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Abstract—The observability analysis of a collaborative op-
portunistic navigation (COpNav) environment whose statesmay
be partially-known is considered. A COpNav environment can
be thought of as a radio frequency signal landscape within
which one or more radio frequency receivers locate them-
selves in space and time by extracting and possibly sharing
information from ambient signals of opportunity (SOPs). Such
receivers, whether vehicle-mounted or integrated into hand-
held devices, exploit signal diversity to improve navigation and
timing robustness compared to stand-alone Global Positioning
System (GPS) receivers in deep urban, indoor, or otherwise GPS-
hostile environments. Available SOPs may have a fully-known,
partially-known, or unknown characterization. In the present
work, the receivers are assumed to draw only pseudorange-type
measurements from the SOPs. Separate observations are fused
to produce an estimate of each receiver’s position, velocity, and
time (PVT). Since not all SOP states in the COpNav environment
may be knowna priori, the receivers must estimate the unknown
SOP states of interest simultaneously with their own PVT. This
paper establishes the minimal conditions under which a COpNav
environment consisting of multiple receivers and multipleSOPs is
completely observable. Moreover, in scenarios where the COpNav
environment is unobservable, the unobservable directionsin the
state space are specified. Simulation and experimental results are
presented to confirm the theoretical observability conditions.

Index Terms—Observability, estimation, GPS, GNSS, radion-
avigation, signals of opportunity, collaborative opportunistic
navigation

I. I NTRODUCTION

Global Navigation Satellite Systems (GNSS) are insuffi-
cient for reliable anytime, anywhere navigation, particularly
in GNSS-challenged environments, such as indoors, deep
urban canyon, and GNSS-denied environments experiencing
intentional jamming. Several approaches have been proposed
to address the inherent limitations of GNSS-based navigation,
most notably augmenting GNSS receivers with dead-reckoning
systems and map-matching algorithms [1]–[5]. Motivated by
the plenitude of ambient radio frequency signals, a new
paradigm to overcome the limitations of GNSS-based nav-
igation, termed opportunistic navigation (OpNav), has been
proposed [6]. This paradigm aims to extract positioning and

This research was partially supported by the WNCG Industrial affiliates
program, and the NSF I/UCRC WICAT Center Grant IIP-1067914.

Z.M. Kassas is with the Department of Electrical and Computer Engineer-
ing, The University of Texas at Austin. Address: 2501 Speedway, Stop C0803,
Austin, TX 78712, USA (email:zkassas@ieee.org).

T.E. Humphreys is with the Department of Aerospace Engineering and
Engineering Mechanics, The University of Texas at Austin. Address: W.R.
Woolrich Laboratories, C0600, 210 East 24th Street, Austin, TX 78712, USA
(email: todd.humphreys@mail.utexas.edu).

timing information from ambient radio-frequency “signalsof
opportunity” (SOPs) to improve navigation and timing robust-
ness compared to stand-alone GNSS receivers. OpNav radio
receivers, which may be vehicle-mounted or hand-carried,
continuously search for opportune signals from which to
draw navigation and timing information, employing on-the-fly
signal characterization as necessary. Signals from discovered
SOPs are downmixed and sampled coherently, yielding a
tight coupling between signal streams that permits carrier-
phase-level fusion of observables from the various streams
within a single or distributed state estimator. In collaborative
opportunistic navigation (COpNav), multiple OpNav receivers
share information to construct and continuously refine a global
signal landscape [7]. In this paper, localization and timing are
treated in absolute world-centric spatial and temporal frames.
This is motivated by the fact that the ultimate objective of
COpNav is to build a global signal landscape map, which any
receiver can tap into and contribute to.

In its most general form, OpNav treats all ambient radio
signals as potential SOPs, from conventional GNSS signals to
communications signals never intended for use as a timing or
positioning source, such as iridium satellites signals [8], digital
television signals [9], and cellular signals [10]. Each signal’s
relative timing and frequency offsets, transmit location,and
frequency stability, are estimated on-the-fly as necessary, with
prior information about these quantities exploited when avail-
able. At this level of generality, the OpNav estimation problem
is similar to the so-called simultaneous localization and map-
ping (SLAM) problem in robotics [11], [12]. Both imagine
an agent which, starting with incomplete knowledge of its
location and surroundings, builds a map of its environment
and simultaneously locates itself within that map.

In traditional SLAM, the map that gets constructed as
the agent (typically a robot) moves through the environment
is composed of landmarks—walls, corners, posts, etc.—with
associated positions. OpNav extends this concept to radio
signals, with SOPs playing the role of landmarks. In contrast
to a SLAM environmental map, which can be extracted from
a cluttered, dynamic environment but ultimately must be
composed of fixed landmarks [13], [14], the OpNav “signal
landscape” is dynamic and more complex. For the simple case
of pseudorange-only OpNav, where observables consist solely
of signal time-of-arrival measurements, one must estimate,
besides the three-dimensional positionrs and velocityṙs of
each SOP transmitter’s antenna, each SOP’s time offsetδts
from a reference time base, rate of change of time offset
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δ̇ts, and a small set of parameters that characterize the SOP’s
reference oscillator stability. Even more SOP parameters are
required for an OpNav framework in which both pseudorange
and carrier phase measurements are ingested into the estimator
[6]. Of course, in addition to the SOP parameters, the OpNav
receiver’s own three-dimensional positionrr and velocityṙr,
time offsetδtr, and time offset ratėδtr must be estimated.

The Global Positioning System (GPS) control segment rou-
tinely solves an instance of the OpNav problem: the location
and timing offsets of a dozen or more GPS ground stations are
simultaneously estimated together with the orbital and clock
parameters of the GPS satellites [15]. Compared to the general
OpNav problem, the GPS control segment’s problem enjoys
the constraints imposed by accurate prior estimates of site
locations and satellite orbits. Moreover, estimation of clock
states is aided by the presence of highly-stable atomic clocks in
the satellites and at each ground station. In contrast, an OpNav
receiver entering a new signal landscape may have less prior
information to exploit and typically cannot assume atomic
frequency references, either for itself or for the SOPs. The
GPS control segment example also highlights the essentially
collaborative nature of COpNav. Like the GPS ground stations,
multiple COpNav receivers can share information to construct
and continuously-refine a global signal landscape.

The large size of the COpNav estimation problem, which
may involve hundreds of states, naturally raises the question of
state observability. A study of COpNav observability benefits
from the COpNav-SLAM analogy. Although the question of
observability was not addressed for more than a decade after
SLAM was introduced, the recent SLAM literature has come
around to considering fundamental properties of the SLAM
problem, including observability [16]–[24]. The effects of
partial observability in planar SLAM with range and bearing
measurements were first analyzed via linearization in [16],
[17]. These papers came to the counterintuitive conclusionthat
the two-dimensional planar wold-centric (absolute reference
frame) SLAM problem is fully observable when the location
of a single landmark is knowna priori. With a nonlinear
observability analysis, this result was subsequently disproved
and it was shown that at least two anchor landmarks with
known positions are required for local weak observability [19].
Later analysis of the SLAM problem’s Fisher information
matrix (FIM) confirmed the result of the nonlinear analysis
[20]. However, an apparent discrepancy between linear and
nonlinear SLAM observability re-emerged in [21], where it
was shown that a linear analysis based on piecewise constant
system (PWCS) theory [25] again predicted global planar
SLAM observability in the case of a single known anchor
landmark, whereas a nonlinear analysis in the same paper
indicated that two known anchor landmarks were required
for local weak observability. However, no explanation for the
reasons behind such discrepancies were offered. The linear
PWCS result appears flawed, since an observability test based
on linearization should never predict observability in a case
where a nonlinear test indicates lack of observability.

An initial OpNav observability analysis was conducted in
[26]. It considered an OpNav environment comprising a single
receiver and multiple stationary SOPs. This OpNav observ-

ability analysis utilized nonlinear local weak observability
tests, linear time-varying (LTV) observability tests, andPWCS
observability tests. While the conclusions achieved by the
former two methods agreed, the PWCS observability tests
yielded contradictory results, similar to the ones encountered
in the SLAM literature. The paper concluded that PWCS
observability theory is inapplicable to systems whose measure-
ment model is nonlinear. Thus, it is improperly applied in [18],
and this explains the contradictory observability resultsin [21].
The observability analysis was later extended to the case of
multiple receivers in a COpNav environment, and the degree
of observability, also known as estimability, of the various
states in the environment was quantified, with special attention
paid to the least and most observable states [27]. However, the
observability results in [27] were offered without any rigorous
proofs, and only single-run Extended Kalman Filter (EKF)
sample path simulations were presented.

This paper extends the work of [27] in three different
ways. First, it analyzes the observability of various scenarios
that could be encountered in a typical COpNav environment
comprising multiple receivers and multiple SOPs. For each
scenario, the following questions are answered and proven
rigorously: (i) is the environment observable? and (ii) if
the environment is not completely observable, what are the
unobservable directions in the state space? Second, single-
run and Monte Carlo (MC) based simulations are presented,
which agree with the theoretical observability analysis. Third,
experimental results are presented, which also agree with
the theoretical observability analysis. The experimentalre-
sults illustrate an important outcome of this paper’s analysis,
specifically that a receiver with known initial state that is
moving according to velocity random walk dynamics and
making pseudorange observations on unknown SOPs in the
environment can estimate the states of such SOPs.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of the various notions and tools
that are of relevance in analyzing the observability of COp-
Nav environments: nonlinear observability, LTV observability,
PWCS observability, stochastic observability, and estimability.
Section III describes the COpNav environment dynamics and
observation models considered in this paper. Section IV ana-
lyzes various COpNav scenarios and establishes whether each
scenario is observable. This leads to a set of minimum con-
ditions necessary for complete COpNav observability. Section
V presents simulation results on a number of scenarios. Sec-
tion VI presents experimental results illustrating an important
outcome of this paper’s observability conclusions. Concluding
remarks are given in Section VII.

II. T HEORETICAL BACKGROUND: OBSERVABILITY

MEASURES

This section gives an overview of various observability
measures of dynamic systems and their associated tests, which
are of relevance in analyzing the observability of COpNav
environments.

Conceptually, observability of a dynamic system boils down
to the question of solvability of the state from a set of
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observations that are linearly or nonlinearly related to the
state, and where the state evolves according to a set of linear
or nonlinear difference or differential equations. In particular,
observability is concerned with determining whether the state
of the system can be consistently estimated from a set of
observations taken over a finite period of time.

A. Observability of Nonlinear Systems

Various notions of observability exist for continuous-time
(CT) nonlinear dynamic systems. Consider the system

ΣNL :

{

ẋ(t) = f [x(t),u(t)] , x(t0) = x0

y(t) = h [x(t)] ,
(1)

wherex ∈ Rn is the system state vector,u ∈ Rr is the control
input vector,y ∈ Rm is the observation vector, andx0 is an
arbitrary initial condition. This system may be characterized as
observable, locally observable, weakly observable, or locally
weakly observable [28]. A somewhat simple algebraic test
based on Lie derivatives exists for establishing local weak
observability of a specific form of the nonlinear systemΣNL

in (1), known as the control affine form, in which the control
inputs affect the dynamics additively [29]. This test was
applied to analyze the observability of SLAM environments
in [19], [21] and OpNav environments in [26]. It is worth
noting that local observability is a sufficient condition (but
not necessary) to establish local weak observability.

B. Observability of Linear Systems

Observability of discrete-time (DT) LTV systems is defined
as follows [30].

Definition II.1. Consider the DT LTV dynamic system

ΣL :

{

x(tk+1) = F(tk)x(tk) +G(tk)u(tk), x(tk0
) = x0

y(tk) = H(tk)x(tk), tk ∈ [tk0
, tkf

],
(2)

whereF ∈ Rn×n, G ∈ Rn×r, and H ∈ Rm×n. The LTV
systemΣL is said to be observable in a time interval[tk0

, tkf
],

if the initial statex0 is uniquely determined by the zero-input
responsey(tk) for tk ∈ [tk0

, tkf−1]. If this property holds
regardless of the initial timetk0

or the initial statex0, the
system is said to be completely observable.

Observability of LTV systemsΣL is typically established
through studying the rank of either the so-called observability
Grammian or the observability matrix. The following theorem
states a necessary and sufficient condition for observability of
LTV systems through thel-step observability matrix [30].

Theorem II.1. The LTV systemΣL is l-step observable if and
only if the l-step observability matrix, defined as

OL(tk, tk+l) ,











H(tk)
H(tk+1)Φ(tk+1, tk)

...
H(tk+l−1)Φ(tk+l−1, tk)











(3)

is full-rank, i.e.rank [OL(tk, tk+l)] = n. The matrix function
Φ is the DT transition matrix, defined as

Φ(tk, tj) ,

{

F(tk−1)F(tk−2) · · ·F(tj), tk ≥ tj+1;
I, tk = tj .

Linear observability tools may be applied to nonlinear
systems by expressing the nonlinear system in its linearized
error (perturbation) form. In this formulation, the state vector
∆x, control input vector∆u, and observation vector∆y, are
defined as the difference between the true and nominal states,
between the true and nominal inputs, and between the true and
nominal observations, respectively. The discretized version of
the linearized error form ofΣNL in (1) is given by

∆x (tk+1) = F(tk)∆x (tk) +G(tk)∆u (tk)

∆y(tk) = H(tk)∆x (tk) ,
(4)

whereF, G, andH are the dynamics, input, and observation
Jacobian matrices, respectively, evaluated at the nominalstates
and inputs. The observability results achieved in this caseare
only valid locally.

It was demonstrated in [27] that thel-step observability
test applied to an error-form COpNav environment yields
identical results to those achieved by the more complicated
Lie-derivative-based nonlinear local weak observabilitytest.
Therefore, in this paper’s analysis, observability will beestab-
lished via thel-step method. The remaining three observability
notions introduced here are presented either because they
have been misapplied in previous COpNav-like observability
analyses (PWCS observability), or because they complete the
set of observability notions that could profitably be applied to
the present analysis (stochastic observability and estimability).

C. Observability of Linear Piecewise Constant Systems

If the matricesF, G, andH in (2) are piecewise constant
over every time segmentj, i.e. if F(tk) = Fj , G(tk) = Gj ,
andH(tk) = Hj , for tk ∈

[

tkj
, tkj+n−1

]

, but may vary from
one segment to another, then the LTV systemΣL is said to be
a PWCS. In [25], simple necessary and sufficient conditions
to establish observability of CT and DT PWCSs were derived,
which are based on the so-called total observability matrixand
stripped observability matrix. While the PWCS observability
tests are attractive due to their simplicity, they have been
improperly applied to nonlinear dynamic systems in the SLAM
literature, leading to the contradictory results in [16]–[21]. As
clarified in [26], the reason behind the discrepancies is that
one cannot simply take the time segmentj to coincide with
a single discretization instanttk. Rather, each time segment
j must contain at leastn measurement samples during the
collection of which the Jacobian matricesF, G, andH can
be accurately modeled as constant.

D. Stochastic Observability via Fisher Information

From an estimation theoretic point of view, the FIM quan-
tifies the maximum existing information in observations about
the system’s random state. A singular FIM implies that the
Cramér-Rao lower bound does not exist, as the FIM’s inverse
has one or more infinite eigenvalues, which means total un-
certainty in a subspace of the state space. This amounts to the
information being insufficient for the estimation problem under
consideration [31]. In [20], the nonlinear SLAM problem was
recast as a problem of estimating a set of unknown, constant
random variables for which the FIM was derived and analyzed
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to assess observability. Under Gaussian assumptions and min-
imum mean squared error estimation, the FIM is the inverse
of the estimation error covariance matrix. Hence, another
assessment of observability can be achieved by analyzing the
information form of the Kalman Filter (KF). If the system
is observable, then the information matrix will eventually
become invertible. This approach to analyzing observability
was adopted for SLAM observability analysis in [22], [23].

E. Degree of Observability: Estimability

Whereas the notion of observability is a Boolean property,
i.e. it specifies whether the system is observable or not;
for estimation purposes, the question of estimability, is of
considerable importance. Estimability assesses the “degree
of observability” of the various states. Estimability can be
assessed by the condition number of the FIM, thus measuring
whether an observable system is poorly estimable due to the
gradient vectors comprising the FIM being nearly collinear
[31]. Alternatively, estimability can be assessed by analyzing
the eigenvalues and eigenvectors of the estimation error co-
variance matrix of the KF estimating the states of the system
of interest. In particular, the largest eigenvalue corresponds to
the variance of the state or linear combination of states with
the poorest observability. On the other hand, the state or linear
combination of states with the most observability is indicated
by the smallest eigenvalue. The appropriate linear combination
of states yielding the calculated degree of observability is
given by the respective eigenvectors [32]. Estimability of
COpNav environments was studied in [27].

III. M ODEL DESCRIPTION

A. Dynamics Model

The receiver’s dynamics will be assumed to evolve accord-
ing to the velocity random walk model. An object moving
according to such dynamics in a generic coordinateξ, has the
dynamics

ξ̈(t) = w̃ξ(t),

wherew̃ξ(t) is a zero-mean white noise process with power
spectral densitỹqξ, i.e.

E [w̃ξ(t)] = 0, E [w̃ξ(t)w̃ξ(τ)] = q̃ξ δ(t− τ),

whereδ(t) is the Dirac delta function. The receiver and SOP
clock error dynamics will be modeled according to the so-
called two-state model, composed of the clock biasδt and
clock drift δ̇t. The clock error states evolve according to

ẋclk(t) = Aclk xclk(t) + w̃clk(t),

where

xclk =

[

δt

δ̇t

]

, w̃clk =

[

w̃δt

w̃δ̇t

]

, Aclk =

[

0 1
0 0

]

,

where w̃δt and w̃δ̇t are modeled as zero-mean, mutually in-
dependent white noise processes with power spectraSw̃δt

and
Sw̃δ̇t

, respectively. The power spectraSw̃δt
andSw̃δ̇t

can be
related to the power-law coefficients,{hα}

2
α=−2, which have

been shown through laboratory experiments to characterizethe

power spectral density of the fractional frequency deviation
y(t) of an oscillator from nominal frequency, namelySy(f) =
∑2

α=−2 hαf
α [33], [34]. It is common to approximate such

relationships by considering only the frequency random walk
coefficienth−2 and the white frequency coefficienth0, which
lead toSw̃δt

≈ h0

2 andSw̃δ̇t
≈ 2π2h−2 [31], [35].

The receiver’s state vector will be defined by augmenting
the receiver’s planar position and velocity states with itsclock
error states to yield the state space realization

ẋr(t) = Ar xr(t) +Dr w̃r(t), (5)

where xr =
[

rT

r , ṙ
T

r , δtr, δ̇tr

]T

, rr = [xr, yr]
T, w̃r =

[w̃x, w̃y, w̃δtr , w̃c]
T,

Ar =





02×2 I2×2 02×2

02×2 02×2 02×2

02×2 02×2 Aclk



 , Dr =

[

02×4

I4×4

]

,

The receiver’s dynamics in (5) is discretized at a constant
sampling periodT , tk+1 − tk to yield the DT model

xr (tk+1) = Fr xr(tk) +wr(tk), k = 0, 1, 2, . . . (6)

where wr is a DT zero-mean white noise sequence with
covarianceQr = diag [Qpv, Qclk,r], with

Fr =





I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk



 , Fclk =

[

1 T
0 1

]

Qclk,r=

[

Sw̃δtr
T+Sw̃δ̇tr

T 3

3 Sw̃δ̇tr

T 2

2

Sw̃δ̇tr

T 2

2 Sw̃δ̇tr
T

]

Qpv =











q̃x
T 3

3 0 q̃x
T 2

2 0

0 q̃y
T 3

3 0 q̃y
T 2

2

q̃x
T 2

2 0 q̃xT 0

0 q̃y
T 2

2 0 q̃yT











.

The SOP will be assumed to emanate from a spatially-
stationary terrestrial transmitter, and its state will consist of
its planar position and clock error states. Hence, the SOP’s
dynamics can be described by the state space model

ẋs(t) = As xs(t) +Dsw̃s(t), (7)

where xs =
[

rT

s , δts, δ̇ts

]T

, rs = [xs, ys]
T, ws =

[

w̃δts , w̃δ̇ts

]T

As =

[

02×2 02×2

02×2 Aclk

]

, Ds =

[

02×2

I2×2

]

,

Discretizing the SOP’s dynamics (7) at a sampling intervalT
yields the DT-equivalent model

xs (tk+1) = Fs xs(tk) +ws(tk), (8)

where ws is a DT zero-mean white noise sequence with
covarianceQs, and

Fs = diag [I2×2, Fclk] , Qs = diag [02×2, Qclk,s] ,

whereQclk,s is identical toQclk,r, except thatSw̃δtr
andSw̃δ̇tr

are now replaced with SOP-specific spectra,Sw̃δts
andSw̃δ̇ts

.
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Defining the augmented state asx ,
[

xT

r , x
T

s

]T

and the

augmented process noise vector asw ,
[

wT

r , w
T

s

]T

yields
the system dynamics

x (tk+1) = Fx (tk) +w(tk), (9)

whereF = diag [Fr, Fs], andw is a zero-mean white noise
sequence with covarianceQ = diag [Qr,Qs]. While the
model defined in (9) considered only one receiver and one
SOP, the model can be readily extended to multiple receivers
and multiple SOPs by augmenting their corresponding states.

B. Observation Model

To properly model the pseudorange observations, one must
consider three different time systems. The first is true time,
denoted byt, which can be considered equivalent to GPS
system time. The second time system is that of the receiver’s
clock and is denotedtr. The third time system is that of the
SOP’s clock and is denotedts. The three time systems are
related to each other according to

t = tr − δtr(t), t = ts − δts(t), (10)

whereδtr(t) andδts(t) are the amount by which the receiver
and SOP clocks are different from true time, respectively.

The pseudorange observation made by the receiver on a
particular SOP is made in the receiver time and is modeled
according to

ρ(tr) =

‖rr [tr − δtr(tr)]− rs [tr − δtr(tr)− δtTOF]‖2 +

c . {δtr(tr)− δts [tr − δtr(tr)− δtTOF]}+ ṽρ(tr), (11)

wherec is the speed of light,δtTOF is the time-of-flight of the
signal from the SOP to the receiver, andṽρ is the error in the
pseudorange measurement due to modeling and measurement
errors. The error̃vρ is modeled as a zero-mean white Gaussian
noise process with power spectral densityr̃ [36]. In (11), the
clock offsetsδtr andδts were assumed to be small and slowly
changing, in which caseδtr(t) = δtr [tr − δtr(t)] ≈ δtr(tr).
The first term in (11) is the true range between the receiver’s
position at time of reception and the SOP’s position at time-
of-transmission of the signal, while the second term arisesdue
to the offsets from true time in the receiver and SOP clocks.

The observation model in the form of (11) is inappropriate
for our observability analysis as it suffers from two shortcom-
ings: (i) it is in a time system that is different from the one
considered in deriving the system dynamics, and(ii) the ob-
servation model is a nonlinear function of the delayed system
states. The first shortcoming can be dealt with by converting
the observation model to true time. The second problem is
commonly referred to as the output delay problem, in which
the observations (outputs) are a delayed version, deterministic
or otherwise, of the system state. A common approach to deal
with this problem entails discretization and state augmentation
[37]. For simplicity, and in order not to introduce additional
states in our model, proper approximations will be invoked to
deal with the second shortcoming.

To this end, the pseudorange observation model in (11)
is converted to true time by invoking the relationship (10)

to get an observation model forρ[t + δtr(t)]. The resulting
observation model is delayed byδtr(t) to get an observation
model for ρ(t). Assuming the receiver’s position to be ap-
proximately stationary within a time interval ofδtr(t), i.e.
rr [t− δtr(t)] ≈ rr(t), and using the fact that the SOP’s
position is stationary, i.e.rs [t− δtr(t)− δtTOF] = rs(t),
yields

ρ(t)≈‖rr(t)− rs(t)‖2 +

c . {δtr(t)− δts [t− δtr(t)− δtTOF]}+ ṽρ(t). (12)

Next, it is argued thatδts [t− δtr(t)− δtTOF] ≈ δts (t). The
validity of this argument depends on the size ofδtr and of
δtTOF and on the rate of change ofδts. For ground-based
SOP transmitters up to 1 km away, the time-of-flightδtTOF is
less than3.34µs. Likewise, the offsetδtr can be assumed to
be on the order of microseconds. It is reasonable to assume the
SOP clock biasδts to have an approximately constant value
over microsecond time intervals. Therefore, the pseudorange
observation model can be further simplified and expressed as
a nonlinear function of the state as

z(t)= ρ(t) , h [x(t)] + ṽρ(t)

≈ ‖rr(t)− rs(t)‖2 + c · [δtr(t)− δts(t)] + ṽρ(t). (13)

Discretizing the observation equation (13) at a constant sam-
pling intervalT yields the DT-equivalent observation model

z(tk)= y(tk) + vρ(tk) (14)

= ‖rr(tk)− rs(tk)‖2 + c · [δtr(tk)− δts(tk)] + vρ(tk),

where vρ is a DT zero-mean, white Gaussian process with
covariancer = r̃/T .

It is worth noting that the main sources of error affecting
pseudorange observations include uncertainties associated with
the propagation medium (path delay and loss), receiver noise,
multipath propagation, non-line of sight (NLOS) propagation,
multiple access interference, and near-far effects. The effects
of such error sources and mitigation methods are beyond the
scope of this paper, but relevant discussions can be found in
[10], [38]–[41] and the references therein.

IV. OBSERVABILITY ANALYSIS OF COPNAV

ENVIRONMENTS

A. Observability Analysis Objective

This section establishes the various conditions under which
a COpNav environment is observable. The objective of this
analysis is twofold: (i) determine whether the environment
is observable, and (ii) if the environment is not completely
observable, determine the unobservable directions in the state
space. To this end, thel-step observability matrix defined in
Theorem II.1, which only considers the deterministic part of
the system, will be utilized. It is worth noting that the results
achieved in the upcoming analysis are valid only locally, i.e.
within a neighborhood around the system’s initial state. In
particular, concluding that the system is observable should be
interpreted in the context of the existence of a neighborhood
within which the initial states are distinguishable. The contours
of this neighborhood depend on the layout of the COpNav
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environment. For example, a planar environment with two SOP
transmitters divides into two neighborhoods, one on eitherside
of the line connecting the two transmitters [26].

B. Receiver Trajectory Singularity

In the upcoming analysis, it is assumed that the receiver is
not stationary and that its trajectory is not collinear withthe
vectors connecting the receiver and any of the SOPs. It is as-
sumed that∄ α ∈ R such thatẋr(tk+1) = α [xr(tk)− xs(tk)]
and ẏr(tk+1) = α [yr(tk)− ys(tk)]. This ensures that the
bearing angle between the receiver and the SOPs is never
constant along the receiver trajectory. This assumption ensures
that the observability matrix will not lose rank due to the
receiver’s motion path.

To illustrate why this case must be excluded, consider a
simplified scenario in which the receiver and SOP clocks are
ideal, i.e. with no bias nor drift, such that the observations are
given by y(tk) = ‖rr(tk) − rs(tk)‖2. In this case, the state

vector is given byx =
[

rT

r , ṙ
T

r , r
T

s

]T

and the corresponding
observability matrix is given by

O(t0, tl)=











hT

a,r,s(t0) 01×2 −hT

a,r,s(t0)
hT

a,r,s(t1) ThT

a,r,s(t1) −hT

a,r,s(t1)
...

...
...

hT

a,r,s(tl−1) T (l− 1)hT

a,r,s(tl−1) −hT

a,r,s(tl−1)











wherehT

a,r,s(tk) ,

[

xr(tk)−xs(tk)
‖rr(tk)−rs(tk)‖2

, yr(tk)−ys(tk)
‖rr(tk)−rs(tk)‖2

]

. An

alternative expression forhT

a,r,s(tk) is given byhT

a,r,s(tk) =
[ cos θr,s(tk), sin θr,s(tk) ], where θr,s(tk) is the angle be-
tween thex-axis and the range vector connecting the receiver
and the SOP at time instanttk. In this representation, it is
obvious thatOL(t0, tl) has a rank of 3, sinceO1 = −O5,
O2 = −O6, and

∑4
i=1 αi Oi = 0, with α1 ,

−yr(t0)+ys(t0)
ẋr(t0)

,

α2 ,
xr(t0)−xs(t0)

ẋr(t0)
, α3 ,

−ẏr(t0)
ẋr(t0)

, andα4 , 1, whereOi is
the ith column ofOL(t0, tl). The null-space ofOL(t0, tl) for
l ≥ 3 can be shown to be

N [OL(t0, tl)] = span
[

a1 a2 a3

]

,

a1 , e1+e5, a2 , e2+e6, a3 ,

4
∑

i=1

αiei,

whereei is the standard basis vector consisting a 1 in theith
element and zeros elsewhere. However, when the receiver’s
motion path is collinear with the SOP, the rank ofOL(t0, tl)
drops to 2, since in this caseθr,s(t0) = · · · = θr,s(tl−1).

C. Preliminary Facts

The following facts will be invoked in the upcoming proofs.
The rank of an arbitrary matrixA ∈ Rm×n is the maximal
number of linearly independent rows or columns; more specif-
ically, rank[A] ≤ min {m,n}.

In a COpNav environment comprisingn receivers andm
SOPs, the state transition matrix raised to thekth power can
be shown to be

Fk = diag
[

Fk
r1
, . . . ,Fk

rn
,Fk

s1
, . . . ,Fk

sm

]

, (15)

whereFri andFsj are the state transition matrices for theith
receiver andjth SOP, respectively.

Moreover, it can be readily verified that

eTi F
k
r =







eTi + kTeTi+2, i = 1, 2;
eTi + kTeTi+1, i = 5;
eTi , i = 3, 4, 6

(16)

eTi F
k
s =

{

eTi , i = 1, 2, 4;
eTi + kTeTi+1, i = 3.

(17)

The Jacobian vector of the observation corresponding to the
pseudorange measurement made by receiveri on SOPj will
have the structure

H(tk) =
[

0 · · · 0 hT

b,ri,sj
(tk) 0 · · · 0 hT

c,ri,sj
(tk) 0 · · · 0

]

hT

b,ri,sj
(tk),

[

hT

a,ri,sj
(tk) 01×2 c 0

]

hT

c,ri,sj
(tk),

[

−hT

a,ri,sj
(tk) −c 0

]

, (18)

wherehT

a,ri,sj
(tk) =

[

xri
(tk)−xsj

(tk)

‖rri
(tk)−rsj

(tk)‖2

,
yri

(tk)−ysj
(tk)

‖rri
(tk)−rsj

(tk)‖2

]

.
It can be readily verified that

hT

b,ri,sj
(tk)F

k
r = hT

d,ri,sj
(tk) (19)

hT

c,ri,sj
(tk)F

k
s = hT

e,ri,sj
(tk), (20)

hT

d,ri,sj
(tk),

[

hT

a,ri,sj
(tk) kThT

a,ri,sj
(tk) c kT

]

hT

e,ri,sj
(tk),

[

−hT

a,ri,sj
(tk) −c −kT

]

.

D. Scenarios Overview

The various scenarios considered are outlined Table I. The
first scenario corresponds to a single receiver and a single SOP
whose initial states are unknown (noa priori knowledge about
any of the states is available). Subsequent scenarios consider
cases of partial or full knowledge of the initial states. In Table
I, fully-known means that all the initial states are known. Thus,
a fully-known receiver is one with knownxr(t0), whereas a
fully-known SOP is one with knownxs(t0). On the other
hand, partially-known means that only the initial position
states are known. Thus, a partially-known receiver is one with
known rr(t0), whereas a partially-known SOP is one with
known rs(t0). For the cases of multiple SOPs, it is assumed
that SOPs are not colocated at the same position. Moreover, it
is assumed that the receivers identify the SOPs according to
their classification: unknown, partially-known, or fully-known.
The results associated with each case are captured in the
following theorems and corresponding proofs.

TABLE I
COPNAV OBSERVABILITY ANALYSIS SCENARIOS CONSIDERED

Case Receiver(s) SOP(s)
1 1 Unknown 1 Unknown
2 1 Unknown m Partially-known
3 1 Unknown 1 Fully-known
4 1 Unknown 1 Fully-known &

1 Partially-known
5 n Partially-known 1 Unknown
6 n Partially-known m Partially-known
7 1 Partially-known 1 Fully-known
8 1 Fully-known 1 Unknown
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E. Observability Analysis

Theorem IV.1. A COpNav environment with one unknown
receiver and one unknown SOP is unobservable. Moreover, the
observability matrixOL(t0, tl) is rank-deficient by5, ∀ l ≥ 5.

Proof: The state vector for this case is given byx =
[

xT

r , x
T

s

]T

. Invoking (15) and (18)-(20), it can be seen that
the rank ofOL(t0, tl) is one at the first time segment, and
the rank increments by one as each additional time segment
is appended up tol = 5, since the corresponding additional
rows are linearly independent. At the fifth time segment,
rank[OL(t0, t5)] = 5, and the rank never increases further,
since onlyOi, i = 1, 2, 3, 5, 6, are linearly independent,
∀l ≥ 5. This can be shown by noting thatO1 = −O7, O2 =
−O8, O5 = −O9, O6 = −O10, and

∑4
i=1 αi Oi = 0, with

α1 ,
−yr(t0)+ys(t0)

ẋr(t0)
, α2 ,

xr(t0)−xs(t0)
ẋr(t0)

, α3 ,
−ẏr(t0)
ẋr(t0)

, and

α4 , 1. The null-space ofOL(t0, tl) for l ≥ 5 can be shown
to be

N [OL(t0, tl)] = span
[

n1 n2 n3 n4 n5

]

,

n1 , e6+e10, n2 , e5+e9, n3 , e2+e8, n4 , e1+e7

n5 , α1e1 + α2e2 + α3e3 + α4e4.

The structure ofN [OL(t0, tl)] reveals the following con-
clusions. First, the absence of a row of zeros in the matrix
of null-space basis vectors{ni}

5
i=1 indicates that none of

the states is orthogonal to the unobservable subspace, which
means that all the states lie within the unobservable subspace.
Therefore, none of the states is directly observable. Second,
a shift of the receiver and SOP positions byεx units in the
x-direction andεy units in they-direction, whereεx, εy ∈ R,
is unobservable, since this shift, denoted asλ = εyn3+ εxn4

lies in the null-space ofOL(t0, tl). The same interpretation
can be made with respect to a shift in theδt-δ̇t space being
unobservable as a result ofn1 andn2. Third, a rotation by an
angleφ around the SOP is unobservable. To see this, without
loss of generality, assume that the SOP is located at the origin.
A rotation at an angleφ will transform the coordinate frame
from (x, y) to (x′, y′). Therefore, the position and velocity
states in the new coordinate frame can be computed from
[

r′
r

ṙ′
r

]

=

[

T(φ) 0

0 T(φ)

] [

rr

ṙr

]

, T(φ) ,

[

cosφ − sinφ
sinφ cosφ

]

.

For smallφ, the small angle approximationscosφ ≈ 1 and
sinφ ≈ φ can be invoked in the rotation matrixT(φ).
Consequently, it can be readily shown that the transformed
state vector can be expressed asx′ = x + φ

ẋr(t0)
n5. Since

n5 ∈ N [OL(t0, tl)], then φ
ẋr(t0)

n5 ∈ N [OL(t0, tl)], and
such term will be unobservable from the measurements.

Theorem IV.2. A COpNav environment with one unknown
receiver andm partially-known SOPs is unobservable. More-
over, the observability matrixOL(t0, tl) is rank-deficient by
3 for m = 1, ∀ l ≥ 5, and rank-deficient by2 for m ≥ 2,
∀ l ≥ 4.

Proof: The state vector for this case is given byx =
[

xT

r , x
T

s1
, . . . , xT

sm

]T

. Knowledge of the SOPs’ positions is
equivalent to having an observation Jacobian matrix of the
form

H(tk)=





























hT

b,r,s1
(tk) h

T

c,r,s1
(tk) 0 · · · 0

hT

b,r,s2
(tk) 0 hT

c,r,s2
(tk) · · · 0

...
...

...
. . .

...
hT

b,r,sm
(tk) 0 0 · · · hT

c,r,sm
(tk)

0 [I2×2 02×2] 0 · · · 0

0 0 [I2×2 02×2] · · · 0
...

... 0
. . .

...
0 0 0 · · · [I2×2 02×2]





























.

Noting that H(tk) ∈ R(3m)×(4m+6) and invoking (15)-
(20), it can be be seen thatrank [OL(t0, t1)] = 3m, ∀m,
since all the rows are linearly independent. Adding a sec-
ond time segment results in an observability matrix with
rank [OL(t0, t2)] = 4m, ∀m, since the first4m rows are
linearly independent, while rowsm+ 1, . . . , 3m are identical
to rows 4m + 1, . . . , 6m, respectively. Adding a third time
segment results in an observability matrix with

rank [OL(t0, t3)] =

{

5m, m ≤ 3;
4m+ 4, m > 3.

(21)

Form ≤ 3, (21) can be shown by noting that rows1, . . . , 4m
and 6m + i, wherei = 1, 2, . . . ,m are linearly independent,
while rowsm+1, . . . , 3m are identical to rows4m+1, . . . , 6m
and rows7m + 1, . . . , 9m, respectively. Form > 3, (21)
can be shown by noting that columns1, . . . , 4m + 4 are
linearly independent, while the last 2 columns are linearly
dependent, namelyO4m+5 = −

∑m−1
i=0 O4i+5 andO4m+6 =

−
∑m−1

i=0 O4i+6. Adding a fourth time segment results in an
observability matrix with

rank [OL(t0, t4)] =

{

6, m = 1;
4m+ 4, m ≥ 2.

(22)

For m = 1, (22) can be shown by noting that rows
1, 2, 3, 4, 7, 10 are linearly independent, while rows2 + 3i
and rows3 + 3i, for i = 0, 1, 2, 3 are identical. Form ≥ 2,
(22) can be shown by noting that columns1, . . . , 4m+ 4 are
linearly independent, while the last 2 columns are linearly
dependent, namelyO4m+5 = −

∑m−1
i=0 O4i+5 andO4m+6 =

−
∑m−1

i=0 O4i+6. Form ≥ 2, adding more time segments does
not improve the rank any further as the last two columns
will always be linearly dependent on the previous columns.
However, form = 1 a fifth time segment increases the rank
by one, while adding additional time segments beyond 5 does
not improve the rank any further. This can be shown by noting
that Oi, i = 1, 2, 3, 5, 6, 7, 8, are linearly independent, while
O5 = −O9, O6 = −O10, and

∑4
i=1 αi Oi = 0.

For m = 1, the null-space ofOL(t0, tl), l ≥ 5, can be
shown to be

N [OL(t0, tl)] = span
[

n1 n2 n5

]

.

For m ≥ 2, the null-space ofOL(t0, tl), l ≥ 4, can be
shown to be

N [OL(t0, tl)] = span
[

n6 n7

]

,
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n6 ,
[

nT

6,r nT

6,s1 nT

6,s2 · · · nT

6,sm

]T

n7 ,
[

nT

7,r nT

7,s1 nT

7,s2 · · · nT

7,sm

]T

nT

6,r , γeT5 − µeT6 , nT

7,r , µeT5 + γeT6

nT

6,si , γeT3 − µeT4 , nT

7,si, µeT5 + γeT6 , i = 1, 2, . . . ,m

γ ,
−yr(t0) +

∑m
i=1 ysi(t0)

ẏr(t0)
, µ ,

xr(t0)−
∑m

i=1 xsi (t0)

ẋr(t0)
.

The structure ofN [OL(t0, tl)] reveals that form = 1,
none of the states is directly observable exceptxsi and ysi ,
which are observable by construction. However, form ≥ 2,
the receiver’s position and velocity states,xr , yr, ẋr, and ẏr,
become observable, but the receiver and SOPs clock bias and
drift states,δtr, δ̇tr, δtsi , and δ̇tsi , remain unobservable.

Theorem IV.3. A COpNav environment with one unknown
receiver and one fully-known SOP is unobservable. Moreover,
the observability matrixOL(t0, tl) is rank-deficient by1, ∀ l ≥
5.

Proof: The state vector for this case is given byx =
[

xT

r , x
T

s

]T

. Full knowledge of the SOP is equivalent to having
an observation Jacobian matrix of the form

H(tk)=

[

hT

b,r,s(tk) hT

c,r,s(tk)

0 I4×4

]

. (23)

Invoking (15)-(20), it can be be seen that the observability
matrix OL(t0, tl) has a rank of five at the first time segment,
since the rows are linearly independent. The rank increments
by one as each additional time segment is appended up to
l = 5, since rows 2, 3, 4, and 5 are identical to rows2+5(l−1),
3+5(l− 1), 4+5(l− 1), and5+5(l− 1), respectively, while
the first five rows are linearly independent of rows1+5(l−1).
The rank stops improving at the fifth time segment, whereat
rank[OL(t0, t5)] = 9. The rank never increases further, since
O4 = −

∑3
i=1 αi Oi. The null-space ofOL(t0, tl), l ≥ 5,

can be shown to be

N [OL(t0, tl)] = span
[

n5

]

.

The structure ofN [OL(0, l)] reveals that of the receiver’s
states, only the receiver clock biasδtr and clock drift δ̇tr
are observable as they are orthogonal to the unobservable
subspace, while SOP states are observable by construction.

Theorem IV.4. A COpNav environment with one unknown
receiver, one fully-known SOP, and one partially-known SOP
is observable,∀ l ≥ 4.

Proof: The state vector for this case is given byx =
[

xT

r , x
T

s1
,xT

s2

]T

. Full knowledge of one SOP and partial
knowledge of the other is equivalent to having an observation
Jacobian matrix of the form

H(tk)=









hT

b,r,s1
(tk) hT

c,r,s1
(tk) 0

hT

b,r,s2
(tk) 0 hT

c,r,s2
(tk)

0 I4×4 0

0 0 [I2×2 02×2]









. (24)

Invoking (15)-(20), it can be seen that the observability matrix
OL(t0, tl) has a rank of 8 at the first time segment, since all

the rows are linearly independent. The rank keeps increments
by two as each additional time segment is appended up to
l = 4. Adding a fourth time segment results in an observability
matrix whose rank is 14 (full-rank). This can be shown by
noting that the first 8 rows are linearly independent along with
rows9+8(l− 2) and10+8(l− 2), for l = 2, 3, 4. Moreover,
rows i+8(l− 1) for i = 3, 4, 6, 7, 8 andl = 1 are identical to
the corresponding rows forl = 2, 3, . . .. Finally,OT

13+8(l−2) =

O
T

5 + T (l− 1)OT

6 , for l = 2, 3, . . ., whereOT

i is the ith row
of the corresponding observability matrixOL(t0, tl).

Theorem IV.5. A COpNav environment withn partially-
known receivers and one unknown SOP is unobservable.
Moreover, the observability matrixOL(t0, tl) is rank-deficient
by 2, ∀ l ≥ 3.

Proof: The state vector for this case is given byx =
[

xT

r1
, . . . , xT

rn
, xT

s

]T

. Partial knowledge of then receivers is
equivalent to having an observation Jacobian matrix of the
form

H(tk)=















hT

b,r1,s
(tk) 0 · · · 0 hT

c,r1,s
(tk)

[I2×2 02×4] 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · hT

b,rn,s
(tk) hT

c,rn,s
(tk)

0 0 · · · [I2×2 02×4] 0















.

Noting that H(tk) ∈ R(3n)×(6n+4) and invoking (15)-
(20), it can be be seen thatrank [OL(t0, t1)] = 3n and
rank [OL(t0, t2)] = 6n, since in both cases all rows are
linearly independent. Adding more time segments results
in rank [OL(t0, tl)] = 6n + 2, ∀ l ≥ 3, since columns
1, 2, . . . , 6n + 2 are linearly independent, whereas the last
two columns are linearly dependent. In particular,O6n+3 =
−
∑n

i=1 O6i+5 andO6n+4 = −
∑n

i=1 O6i+6. The null-space
of OL(t0, tl), l ≥ 3, can be shown to be

N [OL(t0, tl)] = span
[

n8 n9

]

,

n8 ,
[

nT

8,r1 nT

8,r2 · · · nT

8,rn nT

8,s

]T

n9 ,
[

nT

9,r1 nT

9,r2 · · · nT

9,rn nT

9,s

]T

nT

8,ri , ξeT5 − ηeT6 , nT

9,ri , ηeT5 + ξeT

6 , i = 1, 2, . . . , n

nT

8,s , ξeT3 − ηeT4 , nT

9,s , ηeT3 + ξeT4

ξ ,
− [

∑n
i=1 yri(t0)] + ys(t0)
∑n

i=1 ẏri(t0)
, η ,

[
∑n

i=1 xri(t0)]− xs(t0)
∑n

i=1 ẋri(t0)
.

The structure ofN [OL(0, l)] reveals that the receivers
velocity states and the SOP’s position states are observable.
However, the receivers’ and the SOP’s clock bias and drift
states are not observable. Recall that the receivers’ position
states are observable by construction.

Theorem IV.6. A COpNav environment withn partially-
known receivers andm partially-known SOPs is unobservable.
Moreover, the observability matrixOL(t0, tl) is rank-deficient
by 2, ∀ l ≥ 2.
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Proof: The state vector for this case is given byx =
[

xT

r1
, . . . , xT

rn
, xT

s1
, . . . ,xT

sm

]T

. Partial knowledge of the re-
ceivers and SOPs is equivalent to having an observation
Jacobian matrix of the form

H(tk)=





















Hb,r1,s 0 0 Hc,r1,s 0 0

0
. . .

... 0
. . . 0

0 · · · Hb,rn,s 0 · · · Hc,rn,s

0 · · · 0 [I2×2 02×2] 0 0
...

. . .
... 0

. . .
...

0 · · · 0 0 · · · [I2×2 02×2]





















Hb,ri,s(tk) ,











hT

b,ri,s1
(tk)

...
hT

b,ri,sm
(tk)

I2×2 02×4











, i = 1, . . . , n

Hc,ri,s(tk) ,











hT

c,ri,s1
(tk)

...
hT

c,ri,sm
(tk)

02×4











, i = 1, . . . , n.

Noting that H(tk) ∈ R(mn+2n+2m)×(6n+4m) and invoking
(15)-(20), it can be seen thatrank [OL(t0, t1)] = 3n+3m−1.
This can be shown by noting that the columns ofO(t0, t1)
have the following properties:

• linearly independent columns:O1+6i, O2+6i, O5+6i,
O6n+1+4j , O6n+2+4j , and O6n+3+4(l−1); with i =
0, 1, . . . , n, j = 0, 1, . . . ,m, and l = 1, 2, . . . , j.

• columns of zeros:O3+6i, O4+6i, O6+6i, O6n+4+4j ;
with i = 0, 1, . . . , n, andj = 0, 1, . . . ,m

• linearly dependent columns: O6n+3+4j =

−
[

∑n
l=1 O6l−1 +

∑j−1
l=0 O6n+3+4l

]

; with j = 0, . . . ,m

Next, it is noted thatOL(t0, tl) ∈ R[l(mn+2n+2m)]×(6n+4m);
hence the rank ofOL(t0, tl) will be determined by the
number of linearly independent columns, since the matrix
will have more rows than columns∀l ≥ 2. It can be seen
that rank [OL(t0, tl)] = 6n + 4m − 2, ∀l ≥ 2, i.e. the l-
step observability matrix is rank-deficient by 2. This can be
shown by noting that the first6n + 4m − 2 columns are
linearly independent, while the last two columns are linearly
dependent, such that

O6n+4m−q =−

[

n
∑

l=1

O6l−q +

j−1
∑

l=0

O6n+4−q+4l

]

,

where q = 0, 1 and j = 0, 1, . . . ,m. The null-space of
OL(t0, tl), l ≥ 3, can be shown to be

N [OL(t0, tl)] = span
[

n10 n11

]

,

n10 ,
[

nT

10,r1 · · · nT

10,rn nT

10,s1 · · · nT

10,sm

]T

n11 ,
[

nT

11,r1 · · · nT

11,rn nT

11,s1 · · · nT

11,sm

]T

nT

10,ri , βeT

5 − ζeT

6 , nT

9,ri , ζeT5 + βeT6 , i = 1, 2, . . . , n

nT

11,sj , βeT

3 − ζeT

4 , nT

9,sj , ζeT3 + βeT4 , j = 1, 2, . . . ,m

β ,
− [

∑n
i=1 yri(t0)] +

[

∑m
j=1 ysi(t0)

]

∑n
i=1 ẏri(t0)

ζ ,
[
∑n

i=1 xri(t0)]−
[

∑m
j=1 xsi(t0)

]

∑n
i=1 ẋri(t0)

.

The structure ofN [OL(0, l)] reveals that the receivers
velocity states are observable. However, the receivers’ and
SOPs’ clock bias and drift states are not observable. Recallthat
the receivers’ position states are observable by construction.

Theorem IV.7. A COpNav environment with one partially-
known receiver and one fully-known SOP is observable,∀ l ≥
2.

Proof: The state vector for this case is given byx =
[

xT

r ,x
T

s

]T

. Partial knowledge of the receiver and full knowl-
edge of the SOP is equivalent to having an observation
Jacobian matrix of the form

H(tk)=





hT

b,r,s(tk) hT

c,r,s(tk)

[I2×2 02×4] 0

0 I4×4



 . (25)

Invoking (15)-(20), it can be be seen thatrank [OL(t0, t1)] =
7, since all the rows are linearly independent. Adding more
time segments yieldsrank [OL(t0, t1)] = 10 (full-rank), ∀l ≥
2, since the first ten rows are linearly independent, while rows
4+7(l−1), 5+7(l−1), and7+7(l−1) for l = 1 are identical to
the corresponding rows forl = 2, 3, . . ., and rowsOT

6+7(l−1)

are linearly dependent, such thatO
T

6+7(l−1) = O
T

6 + T (l −

1)OT

7 .

Theorem IV.8. A COpNav environment with one fully-known
receiver and one unknown SOP is observable,∀ l ≥ 4.

Proof: The state vector for this case is given byx =
[

xT

r ,x
T

s

]T

. Full knowledge of the receiver is equivalent to
having an observation Jacobian matrix of the form

H(tk)=

[

hT

b,r,s(tk) hT

c,r,s(tk)

I6×6 0

]

. (26)

Invoking (15)-(20), it can be be seen that the observability
matrix OL(t0, tl) has a rank of 7 at the first time segment,
since all the rows are linearly independent. The rank incre-
ments by one as each additional segment is appended up to
l = 4. Adding a fourth time segment results in an observability
matrix whose rank is 10 (full-rank). This can be shown by
noting that the first 7 rows are linearly independent along with
rows8+ 7(l− 2), for l = 2, 3, 4. Moreover, rowsi+7(l− 1)
for i = 4, 5, 7 and l = 1, 2, . . . , are identical, respectively.
Finally, O

T

9+7(l−2) = O
T

2 + T (l − 1)OT

4 , O
T

10+7(l−2) =

O
T

3 + T (l − 1)OT

5 , andO
T

13+7(l−2) = O
T

6 + T (l − 1)OT

7 ,
for l = 2, 3, . . .

The results concluded from Theorems IV.1 - IV.8 are
summarized in Table II, where observable states refer to those
in an orthogonal complement to the unobservable subspace,
and time stepl refers to the time step at which the observability
matrix rank reaches a steady-state value. It is worth notingthat
the observability results for the scenarios considered in Table
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I constitute the minimal set of observability requirementsin
the sense that knowing the results for these scenarios, one
can predict the observability of an arbitrary scenario withn
receivers andm SOPs and any type of prior knowledge (none,
partial, or full) for the receivers and SOPs.

TABLE II
COPNAV OBSERVABILITY ANALYSIS RESULTS

Case Observable? Observable States Time Step l

1 no none 5
2 no m = 1: none 5

m ≥ 2: xr, yr , ẋr, ẏr 4

3 no δtr , δ̇tr 5
4 yes all 4
5 no ẋri , ẏri , xs, ys, i = 1, . . . , n 3
6 no ẋri , ẏri , i = 1, . . . , n 2
7 yes all 2
8 yes all 4

V. SIMULATION RESULTS

This section presents simulation results that were achieved
for the three observable cases in Table I: cases 4, 7, and
8. For purposes of numerical stability, the clock error states
were defined to becδt and cδ̇t. All simulations assumed the
receiver’s process noise spectral density to beq̃x = q̃y =
0.1m2/s4, while the sampling period was set toT = 10
ms. The receiver’s clock was assumed to be a temperature-
compensated crystal oscillator (TCXO) withh0 = 2 × 10−19

and h−2 = 2 × 10−20, while the SOPs’ clocks were as-
sumed to be oven-controlled crystal oscillators (OCXOs) with
h0 = 8× 10−20 andh−2 = 4× 10−23. The observation noise
spectral density was set tor = 100m2.

A simulator was developed to generate the “truth” data
for each COpNav environment studied. Noisy pseudorange
observations were processed by an EKF to estimate the states
of interest. The observability is quantified in terms of the esti-
mation error̃x , x−x̂ and the corresponding estimation error
covarianceP , E

[

x̃ x̃T

]

, wherex̂ is the EKF state estimate.
Results for a single-run EKF and rigorous MC analysis are pre-
sented. The MC analysis is based on anN -run average of the
normalized estimation error squared (NEES) [31]. Theith-run
NEES is defined asǫi(tk) , x̃T

i (tk|tk)P
−1
i (tk|tk)x̃i(tk|tk),

while the average NEES is defined asǭ(tk) =
1
N

∑N
i=1 ǫi(tk).

For the single-run EKF, an observable system should yield
converging estimation error covariances and the estimation
errors should remain bounded. For theN -run EKF, an ob-
servable system and a consistent EKF should yield a statistic
Nǭ(tk) that is approximately chi-squared distributed withNn
degrees of freedom, specificallyNǭ(k) ∼ χ2

Nn, wheren is
the state estimate dimension. An unobservable system should
yield an estimation error covariance that never improves with
more observations. Thus, the MC analysis boils down to a
hypothesis test on̄ǫ(tk) with an acceptance region[r1, r2]
defined such thatPr {ǭ(k) ∈ [r1, r2] |H0} = 1−α, whereH0

is the null hypothesis andα is the size of the test (probability
of false alarm).

In the following simulations, the system true initial state
x(t0) was fixed, while the EKF initial state estimatêx(t0)
was generated according tôx(t0) ∼ N [x(t0),P(t0|t−1)],
whereP(t0|t−1) is the EKF initial estimation error covari-
ance. All the simulations assumed a receiver whose ini-
tial state isxr(t0) = [0, 0, 0, 25, 10, 1]

T and SOPs with
initial statesxs1(t0) = [50, 100, 1, 0.1]T and xs2(t0) =
[−50, 100, 1, 0.1]T.

The simulations for Case 4 considered an environment with
an unknown receiver and two SOPs: one fully-known and
one partially-known. The initial estimation error covariance
matrices of the receiver and the second SOP were chosen
to be Pr(t0|t−1) = (1 × 103)diag [2, 2, 1, 1, 30, 0.3] and
Ps2(t0|t−1) = (1× 103)diag [30, 0.3], respectively.

The simulations for Case 7 considered an environment with
a partially-known receiver and two SOPs: one fully-known
and one unknown. The initial estimation error covariance
matrices of the receiver and the second SOP were chosen to be
Pr(t0|t−1) = (1 × 103)diag [1, 1, 30, 0.3] andPs2 (t0|t−1) =
(1× 103)diag [1, 1, 30, 0.3], respectively.

The simulations for Case 8 considered an environment with
a fully-known receiver and one unknown SOP. The initial
estimation error covariance matrix of the SOP was chosen to
bePs1(t0|t−1) = (1× 103)diag [1, 1, 30, 0.3].

Figures 1, 2, and 3 show the estimation error trajectories
x̃i(tk|tk) for a single-run EKF along with the±2σi(tk|tk)
estimation error variance bounds for cases 4, 7, and 8, re-
spectively. Note that the estimation error variances converge
and that the estimation errors remain bounded, as would be
expected for an observable system.

Figures 4, 5, and 6 show the resulting NEES trajectories
ǭ(tk) for α = 0.01 along withr1 andr2 for cases 4, 7, and 8,
respectively. Note that thēǫ(tk) values reside within the99%
probability region, which is consistent with a well-behaved
estimator operating on an observable system.

VI. EXPERIMENTAL RESULTS

A field experimental demonstration was conducted to illus-
trate one of the observable cases in Table I, namely Case 8.
The objective was to demonstrate that a COpNav receiver with
velocity random walk dynamics and knowledge of its initial
state can estimate the states of an unknown SOP in its envi-
ronment. To this end, two antennas were mounted on a vehicle
to acquire and track: (i) multiple GPS signals and (ii) a signal
from a nearby cellular phone tower whose signal was mod-
ulated through code division multiple access (CDMA). The
GPS and cellular signals were simultaneously downmixed and
synchronously sampled via two National InstrumentsR© vector
Radio Frequency Signal Analyzers (RFSAs). These front-ends
fed their data to a Generalized Radionavigation Interfusion
Device (GRID) software receiver [42], which simultaneously
tracked all GPS L1 C/A signals in view and the signal from
the cellular tower with unknown states, producing pseudorange
observables for all tracked signals. The observables were fed
into a MATLAB R©-based EKF, which estimated the states of
the unknown CDMA cellular tower. Figure 7 illustrates the
hardware setup of the conducted experiment.
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ǭ
(t

k
)

Time (s)

Fig. 6. NEES andr1 & r2 bounds for Case 8 in Table I with 50 MC runs



12

GRID Software
Receiver MATLAB-

Based EKF

S
to
ra
g
e

National Instruments RFSA

Fig. 7. Experiment hardware setup

Since the states of the GPS satellite vehicles (SVs) were
known, and since the receiver was tracking more than four
GPS SVs throughout the experiment, the receiver’s initial state
xr(t0) was fully-known. The cellular tower state vector con-
sisted of its planar position states, clock bias, and clock drift,
as defined in (7). The EKF initial state estimatex̂(t0) was
generated according tôx(t0) ∼ N [x(t0),P(t0|t−1)], where
x(t0) ,

[

rT

s (t0), cδts(t0), 0
]T

, whererT

s , [xs(t0), ys(t0)]
is the projection of the true cellular tower location from the
Earth-Centered Earth-Fixed (ECEF) coordinate frame system
to a planar system,cδts(t0) = ‖rr(t0) − r̂s(t0|t−1)‖2 −
ρ(t0) + cδtr(t0), rTr (t0) , [xr(t0), yr(t0)] is the planar
projection of the receiver’s initial location from ECEF, and
P(t0|t−1) = diag

[

1× 104, 1× 104, 3× 104, 3× 102
]

is the
EKF initial estimation error covariance matrix. Figure 8 shows
the receiver traversed trajectory during the collection ofthe
pseudorange observations, the true and estimated locationof
the cellular phone tower, and the uncertainty ellipse produced
by the EKF estimation error covariance. Despite the short
COpNav receiver trajectory, the tower location estimate was
within about 10 meters of the actual tower and within the
estimation uncertainty ellipse. This result is consistentwith
the theoretical prediction that a COpNav receiver with a fully-
known initial state can estimate the states of an unknown SOP.

VII. C ONCLUSIONS

This paper has addressed one component of a fundamental
theory of COpNav, namely observability of the environment.A
set of building block planar COpNav scenarios was considered
and the observability of each scenario was analyzed. It was
concluded that a planar COpNav environment consisting of

true
trajectory

true tower estimated tower
locationlocation

estimation uncertainty
ellipse

Fig. 8. Vehicle traversed trajectory during the collectionof the GPS and
cellular CDMA observations, true location of cellular CDMAtower, and
estimated CDMA tower location and associated estimation error ellipse

multiple receivers with velocity random walk dynamics mak-
ing pseudorange measurements on multiple stationary SOPs
is fully-observable if and only if the initial state(s) of: at
least one receiver is fully-known, at least one receiver is
partially-known and at least one SOP is fully-known, or
at least one SOP is fully-known and at least one SOP is
partially-known. Aided by this observability analysis, future
work will consider prescribing receiver trajectories thatwill
maximize the estimability of states of interest in the COpNav
environment.
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