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ABSTRACT
A method for recovering the carrier phase differences be-
tween pairs of independent GPS receivers has been devel-
oped and demonstrated in truth-model simulations. This
effort is in support of a project that intends to image the dis-
turbed ionosphere with diffraction tomography techniques
using GPS measurements from large arrays of receivers.
Carrier phase differential GPS techniques, common in sur-
veying and relative navigation, are employed to determine
the phase relationships between the receivers in the imag-

ing array. Strategies for estimating the absolute carrier phase
disturbances at each receiver are discussed. Simulation re-
sults demonstrate that the system can rapidly detect the on-
set of scintillation, identify one non-scintillating reference
signal, and recover the carrier phase differences accurate to
0.1 cycles.

INTRODUCTION
GPS radio waves experience several changes as they pass
through the ionosphere. A quiet ionosphere introduces the
well-known code delay and phase advance effects. The
left half of Fig. 1 depicts the scenario where a GPS signal
passes through a quiet portion of the ionosphere to a re-
ceiver situated on the ground. If the electron density profile
changes slowly across this portion of the ionosphere, the
signal may be assumed to have a single ionospheric pierce
point. Thus the signal is altered only by the number of
free electrons encountered along its direct path from the
satellite to the receiver. This quantity, defined as the total
number of electrons in a 1-m2 cross section column that is
oriented along the signal’s path, is called the Total Electron
Content (TEC). Such a slowly varying electron density pro-
file is represented in the left panel of Fig. 2. In this quiet
ionosphere model, which will be referred to in this paper
as the bulk-quiescent ionosphere model, the received sig-
nal is characterized by an amplitude that is independent of
T EC(x) and a phase that is a function of the electron den-
sity at the signal’s pierce point T EC(x1).1

When electron density irregularities are present, the
effect on the signals is more complicated. This situation is
depicted in the right half of Fig. 1 where the signal is re-

1The horizontal dimension x is aligned perpendicular to the local mag-
netic field at the ionospheric pierce point. This orientation takes advantage
of the fact that ionospheric irregularities, when present, tend to align along
the local magnetic field lines. Hence, variations in TEC exist primarily
along only one horizontal direction.
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Figure 1. The undisturbed and disturbed ionosphere and the scin-
tillation imaging array.
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Figure 2. The bulk-quiescent ionosphere mode (left) and the
wave propagation model (right).

fracted and diffracted by the irregularities. The signal not
only experiences code delay and phase advance due to the
free electrons along the propagation path but also experi-
ences constructive and destructive interference as the dis-
turbed wavefront propagates down to the receiver. In this
case, the bulk-quiescent ionosphere model is inadequate to
describe the signal disturbances; a more complex model,
based on the physics of wave propagation through irregu-
lar media, is required. Such a model is depicted in the right
panel of Fig. 2, where the transmitted wavefront encounters
a TEC profile that varies significantly along the x direc-
tion. The uneven lines below the modeled ionosphere rep-
resent phase variations in the propagating wavefront. The
received signal’s amplitude and phase are now dependent
on the electron density profile along the x axis. The sig-

nal at the observation plane exhibits deep power fades and
carrier phase disturbances referred to respectively as am-
plitude and phase scintillation [1]. As an illustraton of the
effect of scintillation, Fig. 3 shows a time history of the re-
ceived carrier-to-noise ratio and carrier phase disturbances
for a scintillating signal.
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Figure 3. A time history of the received carrier-to-noise ratio
(top) and the scintillation-induced phase disturbances
(bottom).

The study of ionospheric disturbances and their ef-
fects on GPS signals is of both practical and scientific inter-
est. For GPS users, especially those who use carrier phase
techniques for precise relative positioning, the disturbances
caused by scintillation pose a significant problem. Dur-
ing quiet periods, ionospheric effects may be removed us-
ing models, dual-frequency measurements (if available), or
differencing techniques. The latter approach, often used in
surveying and relative navigation applications, relies on the
single pierce point and smooth TEC profile assumptions to
cancel out the effects of the ionosphere over short base-
lines. These assumptions break down if the GPS signals
are scintillating. In this case, precise positioning may be
impossible.

For ionospheric scientists, the altered GPS signals of-
fer insight into the structure and dynamics of the disturbed
ionosphere. A project is underway at Cornell University
that intends to use arrays of tens, hundreds, or even thou-
sands of inexpensive GPS receivers spread out over tens
of kilometers to image the disturbed ionosphere through
diffraction tomography. This project will used techniques
similar to those discussed in Ref. [2] to reconstruct TEC
profiles based on terrestrial GPS measurements and on wave
propagation models. Figure 1 shows a schematic of small
segment of the envisioned scintillation imaging array.

Signal amplitude is relatively easy to measure with

1652



an array of calibrated receivers, but it only represents part
of the received signal. The other part, the signal’s phase,
is more difficult to measure because a proper measurement
would require the array to be phase-synchronized. The en-
visioned array, however, is too large for the receivers to
be connected to a common phase reference. Thus, each
receiver must use its own independent clock to make its
phase measurements. This introduces phase biases into the
measurements because the individual clock errors are in-
separable from the phase measurements.

The question becomes this: What phase information
can be gained from a non-phase-synchronized array? One
answer, rather oddly, comes from the fields of surveying
and relative navigation for which these signal disturbances
represent a nuisance. The answer is that phase differences
between pairs of independent receivers may be recovered
using carrier phase differential GPS (CDGPS) techniques—
the techniques that surveyors and navigators use to pro-
duce precise relative position estimates. Under certain cir-
cumstances, these phase relationships may be used as sci-
ence data in diffraction tomography. This paper presents
a method that provides this previously unexploited carrier
phase data and describes the circumstances under which
these data may be exploited to image the ionosphere. Until
now, the proposed imaging techniques only considered am-
plitude data. By providing a more complete description of
the disturbed wavefront at the observation plane, the pro-
posed method will improve the quality of the diffraction
tomography estimates. The paper describes a technique for
recovering carrier phase differences between pairs of re-
ceivers, demonstrates the algorithm in truth-model simula-
tions, and illustrates the circumstances in which these data
may be useful in ionospheric tomography.

The remainder of this paper is divided into five ma-
jor sections. The first section describes carrier phase tech-
niques for relative navigation and how they may be used to
produce phase data from a scintillation imaging array. The
second section discusses how these data may contribute to
the tomography effort. The third section develops the al-
gorithm for determining the phase differences between re-
ceivers. The fourth section describes the simulations and
presents the results. The fifth section offers conclusions.

RELATIVE NAVIGATION AND SCINTILLATION
Relative navigation using CDGPS is a method by which the
relative position of a pair of receivers is determined using
accurate but biased carrier phase measurements. Centimeter-
level accuracies, or better, are possible over short baseline
distances of less than 10 km [3]. Figure 4 depicts a relative
navigation scenario in which the relative position vector x
between receivers A and B is estimated using carrier phase

x BA

j i

Figure 4. The relative navigation scenario.

measurements from pairs of GPS satellites. Only one pair, i
and j, is included in the figure. Following the model devel-
oped in Ref. [4], the carrier phase measurement at receiver
A from GPS satellite j may be written as follows:

λφ
j
A = ρ

j
A +c(δtA−δt j)+λ(γ0A −ψ

j
0)+ I j

A +T j
A +ν

j
A (1)

where λ is the nominal GPS carrier wavelength, φ
j
A is the

measured carrier phase in cycles, ρ
j
A is the line-of-sight

range from satellite j to receiver A, c is the speed of light
in a vacuum, δtA is the receiver clock error for receiver A,
δt j is the satellite clock error for satellite j, γ0A is the real-
valued carrier phase bias associated with receiver A, ψ

j
0 is

the real-valued carrier phase bias associated with satellite
j, I j

A is the bulk-quiescent ionosphere phase advance ex-
pressed as an equivalent distance, T j

A is the troposphere de-
lay expressed as an equivalent distance, and ν

j
A is a noise

term that models thermal noise and multipath.
To eliminate terms that are common to a particular

GPS satellite, measurements from the two receivers are dif-
ferenced. A single-difference operator, defined as ∆(∗) j

AB =
(∗) j

B−(∗) j
A, is used in the following single-differenced mea-

surement equation:

λ∆(φ) j
AB = ∆(ρ) j

AB + c(δtB−δtA)

+λ(γ0B − γ0A)+∆(ν) j
AB (2)

In the bulk-quiescent ionosphere model, the single differ-
enced atmospheric terms may safely be neglected over short
baselines. Those terms have been dropped from Eq. (2).
The clock terms and bias terms associated with satellite j
cancel out. A single-differenced receiver clock term c(δtB−
δtA) and a single-differenced bias term λ(γ0B−γ0A) remain.
A second differencing of the measurements, this time be-
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tween satellites, leads to further cancellation. A double-
difference operator, defined as ∇∆(∗) ji

AB = ∆(∗)i
AB−∆(∗) j

AB,
is used in the following double-differenced measurement
equation:

λ∇∆(φ) ji
AB = ∇∆(ρ) ji

AB +λN ji
AB +∇∆(ν) ji

AB (3)

Now the receiver clock terms have cancelled out, a key re-
sult for using CDGPS techniques to recover carrier phase
differences in a non-phase-synchroized array. Additionally,
the double-differenced bias term N ji

AB = (γi
0B
−γ

j
0B

)−(γi
0A
−

γ
j
0A

) is now guaranteed to be an integer and is referred to as
the integer ambiguity. Double-differenced measurements
are repeated for all commonly visible satellite pairs, and
those measurements are used to resolve the integer ambi-
guities and to compute the relative position vector.

Equations (1) through (3) assume a quiet ionosphere.
Consider the situation where the signals encounter irregu-
larities in the ionosphere. The measured phase becomes

λφ
j
A = ρ

j
A + c(δtA−δt j)+λ(γ0A −ψ

j
0)

+λδφ
j
A + I j

A +T j
A +ν

j
A (4)

where the new term λδφ
j
A is the product of the nominal

wavelength and phase disturbance due to scintillation. Af-
ter double differencing, the measurements become

λ∇∆(φ) ji
AB = ∇∆(ρ) ji

AB +λN ji
AB

+λ∇∆(δφ) ji
AB +∇∆(ν) ji

AB (5)

Notice that the same terms that cancelled out of Eq. (1)
have canceled out here, but a double-differenced phase dis-
turbance term remains.

For the moment, consider the terms in Eq. (5) from
the perspective of trying to recover information about the
disturbed ionosphere. Suppose the double-differenced range
and the integer ambiguities are known. What remains are
the measured double-differenced phase, the double-differenced
phase due to scintillation, and a noise term. Rearranging
the terms in Eq. (5) with the measured term, the known
terms, and the noise term on the right, the following CDGPS
measurement residual can be formed:

λ∇∆(δφ) ji
AB = λ∇∆(φ) ji

AB−∇∆(ρ) ji
AB−λN ji

AB

−∇∆(ν) ji
AB (6)

This measurement residual represents a combination of the
single-differenced phase disturbance from satellite i and the
single-differenced phase disturbance from satellite j:

λ∇∆(δφ) ji
AB = λ[(δφ

i
B−δφ

i
A)− (δφ

j
B−δφ

j
A)] (7)

Given only this information, it is impossible to determine
whether the ionospheric irregularities that caused the phase
disturbances were encountered on the path from satellite i
or satellite j, or both.

Suppose, however, that one of the signals is not scin-
tillating, as depicted in the top drawing of Fig. 5. Then
that signal’s contribution to the double-differenced phase
disturbance may be neglected, leaving only the phase dif-
ference between the receivers caused by disturbances on
the signal from satellite i:

∆(δφ)i
AB = λ[(δφ

i
B−δφ

i
A)−���

���:
0

(δφ
j
B−δφ

j
A)] (8)

In the authors’ experience with scintillation monitoring, the
assumption that at least one visible signal experiences neg-
ligible scintillation is valid in nearly all situations. Consid-
ering measurement residuals from pairs of receivers through-
out the scintillation imaging array, a map of the phase dif-
ferences can be constructed, as shown in bottom drawing
of Fig. 5. The next section considers how these data may
be used in diffraction tomography.

x
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B

CDGPS equations:

λφj
A = ρj

A + c(δtA − δtj) + λ(γ0A − ψj
0) + Ij

A + T j
A + νj

A

λ∆φj
AB = λ(φj

B − φj
A)

= ∆(ρ)j
AB + c(δtB − δtA) + λ(γ0B − γ0A) + ∆(ν)j

AB

λ∇∆(φ)ji
AB+λ(∆(φ)i

AB − ∆(φ)j
AB)

= ∇∆(ρ)ji
AB + λ[(γi

0B
− γj

0B
) − (γi

0A
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0A
)

︸ ︷︷ ︸
Nji

AB

] + ∇∆(ν)ji
AB

Scintillation equations:

λφj
A = ρj

A + c(δtA − δtj) + λ(γ0A − ψj
0) + λδφj

A + Ij
A + T j

A + ν̃j
A

λ∇∆(φ)ji
AB = ∇∆(ρ)ji

AB + λN ji
AB + λ∇∆(δφ)ji

AB + ∇∆(ν)ji
AB

λ∇∆(δφ)ji
AB = λ[(δφi

B − δφi
A) − (δφj

B − δφj
A)]

∆(δφ)i
AB

∆(δφ)i
AC

∆(δφ)i
AD

CDGPS block equations
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Figure 5. The relative navigation scenario with one satellite scin-
tillating (top) and the phase relationships in the scintil-
lation imaging array (bottom).

Before going forward, however, one question remains
to be answered: How are the double-differenced range and
the integer ambiguities determined? The answer is that they
are the products of a calibration stage in which the rela-
tive navigation solution is computed during a quiet period
prior to the onset of scintillation. Ionospheric irregularities
most often occur near the magnetic equator after local sun-
set. Since GPS satellites are typically in view for hours,
the undisturbed signals tracked before local sunset are the
same signals that are disturbed at the onset of scintillation,
an important and scientifically interesting stage of scintil-
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lation phenomena. Since the integer ambiguities are con-
stant, they remain valid, provided there are no cycle slips,
for all continuously tracked signals—even after scintilla-
tion begins. Furthermore, the receivers in the array are
static; that is, their relative position vectors are constant.
If estimated, these relative position vectors may be used in
conjunction with the known GPS ephemerides to calculate
the double-differenced range.

PHASE DIFFERENCES IN DIFFRACTION
TOMOGRAPHY
The phase differences recovered from the CDGPS mea-
surement residuals do not contain all the information re-
quired to fully describe the phase disturbance of a GPS
wavefront across a scintillation imaging array. For that, the
absolute carrier phase disturbance at each receiver would
have to be known. Suppose, however, that the absolute car-
rier phase disturbance at one receiver could be estimated.
That receiver would act as an anchor for the array, allow-
ing the absolute carrier phase disturbances at the other re-
ceivers to be computed using the measured phase differ-
ences. This concept is illustrated in the bottom drawing of
Fig. 5, where receiver A acts as the array’s anchor.

Two scenarios can be considered. In the first, each
receiver in the array is equipped with an inexpensive fre-
quency reference, e.g., a temperature compensated crystal
oscillator. In this case, the absolute carrier phase distur-
bance at receiver A would have to be re-estimated at each
measurement step as part of the overall tomography esti-
mation problem. For N receivers in the array and M sam-
ples, the scintillation imaging array provides M(N−1) new
pieces of data to the tomography estimator.

In the second scenario, receiver A is equipped with
a very stable oscillator, e.g., an ovenized crystal oscillator.
For this case, consider the carrier phase measurement equa-
tion for receiver A from satellite i:

λφ
i
A = ρ

i
A + c(δtA−δt i)+λ(γ0A −ψ

i
0)

+λδφ
i
A + Ii

A +T i
A +ν

i
A (9)

Assuming that the absolute position of the receiver is known
and that the bulk-quiescent ionosphere term I j

A and tropo-
sphere term T j

A maybe modeled and removed, the following
unknowns remain: the GPS satellite ephemeris errors (the
position components of which are assumed to be included
in the line-of-sight range term ρi

A); the receiver clock error,
δtA; the real-valued carrier phase measurement biases, γ0A

and ψi
0; and the phase disturbance due to scintillation. The

combined effect of the GPS ephemeris errors, the stable re-
ceiver clock error, and the measurement biases would be
nearly constant over relatively short sample periods. The

tomography estimator could use data from the imaging ar-
ray to estimate this bias once for a given sample period,
resulting in a measurement residuals that contain the time
history of the absolute carrier phase disturbances at receiver
A. In this scenario, the diffraction tomography estimator
gains MN−1 new pieces of data.

It is important to keep in mind that, until now, tomog-
raphy estimators have exploited only amplitude data. The
use of the phase data offered by this paper’s method will
improve the quality of the tomography estimates.

SOLUTION ALGORITHM
The solution algorithm is divided into four steps: calibrat-
ing the array using CDGPS techniques, detecting the on-
set of scintillation, identifying a non-scintillating reference
signal, and recovering the phase differences between pairs
of receivers.

The calibration step is carried out by performing the
relative navigation solution using the CDGPS techniques
described in Ref. [5]. The problem formulation in Ref.
[5] employs a square-root information (SRI) implementa-
tion of a sequential least-squares estimator. The estimator
assembles double-differenced carrier phase measurements
for the commonly tracked pairs of satellites, considers the
ambiguity a priori information, and performs the standard
square-root information factorizations [6]. The following
block upper-triangular system of equation results: zxk

zNk

zrk

=

 Rxxk RxNk

0 RNNk

0 0

[ xk
N

]
+

 νxk

νNk

νrk

 (10)

where the vectors zxk
and zNk

are the SRI vectors that asso-
ciated with the relative position xk and ambiguity N states,
respectively. The matrices Rxxk and RNNk are square, upper-
trangular SRI matrices through which the states and the SRI
vectors are related. RxNk is a dense matrix that relates the
ambiguity state vector and the SRI vector zxk

. The terms νxk

and νNk
are zero-mean, unit-variance, white-noise random

vectors. The vector zrk
is the SRI residual, and the vector

νrk
is the associated zero-mean, unit-variance, white-noise

random vector. Specialized techniques are used to resolve
the integer ambiguity vector N, and the relative position
vector xk is calculated by back substitution. These esti-
mates will be used in subsequent steps to construct carrier
phase difference measurement residuals.

An important feature of square-root information data
processing is that, in the absence of measurement anoma-
lies, the square-root information residual vector zrk

is a
Gaussian distributed, zero-mean, unit-variance random vec-
tor, i.e., zrk

∼N (0, I). Measurement anomalies like carrier
phase cycles slips or disturbances due to scintillation make
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Scintillation equations:

λφj
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Figure 6. The Chi-squared distribution for the cost variable Jrk .

zrk
deviate from that distribution. This fact is used to de-

velop a threshold test for detecting such anomalies. To this
end, scalar cost is defined as the sum-of-squares of the ele-
ments of zrk

:

Jrk =
N

∑
p=1

(zp
rk
)2 (11)

In this equation, the superscript p indicates the pth element
of the vector zrk

. The sum-of-squares of N Gaussian dis-
tributed random variables with zero mean and unit variance
is distributed as a Chi-squared random variable with a mean
of N and variance of 2N, i.e., Jrk ∼ χ2

N .
For example, in the absence of cycle slips and scin-

tillation, the cost variable Jrk for N = 11 should be drawn
from the distribution shown in Fig. 6. If an anomaly occurs,
the value of Jrk increases so that it appears to be drawn from
the long tail of the distribution. If a value is far out on the
tail, the probability that it is in fact drawn from the distri-
bution decreases. An acceptable false alarm probability is
specified as the area under the distribution’s tail beyond the
value of a test statistic β. (Note: the false alarm probability
area in the figure is exaggerated. More realistic areas result
in larger β values.) The cost at each sample is compared
to the test statistic; once exceeded, the hypothesis that a
measurement anomaly has occurred is accepted.

Figure 7 plots the time history of Jrk computed using
50 Hz carrier phase data for another example case. Notice
how the cost increases relatively slowly after the scintilla-
tion begins. This behavior differs from that of a full cycle
slip in which the cost typically jumps two or more orders
of magnitude. This contrast makes distinguishing between
scintillation and cycle slips easy.

One may argue at this point that a more traditional
approach for scintillation detection could be used, such as
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Figure 7. threshold.

monitoring the commonly used S4 index. That index how-
ever, is typically calculated by averaging data over a rel-
atively long time interval, e.g., 30-60 s. For a real-time
scintillation monitoring system, or for real-time scintilla-
tion detection in relative navigation applications, anomalies
must be detected nearly instantaneously. This paper’s pro-
posed threshold test method typically achieves detection a
few tenths of a second. This fast detection is illustrated in
Fig. 7 in terms of 50 Hz samples.

The next step in the solution algorithm is to iden-
tify at least one non-scintillating signal. One side effect
of rapidly detecting measurement anomalies is that there
is insufficient information in the data history to determine
which signals are free of scintillation. In order to consider
more data, a second, higher threshold is set to define the
endpoint of an analysis interval. In the example case, this
second threshold is set to 4×β, illustrated in Fig. 8. The
interval begins at the last sample prior to the onset of scin-
tillation for which the cost Jrk is less than N, the theoretical
mean for a quiet ionosphere. This interval shown between
the endpoints K1 and K2 in Fig. 8.

The analysis of the interval data requires the forma-
tion of CDGPS measurement residuals that rely on knowl-
edge of the relative position vectors and the integer ambi-
guities. Locking in these values completes the calibration
step. The relative position vector is averaged over an arbi-
trary number of samples prior to the beginning of the anal-
ysis interval; the integer ambiguities are taken from the last
estimate before the analysis interval. Once these calibra-
tion products are saved, the following double-differenced
measurement residual is formed for all the possible ji-pairs
of GPS satellites:

∇∆φ
ji
resk

= λ∇∆(φ) ji
AB−∇∆(ρ) ji

AB−λN ji
AB−∇∆(ν) ji

AB (12)
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Figure 8. The analysis interval.

An interval cost is defined for each pair by summing the
squares of the measurement residuals over the analysis in-
terval:

J ji
int =

K2

∑
k=K1

(∇∆φ
ji
resk

)2 (13)

Each pair is ranked according to its interval cost. Rely-
ing on the previously stated assumption that at least one
signal experiences negligible scintillation, the lowest cost
pair should contain at least one clean signal. The choice
between the signals in the lowest cost pair is guided by
considering the costs of each of those signals paired with
all the remaining signals. While this selection method may
be more formally posed in terms of statistical hypothesis
testing, this ad hoc approach has proven effective.

Let the non-scintillating satellite be designated by j.
Then by substituting the relative position vectors and the in-
teger ambiguities determined from the calibration stage, the
scintillation-induced phase differences between receivers A
and B on the signal from satellite i can be expressed as the
following CDGPS measurement residual equation, where
λ∇∆(φ) ji

AB, ∇∆(ρ) ji
AB, and λN ji

AB are known:

λ∆(δφ)i
AB = λ∇∆(φ) ji

AB−∇∆(ρ) ji
AB

−λN ji
AB−∇∆(ν) ji

AB (14)

RESULTS FROM TRUTH-MODEL SIMULATIONS
The solution algorithm proposed in this paper has been
demonstrated in truth-model simulations. Two different
simulators have been combined for this purpose. The first
is a scintillation simulator that was originally developed for
testing GPS receiver tracking loops. It models amplitude
variations as following a Ricean distribution and the spec-
trum of the rapidly varying component of complex-valued

scintillation as following a low-pass second-order Butter-
worth filter. The severity of the simulated scintillation is
controlled by two parameters: the S4 index and a decorre-
lation time constant τ0. Figure 9 shows a comparison be-
tween empirically-derived scintillation data for which S4 =
0.91 and τ0 = 0.5 s on the left and simulated data with the
same parameters and with a nominal carrier-to-noise ratio
of 45 dB-Hz on the right. The top plots represent the re-
ceived carrier-to-noise ratio time histories; the bottom plots
represent time histories of the carrier phase disturbances
due to scintillation. Notice how the deep power fades in
both the empirical and simulated data are accompanied by
rapid, half-cycle phase transitions. This behavior stresses
a receiver’s tracking loops and may cause CDGPS algo-
rithms to diverge from the correct integer ambiguity esti-
mates. For more details on this simulator, refer to Ref. [7].
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Figure 9. A comparison between empirically-derived scintilla-
tion data (left) and simulated scintillation data (right).

To generate a scintillation scenario, a typical two-
receiver static baseline (100-m) CDGPS scenario is gen-
erated. A random number of GPS satellites is chosen to be
scintillating. The scintillation start times are chosen ran-
domly from a window that begins after a sufficient amount
of non-scintillating data has been generated to allow the
calibration stage to resolve the integer ambiguities. The S4

and τ0 parameters are randomly specified for both scintil-
lating satellites and non-scintillating satellites. The scin-
tillating satellites’ parameters are drawn from a Gaussian
distribution that result in strong scintillation, whereas the
non-scintillating satellites’ parameters are drawn from a
distribution that result in weak scintillation. The mean val-
ues and standard deviations of these distributions are sum-
marized in Table 1. Once the parameters for a particular
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Table 1. Scintillation parameter distributions for simulations.

S4 τ0 (s)

Strong
mean 0.9 0.5

st. dev. 0.1 0.1

Weak
mean 0.1 30

st. dev. 0.1 10

signal have been specified, scintillation time histories are
generated at receiver A and receiver B independently. This
approach does not take into account any spacial or time cor-
relation between the scintillation received at receiver A and
the scintillation received at receiver B. The authors believe
this approach is reasonable considering the large separation
distances envisioned. The question of correlation may be
addressed in the future by using a more complicated scin-
tillation model based on phase screens.

The carrier phase measurements are modified to in-
clude not only the scintillation-induced carrier phase dis-
turbances but also an increase in carrier phase measurement
error associated with the instantaneous drops in carrier-
to-noise ratio. This phase measurement model, however,
omits a potential source of error: those introduced by the
phase-lock loop’s inability to accurately track rapid phase
changes. The question of how to design phase-lock loops
that can track such phase transitions is the subject of ongo-
ing research [8, 9]. This paper assumes that the simulated
phase-lock loops exhibit robust phase tracking capability.
Figure 10 shows the carrier-to-noise ratio time history for
a scintillating signal at one of the receivers during a typi-
cal simulation. The scintillation begins about 12 s into the
scenario and exhibits the typical deep fading of severe scin-
tillation.

Before considering the results from the phase differ-
ence recovery algorithm, it is interesting to consider the
effect that severe scintillation has on precise relative navi-
gation algorithms. Figure 11 shows the relative position er-
ror magnitude time history during an example simulation.
Once the integer ambiguities have been resolved, the rel-
ative position error magnitude is less than 5 mm. When
the first deep power fade and associated phase disturbance
are encountered, the relative navigation estimator diverges
from the correct integer ambiguity estimates, resulting in
an instantaneous jump in error from 5 mm to 14 m. The er-
ror eventually reaches 24 m. Errors like these may have se-
rious consequences for certain applications—precision air-
craft approach and landing, for instance.

When the phase difference recovery algorithm is ap-
plied to the simulated data, it detects the onset of scin-
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Figure 10. The time history of the received carrier-to-noise ratio
at receiver A.
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Figure 11. The time history of the relative position error magni-
tude during scintillation.

tillation in a few tenths of a second worth of data, cor-
rectly identifies a non-scintillating satellite, and provides
the phase relationships between the two receivers for all
of the other tracked satellites. Figure 12 shows the time
history of the true and recovered phase difference between
the receivers for the satellite pair that includes the refer-
ence satellite, PRN 8, and a scintillating satellite, PRN 17.
Although the recovery algorithm detects the onset of scin-
tillation quickly, it does not begin reporting phase differ-
ences until after the analysis interval. Once reporting, the
recovered phase difference tracks the true phase differences
well, even during the fast phase transitions that are associ-
ated with deep power fades.

Figure 13 shows a time history of the errors in the
recovered phase differences. After the analysis interval,
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Figure 12. The time histories of the true and recovered phase dif-
ferences.

which is marked by the large errors between 12 s and 13 s
in scenario time, the phase difference errors are less than
about 0.1 cycles and include two components: a rapidly
varying part and a nearly constant part. The rapidly vary-
ing component is caused by the carrier phase measurement
noise at the two receivers. Notice the jump in error when
the carrier-to-noise ratio drops twice between 14 s and 15 s
in scenario time. The nearly constant component is caused
by the assumption that the phase disturbance due to scin-
tillation for the reference satellite is zero. That satellite
does in fact experience scintillation—very weak scintilla-
tion with a small S4 index and a very long decorrelation
time constant τ0. The effect is a small, slowly varying
phase disturbance that looks like a bias over the several
seconds considered in the example scenario. Other, smaller
effects that may contribute to this bias component include
errors in the relative position vector estimate and errors in
the broadcast GPS satellite ephemerides.

CONCLUSIONS
A method has been developed that recovers the phase rela-
tionships between pairs of independent GPS receivers op-
erating in large scintillation imaging arrays. These phase
relationships contribute to the science data that will be used
to image the disturbed ionosphere with diffraction tomog-
raphy techniques. The phase recovery method uses CDGPS
techniques to calibrate a non-phase-synchronized array and
to recover the phase differences between the receivers. The
onset of scintillation is detected with a threshold test, and a
method for identifying a non-scintillating reference signal
has been developed. The system has been tested in truth-
model simulations. The simulations generate two-receiver
static baseline CDGPS scenarios that include random and
systematic errors. The simulated carrier phase measure-
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Figure 13. The time history of the error in the recovered phase
differences.

ments are altered to include the effects of scintillation and
the associated increase in phase measurement error.

The system rapidly detects the onset of scintillation,
typically within a few tenths of a second. It defines an anal-
ysis interval, typically about 1 s long, that provides enough
information to correctly identify a non-scintillating refer-
ence satellite. The recovered phase differences accurately
represent the true phase differences, including tracking the
fast half-cycle phase transitions associated with deep power
fades. The errors are typically less than 0.1 cycles and have
two components: a rapidly varying part that is due to the
phase measurement error and a bias part that is due to the
erroneous assumption that the reference signal has no scin-
tillation effects. That signal does in fact experience very
weak scintillation with a long decorrelation time constant,
an effect that would appear to be a bias over the short sam-
ple periods considered in the simulations.

The diffraction tomography estimator’s sensitivity to
these errors has yet to be determined. If it is very sensitive,
a more sophisticated, model-based approach to recovering
the carrier phase disturbances may be necessary.
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