, and Hi (η) is a complex matrix that time and phase
shifts the signal vector.
The likelihood function is given by

L′′ (η, s, α|z) ∝ exp

(
− 1

σ2n

Nr∑

i=1

‖ri − αiHi (η) s‖2
)
.
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Likelihood Function

In passive geolocation, α and s are nuisance parameters. A
reasonable approach is to replace them with their maximum
likelihood estimates as in (Sidi and Weiss, 2014), i.e.

L (η|z) = max
s,α

L′′ (η, s, α|z) .

After some algebra,

L (η|z) ∝ exp

(
1

σ2n
λmax

(
D̄ (z, η)

))
,

where
D̄i,j (z, η) = rHi Hi (η)HH

j (η) rj .
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Generalized Cross-Correlation Function

Recall the familiar cross-correlated complex ambiguity function
(CAF)

S′ (z̃1 (t) , z̃2 (t) , τ0, fD) ,
T∫

0

z̃1 (t) z̃?2 (t+ τ0) e
−j2πfDtdt,

where τ0 is a constant delay and fD is the Doppler frequency.
Now, consider the GCCF for signals z̃1 (t) and z̃2 (t)

S (z̃1 (t) , z̃2 (t) , τ1 (t) , τ2 (t)) ,
T∫

0

z̃1 (t+ τ1 (t)) z̃?2 (t+ τ2 (t)) ej2πfc[τ1(t)−τ2(t)]dt,

where τi (t) is the delay time history for received signal i ∈ {1, 2}
and T is the length of the integration interval.
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Grid Search

(Weiss, 2011)

Naive grid search is appropriate for the 2-D NS model; however,
the state space is evaluated inefficiently with a fixed grid,
the search space can become unwieldy for the 4-D NCV model, and
the dynamical constraint between position and velocity over time in
both the NCV and NCVP model is not enforced.
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Hybrid Kalman Filter with Monte-Carlo Sampling

A Kalman filter approach has two advantages over GS:
KF allows smoothing the measurement information with the
dynamical constraints, and
a priori emitter state and covariance can be used constrain the
search space to a smaller region.

Hybrid measurement sampling approach:

N
(
η̄ (k) , P̄ (k)

)

MC Sampling LF Evaluation

KF1: measurement is MLE.

KF2: mean and covariance
of p.m.f. is posterior η̂ (k)
and P (k).
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Particle Filter

(Gordon et al., 1993)

The PF provides the same improvements over GS as KF, but has
two advantages over KF:

no initial guess required, so that a uniform sampling over state
space can be used, and
can propagate non-Gaussian pdf for emitter state, which can help
prevent divergence due to transient multipath.
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Emitter Localization Post-Processing Workflow

Dual-Antenna
Tightly-Coupled
Sample Data

Software-Defined
GPS Processing

Carrier-Phase
Differential
Processing

Subaccumulation
Generator
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Algorithm
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White Sands Missile Range Experiment
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Two-Receiver NCVP Estimability
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Three-Receiver NCVP Estimability
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Four-Receiver NCVP Estimability
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GS and PF Algorithms in NCVP State Space

PF sampling points

GS and PF estimates, truth

PF sampling points

GS estimate

truth

PF estimate
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GS and PF Algorithms in NCVP State Space
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GS and PF Algorithms in NCVP State Space

PF sampling points
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PF, KF1, KF2 Algorithm Performance

0 5 10 15 20 25 30 35 40
0

5

10

15

20
P

a
th

 P
o

s
it
io

n
 E

rr
o

r 
(m

)

 

 

PF

KF1

KF2

0 5 10 15 20 25 30 35 40
0

1

2

3

4

P
a

th
 V

e
lo

c
it
y
 E

rr
o

r 
(m

/s
)

Time (s)

Jahshan Bhatti (UT/ASE) Ph.D. Defense August 19, 2015 49 / 60



PF Performance with Varying Number of Particles
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PF Performance Comparing NCVP and NCV Model
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UAV Experiment

The UAV experiment was
designed to mimic applications
where a stationary base and
dynamic rover platform work
together to locate a target.

Fully-assembled Stereo-based EMLOC sensor Stereo-based EMLOC sensor with top cover removed

for Minnowboard + Stereo and hard drive

Separate 5-V battery sources

Stereo board1 TB solid-state drive

Minnowboard
Intel Atom-based
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UAV Experiment
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GS with Non-Coherent Averaging

T = 1 s T = 5 s
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GS with Non-Coherent Averaging

T = 5 s T = 15 s
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GS with Non-Coherent Averaging

T = 15 s T = 15 s (zoomed in)
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Open Questions

What are the implications of multiple emitters on the estimation
architecture in terms of computational and algorithmic complexity?
How can motion planning algorithms for dynamic receiver
platforms based on an information-seeking control law be applied
to direct emitter geolocation? (Hoffmann and Tomlin, 2010).
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Conclusion

A detection framework has been developed to detect spoofing
attacks in maritime environments based solely on Doppler log,
gyrocompass, and potentially-spoofed GPS measurements.
The worst-case integrity risk of the detection framework was
minimized by optimizing the sampling time of the GPS
measurements.
A passive RF emitter localization system has been developed and
analyzed thoroughly with multiple experiments.
The system employed direct geolocation and long coherent
integration techniques, thus improving the system’s estimation
performance with weak emitters and multipath.
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Conclusion

Security researcher Jahshan Bhatti gazes toward the empty horizon, ob-
serving the bent wake caused by the captain steering the yacht to keep
the spoofed GPS position, so easily trusted yet so easily manipulated,
within a carefully charted corridor.

Jahshan Bhatti (UT/ASE) Ph.D. Defense August 19, 2015 60 / 60



PF Performance for UAV Experiment

0 5 10 15 20 25 30
0

1

2

3

4

5

E
a

s
ti
n

g
 E

rr
o

r 
(m

)

 

 
N

p
=300, q=1e−2

N
p
=100, q=1e−2

N
p
=300, q=1e−1

N
p
=100, q=1e−1

0 5 10 15 20 25 30
0

1

2

3

4

5

N
o

rt
h

in
g

 E
rr

o
r 

(m
)

Time (s)

Jahshan Bhatti (UT/ASE) Ph.D. Defense August 19, 2015 61 / 60



UAV on Roof Experiment

T = 2 s, ε = 11.5 cm T = 5 s, ε = 16.7 cm
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UAV on Roof Experiment

T = 5 s, ε = 16.7 cm T = 10 s, ε = 12.9 cm
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