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Abstract—This paper investigates the effectiveness of
multipath-decorrelating antenna motion in reducing the
initialization time of Global Navigation Satellite System (GNSS)
receivers employing low-cost single-frequency antennas for
carrier-phase differential GNSS (CDGNSS) positioning. Fast
initialization times with low-cost antennas will encourage the
expansion of CDGNSS into the mass market, bringing the
benefits of globally-referenced centimeter-accurate positioning
to many consumer applications, such as augmented reality and
autonomous vehicles, that have so far been hampered by the
several-meter-level errors of traditional GNSS positioning. Poor
multipath suppression common to low-cost antennas results in
large and strongly time-correlated phase errors when a receiver
is static. Such errors can result in the CDGNSS initialization
time, the so-called time to ambiguity resolution (TAR), extending
to hundreds of seconds—many times longer than for higher-
cost survey-grade antennas, which have substantially better
multipath suppression. This paper demonstrates that TAR can
be significantly reduced through gentle wavelength-scale random
antenna motion. Such motion acts to decrease the correlation
time of the multipath-induced phase errors. A priori knowledge
of the motion profile is shown to further reduce TAR, with the
reduction more pronounced as the initialization scenario is more
challenging.

I. INTRODUCTION

GNSS technology is present in nearly all smartphones

and tablets, yet the underlying positioning accuracy of the

consumer-grade GNSS receivers within them has stagnated

over the past decade. The latest clock, orbit, and atmospheric

models have improved receiver ranging accuracy to a meter or

so [1], leaving receiver-dependent multipath as the dominant

error source in current consumer devices [2]. Under good mul-

tipath conditions, 2-to-3-meter-accurate positioning is typical;

under adverse multipath, accuracy degrades to 10 meters or

worse.

Outside the mainstream of consumer GNSS receivers, how-

ever, centimeter-accurate GNSS positioning is routine. This

level of accuracy, common in geodesy, agriculture, and sur-

veying, results from replacing standard code-phase positioning
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techniques with carrier-phase differential GNSS (CDGNSS)

techniques [3], [4]. Carrier phase techniques offer far more

accurate positioning due to the much smaller wavelength

of the GNSS signal’s carrier, approximately 20 centimeters,

as compared its spreading code, whose chip interval spans

approximately 300 meters.

The primary impediment to performing centimeter-accurate

CDGNSS positioning on smartphones and other consumer

handheld devices lies not in the commodity GNSS chips,

which actually outperform survey-grade chips in some re-

spects [5]. Rather, it lies in the low-cost (e.g., a few cents

to a few dollars), low-quality GNSS antennas, whose chief

failing is poor multipath suppression. Multipath, caused by

direct signals reflecting off the ground and nearby objects,

induces centimeter-level phase measurement errors, which,

for static receivers, have correlation times in the hundreds

of seconds [6]. The time correlation of these errors, coupled

with their relatively large magnitude, significantly increases

the initialization period of GNSS receivers using low-cost

antennas to achieve a centimeter-accurate CDGNSS position-

ing solution [7], [8], [9]. This is because, given a fixed

measurement duration, a longer measurement error correlation

time results in less information being provided to the CDGNSS

estimator as it attempts to resolve the integer ambiguities

inherent in CDGNSS processing, making their successful

estimation less likely. Consequently, any strategy that reduces

the measurement error correlation time—all else equal—leads

to an increased ambiguity resolution success rate and thus

a decreased initialization time, otherwise known as time to

ambiguity resolution (TAR).

Prior work on mitigating the effect of correlated phase

measurement errors in CDGNSS processing has focused not

on decreasing the correlation time of the measurement errors,

but on properly modeling time correlation within the CDGNSS

estimator [10], [11], [12], [13]. While proper modeling leads

to more accurate validation of integer ambiguity estimates, it

does not significantly reduce—and can in some cases increase

[13]—TAR.

This paper proposes gentle wavelength-scale random an-

tenna motion as an effective strategy to reduce the correlation

time of multipath-induced carrier phase errors, thus reducing

TAR. Insofar as this paper’s authors are aware, no prior work

has advocated random antenna motion as a means to expedite

CDGNSS ambiguity resolution. This is likely because, as this

paper shows, antenna motion is beneficial—and practical—
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primarily for CDGNSS with small low-cost single-frequency

antennas, which has been the subject of only recent study

[7]. Single-frequency antennas are of primary focus because

multi-frequency antennas—while offering more signals for

increased ambiguity resolution performance—will for many

years remain too expensive; they are at present hundreds of

dollars too expensive for mass market products.

It may seem counterintuitive that antenna motion would

lead to reduced TAR. However, this paper shows both by

simulation and empirical study that for low-quality antennas,

which experience relatively large phase measurement errors,

the reduction in measurement error correlation time due to

motion more than compensates for the increased dynamics

uncertainty within a CDGNSS estimator. Conversely, it is

shown that this is not the case for high-quality antennas.

Moreover, it is demonstrated that TAR is further reduced with

improved a priori knowledge of the antenna motion profile.

In the limit of perfect motion profile knowledge, this paper’s

technique becomes similar to the synthetic aperture technique

of [14], the difference being that [14] uses the perfect motion

profile to coherently process the low-level complex GNSS

correlation products, whereas this paper takes the slightly less

optimal but simpler approach of operating on the usual carrier

phase observables typically ingested by CDGNSS estimators.

The next section reviews existing multipath mitigation tech-

niques and explains why they are largely ineffective or difficult

to implement on low-cost, computationally-limited platforms.

The following two sections detail models for the CDGNSS es-

timator and carrier phase multipath error. Subsequent sections

analyze the effects of multipath on ambiguity resolution and

investigate the benefits of antenna motion in reducing TAR.

II. EXISTING MULTIPATH MITIGATION TECHNIQUES

Existing techniques for mitigating GNSS carrier phase mul-

tipath tend to be unsuitable for low-cost platforms. Signal-

processing-based techniques include the Multipath-Estimating

Delay-Lock Loop [15], [16], a coupled multipath estimating

phase-lock and delay-lock loop [17], signal-to-noise-ratio-

based multipath error correction [18], the enhanced strobe

correlator [19], and ray-tracing [20]. However, these tech-

niques either require (1) precise, centimeter-accurate a priori

knowledge of the motion profile of the GNSS antenna [17]

and, in some cases, knowledge of the range and bearing of

nearby reflection surfaces [20], (2) extra computational power

to generate measurements at more than the usual number of

correlator taps [15], [16], (3) a lengthy measurement duration,

e.g., hundreds of seconds, for the correct identification of the

multipath error frequency [18], or (4) a high sampling rate—in

excess of 20 (real-valued) mega-samples per second [19].

Each of these enumerated requirements inhibits this paper’s

stated goal of fast centimeter positioning on low-cost, com-

putationally limited platforms: (1) because a receiver will in

most cases not have precise prior knowledge of its motion

profile or of the relative position of nearby reflection surfaces;

(2) because the platform is often computationally limited;

(3) because hundreds of seconds of processing is too long;

and (4) because a high sampling rate would add significant

hardware cost to mass market receivers, whose narrow front-

end bandwidth renders techniques such as that presented in

[19] less effective [21]. Furthermore, many of these techniques

have significantly reduced performance when the reflecting

surface is less than about 10 meters from the receiving antenna

[19], [16], a regime in which multipath-induced phase errors

have been shown to be the largest [22].

Antenna-based multipath mitigation strategies, such as

specially-designed groundplanes [23], [24] or antenna array

solutions [25] are likewise inappropriate, as they require

antenna setups that are at present far more expensive than

the low-cost antennas that are this paper’s focus.

This paper’s exploration of random antenna motion for

multipath mitigation is motivated by the inapplicability of

existing multipath mitigation techniques to low-cost GNSS

receivers.

III. CDGNSS BATCH ESTIMATOR

The CDGNSS batch estimator employed in this paper takes

as its input double-differenced (DD) carrier phase measure-

ments made between two GNSS receivers, a reference and

a rover, and processes these, together with a prior location

estimate of the rover antenna center of motion and a model of

the magnitude of variations about this center, to estimate (1)

a centimeter-accurate relative position time history between

the two receivers, and (2) a vector of carrier-phase integer

ambiguities.

This paper employs batch estimation, as opposed to filtering,

because batch estimation enables proper treatment of time

correlation in the multipath-induced DD carrier phase mea-

surement errors. Due to the estimator state’s partial integer

nature, state augmentation strategies typically employed to

address time-correlated (colored) measurement errors in state

estimation, such as those in [10], [26], actually weaken the

mixed real-integer model, ultimately degrading the ambiguity

resolution performance [13]. Batch estimation, by contrast,

enables accurate and optimal treatment of measurement error

time correlation in mixed real and integer estimation problems.

A. State

The batch estimator’s state has a real-valued component

that indirectly models the time-varying relative position be-

tween the reference and rover receiver, and an integer-valued

component that models the so-called DD phase ambiguities.

Such ambiguities are inherent in carrier phase differential

positioning techniques; their resolution has been the topic of

much past research [3], [27] and is required to produce a

centimeter-accurate CDGNSS positioning solution.

Let k be the total number of measurement epochs input to

the batch estimator and T be the time between consecutive

epochs. The estimator’s real-valued state component at tk =
kT , denoted xk , is given by

xk = [rTC,q
T,vT

0 , . . . ,v
T

k−1]
T, (1)

where
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rC is the 3 × 1 constant relative position vector between the

reference antenna and the center of motion of the rover

antenna;

q is the 3 × 1 constant relative position vector between the

rover antenna center of motion rC and the rover antenna

initial relative position r0 at t0, i.e., r0 = rC + q; and

vi for i = 0, 1, . . . , k − 1 is a 3 × 1 vector proportional to

the change in relative position between the reference and

rover antenna from ti to ti+1. The exact relationship

between vi and the change in position is given in the

next subsection.

The vectors q and vi, i = 0, 1, . . . , k − 1, are modeled

as independent, zero-mean, Gaussian random vectors with

variance σ2
p:

q,vi ∼ N (03×1, σ
2
pI3×3), i = 0, 1, . . . , k − 1 (2)

The estimator’s integer-valued state component at tk, de-

noted nk, given by

nk = [N1, N2, . . . , NMk−1]
T, (3)

where

Mk is the total number of satellites providing carrier phase

measurements during at least one measurement epoch up

to and including time tk; and

Ni is the integer-valued phase ambiguity for the ith satellite

pair, i = 1, 2 . . . ,Mk − 1, assumed constant so long as

both the reference and rover receivers retain phase lock

on the signals tracked.

B. Relating the State to the Relative Rover Antenna Position

Let the rover antenna position relative to the reference

antenna position at tk be denoted rk. This vector sequence is

assumed to evolve as an Ornstein-Uhlenbeck (OU) process—

a mean-reverting first-order Gauss-Markov process. Such a

process allows for adequate modeling of the time-correlated

and mean-reverting motion a rover antenna would experience

when moved randomly in the extended hand of an otherwise

stationary user. Let f = e−T/τp be the correlation coefficient

of the per-dimension time-varying changes in rk, where τp is

the correlation time of these changes, in seconds. Under this

model, rk is related to the components of xk by

r0 = rC + q

rk = rC + f (rk−1 − rC) +
√

1− f2vk−1, k = 1, 2, . . .

= rC +

k−1∑

i=0

fk−i
(

q+ f−1
√

1− f2vi

)

, k = 1, 2, . . .

(4)

To adapt (4) to enforce a static antenna constraint, one can

set the standard deviation of q and vi, i = 0, 1, . . . , k − 1, to

zero, i.e., σp = 0.

C. Measurement Model

The batch estimator’s measurement model relates a time

history of DD carrier phase measurements to the real- and

integer-valued state components. The DD phase measurement

at time ti ≤ tk between satellites j and 1, with 1 denoting the

common reference satellite, and the reference (A) and rover

(B) receivers, is defined as

φ
j1
AB,i ,

[

φ
j
A,i − φ1A,i

]

−
[

φ
j
B,i − φ1B,i

]

, (5)

for j ∈ {2, 3, . . . ,Mk}, and where φ
β
ν,i, ν ∈ {A,B}, β ∈

{1, 2, . . . ,Mk}, is the undifferenced carrier phase measure-

ment at ti between receiver α and satellite β. As this paper’s

focus is multipath mitigation, the rover-reference pair is as-

sumed to operate in the short-baseline regime for which atmo-

spheric errors in the DD phase measurements are negligible.

In this regime, φ
j1
AB,i, which has units of cycles, can be related

to rk and nk by the following nonlinear measurement model

[28]:

λφ
j1
AB,i = r

j1
AB,i + λNj−1 + w

j1
AB,i (6)

where

r
j1
AB,i ,

(

r
j
A,i − r1A,i

)

−
(

r
j
B,i − r1B,i

)

(7)

is the DD range between the two receivers and two satellites

and

λ is the GNSS signal wavelength;

Nj−1 is the integer ambiguity for the (j − 1)th satellite pair,

as defined previously;

w
j1
AB,i is the DD carrier phase measurement error at ti;

r
β
α,i , ‖rβi − rα,i‖, ν ∈ {A,B}, β ∈ {1, 2, . . . ,Mk}, is the

range between receiver α and satellite β at ti, where ‖·‖
represents the Euclidean norm;

rα,i is the 3 × 1 absolute position of receiver ν ∈ {A,B} at

ti, the time of signal reception, in the global coordinate

frame; and

r
β
i is the 3 × 1 absolute position of satellite β ∈

{1, 2, . . . ,Mk} at the time of signal transmission, in the

global coordinate frame.

Assuming that the position of the reference receiver is known

and constant, i.e., rA,i = rA ∀i, then (6) can be linearized

about a guess r̄i of the relative rover position ri , rB,i − rA,

resulting in the linearized measurement model

λφ
j1
AB,i = r̄

j1
AB,i +H

j1
AB,i(ri − r̄i) + λNj−1 + w

j1
AB,i, (8)

where r̄
j1
AB,i is the DD range between the two receivers and

satellites j and 1 assuming ri = r̄i, and

H
j1
AB,i ,

∂r
j1
AB,i

∂ri

∣
∣
∣
∣
∣
ri=r̄i

=
(
ˆ̄r1B,i

)T
−
(

ˆ̄rjB,i

)T

is the 1 × 3 linearized measurement sensitivity matrix, with
ˆ̄rβB,i being the unit vector pointing from r

β
i to r̄B,i = rA+ r̄i,

β ∈ {1, 2, . . . ,Mk}. Rewriting (8) with the known terms on

the left and the unknown terms on the right results in the

following, for i = 1, 2, . . . , k:

λφ
j1
AB,i − r̄

j1
AB,i +H

j1
AB,ir̄i = H

j1
AB,iri + λNj−1 + w

j1
AB,i

(9)
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The estimator ingests, at tk, k = 1, 2, . . . , a (Mk − 1)k × 1
vector Yk of stacked inter-epoch measurement vectors from

t1 to tk:

Yk ,








y1

y2

...

yk








(10)

where yi, i = 1, 2, . . . , k, is an (Mk−1)×1 vector containing

the known quantities from the left-hand side of (9) at ti for

j = 2, 3, . . . ,Mk:

yi ,








λφ21AB,i − r̄21AB,i +H21
AB,ir̄i

λφ31AB,i − r̄31AB,i +H31
AB,ir̄i

...

λφMk1
AB,i − r̄

j1
AB,i +HMk1

AB,ir̄i







. (11)

Using (9), it is now possible to linearly relate the real-

and integer-valued state components in (1) and (3) to the

DD carrier phase measurements in (10), incorporating the

kinematics of the relative antenna position as modeled in (4).

The linearized model becomes

Yk = H̃xkCkxk + H̃nknk +Wk, (12)

where

H̃xk is the time-dependent measurement sensitivity matrix for

the real-valued state component xk (expanded below);

Ck is the time-dependent correlation matrix modeling the dy-

namics of the reference–rover three-dimensional relative

position rk, as detailed in Sec. III-B (expanded below);

H̃nk is the measurement sensitivity matrix for the integer-

valued state component (expanded below);

Wk is the discrete-time stacked DD measurement error vec-

tor, modeled as zero mean with covariance matrix Rk,

i.e., IE [Wk] = 0 and IE
[
WkW

T

k

]
= Rk (expanded

below).

H̃xk, Ck, H̃nk, and Wk can be expanded as

H̃xk ,









HAB,1 0 . . . 0

0 HAB,2
. . .

...
... 0

0 0 HAB,k









(13)

Ck , I3×3 ⊗










1 f0 0 . . . . . . 0
1 f1 af0 0 . . . 0
...

...
...

. . .
. . .

...

1 fk−1 afk−2 . . . af0 0
1 fk afk−1 . . . af1 af0










(14)

H̃nk ,








λI(Mk−1)×(Mk−1)

λI(Mk−1)×(Mk−1)

...

λI(Mk−1)×(Mk−1)








(15)

Wk ,








w1

w2

...

wk







, (16)

where “⊗” denotes the Kronecker product, f is the correlation

coefficient of the time-varying reference–rover relative posi-

tion changes, as introduced in (4), a ,
√

1− f2,

wi ,








w21
AB,i

w31
AB,i
...

wMk1
AB,i







, i = 1, 2, . . . , k

and

HAB,i ,








H21
AB,i

H31
AB,i
...

HMk1
AB,i







, i = 1, 2, . . . , k.

The measurement error covariance matrix Rk facilitates

proper modeling of the magnitude and time correlation of

the DD phase measurement errors, which, similar to the rover

antenna position, are assumed to evolve as an OU process. Rk

can be expanded as

Rk , Rφ ⊗Dk, (17)

where

Rφ , σ2
φ









4 2 . . . 2

2 4
...

...
. . . 2

2 . . . 2 4









(18)

models the intra-epoch measurement error correlation result-

ing from the presence of a common reference satellite in the

DD measurements [see [4], Eq. (19)], and σ2
φ is the average

variance of the reference and rover antenna undifferenced

phase error:

σ2
φ ,

σ2
φ,A + σ2

φ,B

2
. (19)

Dk models the inter-epoch measurement error correlation, i.e.,

the correlation in time. The measurement error time history

for each DD satellite pair is modeled as an OU process,

which is the simplest process that accurately models the

time-correlated- and mean-reverting-nature of the DD phase

errors. Choosing an OU process also simplifies the relationship

between statistics of the antenna motion, also modeled as an

OU process [see (4)], to the statistics of DD measurement

errors, as will be detailed later on. Dk can be expanded as

Dk ,










h(0) h(1) . . . h(k − 1)
h(1) h(0) . . . h(k − 2)

...
...

...
...

h(k − 2) h(k − 3) . . . h(1)
h(k − 1) h(k − 2) . . . h(0)










, (20)

where h(i) is the autocorrelation function of the DD reference

and rover antenna phase errors, defined as

h(i) ,
σ2
φ,Ag

i
A + σ2

φ,Bg
i
B

σ2
φ,A + σ2

φ,B

, i = 1, 2, . . . , k, (21)
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and

gA , e−T/τφ,A

gB , e−T/τφ,B

are the correlation factors of the undifferenced rover and

reference phase errors, which are modeled as exponentially

decreasing with correlation times τφ,A and τφ,B, respectively.

D. State Estimation

Optimal state estimates x̂k and n̂k, k = 1, 2, . . . , are

produced by incorporating all measurements and a priori

information up to and including time tk. A square-root infor-

mation implementation of a batch estimator is employed for

an accurate and computationally-efficient solution [29], [30].

A priori state information is provided to the estimator to

enforce the models for q and vi, i = 1, 2 . . . , k, detailed in (2),

and to provide an approximation for the relative rover antenna

center of motion rC. This latter information is provided to the

estimator in the form of a normalized square-root information

equation:

z̄xk = R̄xxkxk + w̄xk (22)

where

z̄xk , R̄xxkx̄k is the 3(k + 2)× 1 nonhomogeneous term;

x̄k ,
[
r̄TC,0

T

3×1, . . . ,0
T

3×1

]
is the prior estimate for the real-

valued state component;

R̄xxk is the square-root information matrix (SRIM) contain-

ing the prior information certainty corresponding to x̄k

(expanded below); and

w̄xk is the 3(k + 2) × 1 error vector, modeled as zero mean

with unit covariance, i.e., IE [w̄xk] = 03(k+2)×1 and

IE
[
w̄xkw̄

T

xk

]
= I3(k+2)×3(k+2).

R̄xxk is a block diagonal matrix, expanded as

R̄xxk ,









1
σrC

I3×3 03×3 . . . 03×3

03×3
1
σp

I3×3 . . . 03×3

...
...

. . .
...

03×3 03×3 . . . 1
σp

I3×3









, (23)

where σrC is the per-dimension error standard deviation of r̄C,

in meters.

The carrier phase measurements are also modeled by a

normalized square-root information equation through the fol-

lowing transformation of Yk:

zk , R−T

ak Yk (24)

= Hxkxk +Hnknk +wk (25)

where

Rak , chol (Rk) is the Choleski factorization, i.e., the in-

verse square root, of the measurement error covariance

matrix Rk;

zk is the k(Mk−1)×1 nonhomogeneous term corresponding

to xk and nk;

Hxk , R−T

ak H̃xkCk is the normalized measurement sensitiv-

ity matrix for the real-valued state component xk;

Hnk , R−T

ak H̃nk is the normalized measurement sensitivity

matrix for the integer-valued state component nk; and

wk , R−T

ak Wk is the normalized measurement error, mod-

eled as zero mean with unit covariance, i.e., IE [wk] =
0k(Mk−1)×1 and IE

[
wkw

T

k

]
= Ik(Mk−1)×k(Mk−1).

Optimal estimates of the real- and integer-valued state

elements can be found by choosing xk and nk to minimize

the following cost function:

J (xk,nk) =
∥
∥Hxkxk +Hnknk − zk
︸ ︷︷ ︸

Normalized Measurement Error

∥
∥
2

+
∥
∥ R̄xxkxk − z̄xk

︸ ︷︷ ︸

Normalized Prior Error

∥
∥
2 (26)

where ‖·‖ represents the Euclidean norm. Eq. (26) can be

written equivalently as

J (xk,nk) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

[
Hxk Hnk

R̄xxk 0

]

︸ ︷︷ ︸

H

[
xk

nk

]

−

[
zk
z̄xk

]

︸ ︷︷ ︸

z

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

. (27)

By QR factorization [31], the block matrix H in (27) can be

transformed into the product of a square, orthonormal matrix

and an upper triangular matrix:

Z = QbRb (28)

By left multiplying H and z of (27) by QT

b , the cost function

can be written equivalently as

J (xk,nk) =

∥
∥
∥
∥
∥
∥





Rxxk Rxnk

0 Rnnk

0 0





[
xk

nk

]

−





zxk
znk
zr





∥
∥
∥
∥
∥
∥

2

, (29)

where

Rxxk is the SRIM corresponding to xk and zxk;

Rxnk is the SRIM corresponding to nk and zxk;

zxk is the nonhomogeneous term corresponding to xk and nk;

Rnnk is the SRIM corresponding to nk and znk;

zxk is the nonhomogeneous term corresponding to nk; and

zr is the residual nonhomogeneous term.

This transformation leaves the cost in a convenient form

that isolates a term involving only the integer-valued state

component:

J (xk,nk) = ‖Rxxkxk +Rxnknk − zxk‖
2

︸ ︷︷ ︸

Term involving the integer- and real-valued states

+ ‖Rnnknk − znk‖
2

︸ ︷︷ ︸

Term involving only the integer-valued state

+ ‖zr‖
2

︸ ︷︷ ︸

Residual term

(30)

Minimization of (30) proceeds as follows: First, one finds,

via efficient integer least-squares techniques [32], [27], the

integer-valued vector state estimate n̂k that minimizes the

second term on the right-hand side, the term involving only

the integer-valued state. This is known as integer ambiguity

resolution. Next, n̂k is inserted into the first term, the term

involving both the integer- and real-valued states. At this point,

it is possible to find the real-valued state estimate x̂k that

reduces the first term to zero. By this process the state that

minimizes J (xk,nk) is found subject to an integer constraint

on nk.
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E. Phase Residuals

In addition to a time history of centimeter-accurate position

estimates, the CDGNSS batch estimator outputs a time history

of phase residuals Ỹk , which amount to departures of each

DD phase measurement from phase alignment at the estimated

phase center of the antenna. The vector of phase residuals is

defined as

Ỹk , Yk − hk (x̂k) ,

where

hk (x̂k) ,








rAB,1 (x̂k) + λI(Mk−1)×(Mk−1)n̂k

rAB,2 (x̂k) + λI(Mk−1)×(Mk−1)n̂k

...

rAB,k (x̂k) + λI(Mk−1)×(Mk−1)n̂k








(31)

and

rAB,i (x̂k) ,








r21AB,i (x̂k)

r31AB,i (x̂k)
...

rMk1
AB,i (x̂k)







, i = 1, 2, . . . , k. (32)

The quantity r
j1
AB,i (x̂k) , j = 2, 3, . . . ,Mk is the DD range

between satellites j and the reference satellite 1 at time

ti, which can be computed from the time-varying estimated

reference-to-rover relative antenna position ri and the position

of the reference antenna rA using (7); ri is derived from x̂k

using using (4).

Phase residuals are examined in the next section to aid in

motivating antenna motion as an effective strategy to improve

the performance of CDGNSS integer ambiguity resolution.

IV. CARRIER PHASE MULTIPATH ERROR MODEL

In the short-baseline CDGNSS regime (i.e., when the rover

and reference antennas are separated by less than about 5

km), multipath errors remain substantial in DD carrier phase

measurements whereas all other modeling errors are effec-

tively cancelled by the DD operation detailed in (5) [33]. This

explains why multipath errors are the primary impediment to

fast carrier phase ambiguity resolution in the short-baseline

regime [18], [34].

This section exploits an existing analytical model for carrier

phase multipath to develop an approximate statistical rela-

tionship between (1) rover antenna quality and dynamics,

and (2) carrier phase multipath errors. Subsequent sections

will analyze ambiguity resolution performance in terms of

multipath errors to complete the linkage from antenna quality

and dynamics to ambiguity resolution success rate.

A. Single Reflection Multipath Error Model

Multipath-induced error in the phase estimates produced by

a GNSS receiver’s phase-locked loop as it tracks the carrier

phase of a particular signal from a specific satellite can be

approximated, in radians, by the following single-reflection

error model [35]:

ψ ≈ arctan
α sin θ

1 + α cos θ
. (33)

In this model, α is the power ratio and θ is the phase

difference, in radians, between the reflected and line-of-sight

(LOS) signals received by a GNSS antenna. Reflected sig-

nals are typically associated with low-elevation LOS signals

and have significant non-right-hand-circularly-polarized (non-

RHCP) components [36]. To attenuate reflected signals, high-

quality antennas are designed to have a high axial ratio (a

high level preference for RHCP) gain patterns that reject low-

elevation signals. Because lower-quality antennas are worse

in each of these properties, they attenuate signal reflections

to a lesser extent. Thus, in the remainder of this paper, α

is considered a proxy for reciprocal antenna quality, with α

decreasing as antenna quality increases.

Although multipath commonly involves multiple reflections,

the single-reflection model in (33) remains useful because

errors can often be traced to a single dominant reflection [37].

The phase difference θ can be expanded as [20]

θ = 2π

(
dref − dlos

λ

)

, (34)

where dref is the total distance traveled by the reflecting signal

and dlos is the total distance traveled by the line-of-sight signal

from the satellite to the receiving antenna, in meters. The

next two subsections invoke (33) and (34) to illustrate how

ψ is affected by satellite motion, receiver motion, and antenna

quality.

B. Influence of Motion on Phase Errors

Carrier phase multipath has a spatial correlation on the

order of one wavelength—approximately 19 centimeters at

the GPS L1 frequency [38]. This spatial sensitivity has two

important consequences: (1) multipath errors for each satellite

signal are largely uncorrelated (between signals) at a particular

location, and (2) the time correlation of errors for each signal

is strongly influenced by receiver motion. The second of these

consequences is further explained here.

Due to satellite motion, the difference dref − dlos, and, by

extension, ψ, varies over time. For static antennas, ψ changes

at a rate proportional to the distance between the receiving

antenna and the closest reflecting surface [33], [20]. As most

reflection surfaces are nearby (within 10 meters), carrier phase

errors with correlation times in the hundreds of seconds are

common [33], [6]. For moving antennas, ψ varies as a function

of both satellite motion and receiver antenna motion. Due

to the close proximity of the receiver antenna to the reflec-

tion surface, receiver motion—even compact wavelength-scale

motion—induces significant changes to dref − dlos, and, by

extension, to ψ.

To illustrate the influence of motion on phase errors, carrier

phase data were captured from a smartphone-grade antenna

both while the antenna was static and while it was moved

in a quasi-random manner within a wavelength-scale volume.

The data capture setup was as follows: (1) radio frequency

(RF) signals were received through the smartphone’s internal

antenna, RF filters, and low-noise amplifier and were captured

and digitized for external processing (see [39], Fig. 1, for

further details); (2) data for the static antenna scenario were
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Fig. 2. Autocorrelation functions corresponding to the phase residuals in
Fig. 1.

obtained while the phone rested on a flat plastic surface affixed

to the top of a 2-meter tripod; (3) data for the dynamic

antenna scenario were obtained while the smartphone was

moved randomly in the outstretched hand of an otherwise

stationary user. In both scenarios, the same set of satellites

was tracked, as data were captured at nearly the same time

and location.

Fig. 1 shows DD the phase residuals and Fig. 2 shows

the corresponding autocorrelation functions for the static (top

panels) and dynamic (bottom panels) scenarios. It is clear

that the phase residuals transform from slowly-varying (>

100-second correlation) when the antenna is static to quickly-

varying (sub-second correlation) when the antenna is dynamic.

Ratio of Reflected to Direct Signal Path Power, α
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Fig. 3. Results of a Monte-Carlo-type simulation study showing the phase
error standard deviation σφ,u as a function of the antenna quality, character-
ized by α, and the correlation time of the antenna dynamics, characterized
by τp. The traces for all three values of τp are coincident, indicating that
σφ,u does not depend on τp. The dependence of σφ,u on α is approximately
linear with the slope shown. Points along the σφ,u(α) trace corresponding to
a survey-grade and smartphone-grade antenna have been marked. These are
based on empirical values for σφ,u [7].
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Fig. 4. Results of a Monte-Carlo-type simulation study showing the phase
error correlation time τφ,u as a function of the standard deviation and
correlation time of the antenna dynamics, σp and τp , respectively. It is clear
that τφ,u decreases exponentially in σp and is approximately linear in τp.

C. Relationship between Antenna Quality and Dynamics and

Phase Error Statistics

This section formalizes the relationship between antenna

quality and dynamics, characterized by α, σp and τp, and

the undifferenced phase error, characterized by either {σφ,B,

τφ,B} or {σφ,A, τφ,A}, the rover and reference antenna phase

error statistics, respectively. Let wβ
α, for ν ∈ {A,B}, and β ∈

{1, 2, . . . ,Mk} be the undifferenced contribution to the dou-

ble differenced carrier phase measurement noise term w
j1
AB,i

introduced in (8). Atmospheric and clock errors are ignored

in wβ
α because they cancel in the double difference operation.

Multipath errors are assumed to dominate the remaining carrier

phase noise so that wβ
α , ψ. The quantities {σφ,A, τφ,A} and

{σφ,B, τφ,B} are thus interpreted as the standard deviation

and time correlation of ψ for the respective antenna. For

notational convenience in this section, {σφ,u, τφ,u} represents

the generalized statistics of the undifferenced phase error, with

u referring to either A or B.

Due to the strongly nonlinear nature of (33), the statistical

relationship between phase errors and antenna quality and

dynamics is difficult to define as closed-form expression.

Instead, a Monte-Carlo-type simulation study was performed

to approximate this relationship; the study’s procedure is

detailed in [40, Sec. 3.12.1]. Figures 3 and 4 indicate the

significant relationships revealed by the study, which can be

summarized as follows:

• σφ,u ∼= 21.9 · α for 0 ≤ α ≤ 0.5. A linear relationship

is consistent with (33) for small α, since ψ → α sin θ as
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α → 0.

• τφ,u ∼= 0.21 · τp · e−2.7σp for 0 ≤ τp ≤ 10 seconds.

• σφ,u does not depend significantly on σp or τp, and τφ,u
does not depend on α.

The next section characterizes the dependence of CDGNSS

integer ambiguity resolution on {σφ,u, τφ,u}, so that, together

with the results of this section, one can ultimately characterize

ambiguity resolution performance in terms of antenna quality

and dynamics.

V. EFFECT OF ANTENNA QUALITY AND DYNAMICS ON

AMBIGUITY RESOLUTION

This paper’s primary claim is that gentle wavelength-scale

random antenna motion is an effective strategy to reduce TAR

when performing a CDGNSS solution based on data collected

from a low-quality antenna. Such motion improves the so-

called ambiguity success rate (ASR), i.e., the probability that

all integer ambiguities are successfully resolved, as compared

to a static antenna CDGNSS solution. This section completes

the linkage from {α, σp,τp} to ASR and thus to TAR.

Previous work has developed closed-form expressions re-

lating the undifferenced phase error statistics {σφ,u, τφ,u} to

the so-called Ambiguity Dilution of Precision (ADOP) [41],

[42], a scalar metric that can be used to compute a tight

approximation of ASR [43]. These expressions, however, make

one of two simplifying assumptions: they apply either under

a short-time assumption, where phase error time correlation is

considered but satellite motion is assumed negligible, or under

a long-time assumption, where satellite motion is considered

but phase error time correlation is assumed negligible. It does

not appear possible to develop a closed-form approximation

of ADOP which accounts for both satellite motion and error

time correlation, yet it can be shown by simulation that both

of these significantly affect ADOP, and thus ASR. Moreover,

neither the short- nor long-term analytical expressions from

[41], [42] account for the effect of receiver antenna trajectory

uncertainty within the CDGNSS estimator on ASR.

A. Approach

This paper’s approach is to employ Monte-Carlo simulation

and the full batch CDGNSS estimator introduced in Sec.

III, complete with a statistical antenna trajectory model, to

determine the relationship between {α, σp, τp} and ASR. The

relationship is then validated with real data. The simulation

study takes the following steps: (1) the values of {α, σp, τp}
given in Table I are used to generate a simulated rover antenna

motion trajectory and are also mapped to corresponding values

for τφ,u and σφ,u using the model from Sec. IV; (2) the

simulated antenna motion trajectory and the values for τφ,u
and σφ,u are used to generate simulated undifferenced carrier

phase data for each satellite in the simulation; (3) the simulated

carrier phase data are fed to the batch CDGNSS estimator

to produce a series of batch solutions, and (4) analytical

bounds on, and empirical estimates of, ASR are computed

from the batch estimator’s outputs after each measurement

epoch; analytical bounds are computed using the estimator’s

state covariance matrix and empirical estimates are computed

TABLE I
MODEL PARAMETERS FOR SIMULATION STUDY OF ASR

Motion Model Quality

τp σp τφ,u α σφ,u

(sec) (cycles) (sec) (mm)

Static n/a 0 100 Survey 0.09 2
Dynamic 2 0.5 0.12 Smartphone 0.32 7
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Fig. 5. ASR as a function of the total measurement time for two antenna
grades: smartphone- and survey-grade. The dark solid traces denote the
empirical estimate of ASR, obtained via Monte Carlo analysis, while the
lighter dashed traces denote the analytically computed upper and lower bounds
of ASR.

by comparing the batch estimator’s integer ambiguity state

estimate to the truth values. For all tests, the reference antenna

is assumed to be survey-grade and static. Further details of the

simulation study’s procedure are found in [40, Sec. 3.12.2].

B. ASR Sensitivity to Antenna Quality

The simulation study considered survey- and smartphone-

grade rover antennas, with the α values shown in Table I.

The corresponding σφ,u values characterize the magnitude of

the simulated multipath-induced errors on the DD phase mea-

surements. Both reference and rover antennas were assumed

to be static for the study of ASR dependence on antenna

quality. The results given in Fig. 5 show that the measured

ASR (dark traces) closely track the upper and lower bounds

(dashed traces) for each antenna type and that antenna quality

strongly influences ASR, with the survey-grade antenna having

a 90% TAR—the time required to reach an ASR exceeding

0.9—more than 10 times shorter than the smartphone-grade

antenna.
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Fig. 6. ASR as a function of the total measurement time for a smartphone-
grade rover antenna in two different dynamics scenarios. The dark solid traces
denote the empirical estimate of ASR, obtained via Monte-Carlo simulation
and analysis, while the lighter dashed traces denote the analytically computed
upper and lower bounds of ASR.
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Fig. 7. As Fig. 6 but for a survey-grade rover antenna. Note the shorter time
interval as compared to Fig. 6.

TABLE II
MODEL PARAMETERS FOR EMPIRICAL STUDY OF ASR

Rover Reference

τp σp τφ,B σφ,B τφ,A σφ,A

(sec) (cycles) (sec) (mm) (sec) (mm)

Static n/a 0 300 6 100 2.5
Dynamic 1 1 0.01 6 100 2.5

C. ASR Sensitivity to Antenna Dynamics

The simulation study considered two rover antenna dy-

namics scenarios, static and gentle wavelength-scale random

motion, labeled dynamic in Table I. The {τp,σp} pairs for

each scenario were mapped to τφ,u values characterizing the

correlation time of the simulated multipath-induced errors on

the DD phase measurements using the model from Sec. IV.

Figs. 6 and 7 show the results for the smartphone- and survey-

grade rover antennas, respectively.

For the smartphone antenna, antenna motion significantly

reduces TAR. In this case, the information gained by more

rapid phase decorrelation exceeded the information lost by

not having a tight antenna position constraint. Comparison

of Figs. 6 and 5 reveals that a moving smartphone-grade

antenna can rival the TAR of a static survey-grade antenna.

This is a significant result: it indicates that centimeter-accurate

CDGNSS positioning on mass-market receivers can be made

practically rapid. The result also holds, with even better TAR,

for the next highest grade above smartphone-grade antennas,

the low-quality patch antenna described in [39], though the

static-to-dynamic improvement is not so drastic. The result is

confirmed with real data in Sec. VI.

Interestingly, Fig. 7 reveals that motion lengthens TAR for

a survey-grade rover antenna. It remains true that the phase

measurement errors decorrelate more rapidly when the survey-

grade antenna is moved, but because the magnitude of the

phase errors is already so small, the information gained from

faster phase error decorrelation does not compensate for the

loss in information due to the added uncertainty (lack of

constraint) in the motion model.

VI. ASR ANALYSIS USING REAL DATA

This section provides a demonstration using real data of the

improvement to ASR that comes from motion for low-cost

antennas.

A. Data Collection and Alignment

Raw digitized intermediate-frequency (IF) GPS L1 C/A data

were collected simultaneously by two receivers, a reference

and a rover. The reference antenna was a survey-grade Trimble

Zephyr and the rover antenna was a low-cost Taoglas patch.

5000 seconds of static rover data were collected, followed

immediately by 900 seconds of dynamic rover data. During

the dynamic dataset the rover antenna was moved in a random,

wavelength-scale, three-dimensional pattern while held in the

hand of an otherwise stationary user. The 3-dimensional mo-

tion profile of the rover antenna can be approximately modeled

as an OU process with the values for τp and σp found in

the bottom row of Table II. The reference antenna remained

stationary throughout data collection.

Each receiver ran a version of the GRID software-defined

GNSS receiver [44], which processed the raw IF data and pro-

duced undifferenced code- and carrier-phase measurements.

Each receiver’s clock offset from GPS time was calculated

at each measurement epoch from code phase measurements,

enabling the carrier phase time histories to be timestamped

in a common time base to approximately 15 ns accuracy.

The rover’s phase measurements were then interpolated to the

time instants of the reference’s measurements and the time

histories were differenced according to (5) to form 7 DD

carrier-phase time histories from the 8 highest elevation GPS

satellites overhead at the time of the recording.

B. Phase Error Characterization

The carrier phase time histories produced from the recorded

data exhibited errors whose statistics are summarized in Ta-

ble II as {τφ,B, σφ,B} and {τφ,A, σφ,A} for the rover and

reference antennas, respectively. These values were computed

empirically from the DD residuals produced by CDGNSS

batch processing over the full static and dynamic datasets.

One exception is the value τφ,B = 0.01 s for the dynamic

dataset which, to avoid inaccuracy due to quantization effects,

was calculated from the motion statistics τp and σp via the

model in Sec. IV-C. The time correlation τφ,A is shorter than

τφ,B because the reference antenna was further from reflecting

surfaces than the rover antenna.

C. Data Processing

The DD carrier-phase time histories were split into 20 150-

second and 12 65-second non-overlapping batches for the

static and dynamic data sets, respectively. Each batch was

provided separately to the CDGNSS estimator for processing

along with the antenna motion and phase error statistics

outlined in Table II. For each batch, the estimator output

the following at each measurement epoch k (on the basis

of the measurements ingested from epoch 0 to k): (1) an

estimate of the integer-valued state n̂k, and (2) the square-

root information matrix Rnnk denoting the filter’s confidence

in this integer-valued state estimate. Using these, empirical

ASR and analytical ASR bounds were computed as described

in [40, Sec. 3.12.2].
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Fig. 8. ASR as a function of measurement time for two different antenna
dynamics scenarios. The dark solid traces denote the empirical estimate of
ASR, obtained from analysis of many disjoint real data intervals, while the
lighter dashed traces denote the upper and lower ASR bounds, computed
analytically based on the Rnnk matrix.

D. Results

Fig. 8 plots ASR estimates and bounds as a function

of measurement time for the two rover antenna dynamics

scenarios characterized by the motion and phase error statistics

in Table II. It is apparent that ASR performance improved with

rover antenna motion; the time for ASR to reach 0.9, i.e., the

90% TAR, was reduced by over 50% for the dynamic vs. the

static scenario.

VII. AMBIGUITY RESOLUTION WITH A PROVIDED

MOTION PROFILE

Previous sections have established that for low-quality an-

tennas, antenna motion reduces TAR. In this case, the tradeoff

between loss of information due to lack of a motion constraint

and gain in information from more quickly decorrelating

phase measurement errors favors motion. But if the moving

antenna’s precise motion profile were somehow provided to the

estimator, there would be no tradeoff: the receiver would enjoy

the more rapid error decorrelation without losing the motion

constraint. Such a motion profile could be approximated from

inertial sensors or from processing of images captured by a

camera attached to the receiver, as in [?]. The profile may only

be known to within a translation, rotation, or scale factor. In

the limit of an error-free motion profile known to within a

translation, the motion constraint becomes as effective as a

static constraint.

Motion-profile-aided ambiguity resolution with inertially-

derived trajectories has been shown to reduce the ambiguity

search volume [45], but this earlier work did not characterize

improvement in terms of TAR nor attempt demonstration

with real data. Known motion profiles have also been used

for multipath mitigation, whether to enable estimation of

multipath parameters [17] or synthetic aperture processing

[14]. The current paper’s approach, described below, is similar

to that of [14] except that it operates on the usual carrier

phase observables instead of coherently processing the low-

level correlation products.

A. Augmenting the CDGNSS Estimator with a Motion Profile

An a priori motion profile is incorporated into the CDGNSS

estimator by augmenting the rover antenna relative position

model of (4):

rk = rC +

k∑

i=1

ui +

k∑

i=1

fk−i
√

1− f2vi (35)

where ui is a 3× 1 vector of the change in antenna position

from ti−1 to ti. Collectively, ui for i = 1, 2, . . . , k form

the a priori antenna motion profile. The real-valued state

components vi for i = 1, 2, . . . , k now model the changes

to rk from ti−1 to ti not already captured by the a priori

motion profile. Thus, the per-dimension standard deviation

of vi, denoted σp, now models the uncertainty of ui for

i = 1, 2, . . . , k.

Incorporating the augmented kinematic model of (35) into

the batch estimator’s measurement model results in the fol-

lowing augmented measurement model:

Yk −GkUk = HxkCkxk +Hnknk +Wk (36)

where

Uk ,








u1

u2

...

uk








(37)

is a 3k × 1 vector containing the a priori knowledge of the

change in antenna position from ti−1 to ti for i = 1, 2, . . . , k
and

Gk =









HAB,1 0 . . . 0

HAB,2 HAB,2
. . .

...
...

...
. . . 0

HAB,k HAB,k HAB,k









(38)

is the time-dependent lower-triangular measurement sensitivity

matrix for Uk .

B. Applying a Motion Profile to Real Data

An analysis of the TAR improvement offered by an a priori

motion profile was performed with real data. The motion

profile was obtained and was applied within the estimator as

follows:

1) The absolute rover antenna three-dimensional trajectory

was computed by performing a CDGNSS solution on the

basis of the entire 900 second batch of dynamic data

mentioned previously using phase measurements from all

12 satellites overhead at the time of the recording.

2) An unknown three-dimensional translation was added to

the computed trajectory to obtain a translation-ambiguous

motion profile. Such a translation ambiguity would also

be present in a motion profile obtained using an inertial

or vision system.

3) This motion profile was provided to the CDGNSS estima-

tor in the form epoch-by-epoch antenna position changes,

as the quantities ui, for i . . . k in (35). These vectors were
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The dark solid traces denote the empirical estimate of ASR, while the lighter
dashed traces denote the analytically-computed ASR upper and lower bounds.

stacked into a 3k × 1 vector Uk and integrated into the

estimator’s measurement model as in (36).

4) The assumed accuracy of the motion profile can be

conveyed to the estimator through the statistics of the

unknown receiver position, i.e., σp and τp. As the limiting

case of a noise-free profile was most interesting for the

current paper, it was assumed that σp = 0 and τp = ∞.

C. Results

Fig. 9 shows that, for the data set studied, which is typical,

motion profile aiding reduced the empirical 90% TAR by

approximately 30%. The dark solid trace in the lower panel

hangs below the ASR bounds because the motion profile was

not, in fact, error free as the estimator was configured to

assume. The bounds predict a reduction in 90% TAR for the

error-free case of slightly more than 30%. Other tests revealed

that the percent by which motion profile aiding improves TAR

increases when there are fewer satellite signals available, i.e.,

when the initialization scenario is more challenging.

VIII. CONCLUSIONS

Using both simulated and empirical data it was shown

that wavelength-scale random antenna motion is an effective

strategy for significantly speeding integer ambiguity resolution

when performing a CDGNSS solution using a low-cost GNSS

antenna. Empirical resolution time was reduced by over 50%

when the antenna was moved as compared to static. It was

further shown that if a priori knowledge of the antenna’s

motion profile is available, such a constraint further reduces

resolution time: an additional 30% reduction was shown

for an empirical scenario in which a mm-accurate motion

profile was known to within a translation. These results are

significant: they portend an expansion of CDGNSS positioning

into the mass market, where low-cost, low-quality antennas are

abundant and CDGNSS initialization time is seen as a primary

limiting factor.
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