
1

A Phase-Reconstruction Technique for Low-Power
Centimeter-Accurate Mobile Positioning

Kenneth M. Pesyna, Jr., Student Member, IEEE, Zaher M. Kassas, Senior Member, IEEE,
Robert W. Heath, Jr., Fellow, IEEE, and Todd E. Humphreys, Member, IEEE

Abstract—A carrier phase reconstruction technique is pre-
sented as an enabler for low-power centimeter-accurate mobile
positioning. Reliable carrier phase reconstruction permits the
duty cycling of a Global Navigation Satellite System (GNSS)
receiver whose outputs are used for precise carrier-phase dif-
ferential GNSS (CDGNSS) positioning. Existing CDGNSS tech-
niques are power intensive because they require continuous
tracking of each GNSS signal’s carrier phase. By contrast, the
less-precise code-ranging technique that is commonly used in
mobile devices for 3-to-10-meter-accurate positioning allows for
aggressive measurement duty-cycling, which enables low-power
implementations. The technique proposed in this paper relaxes
the CDGNSS continuous phase tracking requirement by solving
a mixed real and integer estimation problem to reconstruct a
continuous carrier phase time history from intermittent phase
measurement intervals each having an ambiguous initial phase.
Theoretical bounds on the probability of successful phase recon-
struction, corroborated by Monte-Carlo-type simulation, are used
to investigate the sensitivity of the proposed technique to various
system parameters, including the time period between successive
phase measurement intervals, the duration of each interval, the
carrier-to-noise ratio, and the line-of-sight acceleration uncer-
tainty. A demonstration on real data indicates that coupling a
GNSS receiver with a consumer-grade inertial measurement unit
enables reliable phase reconstruction with phase measurement
duty cycles as low as 5%.

I. INTRODUCTION

Existing commodity Global Navigation Satellite System
(GNSS) solutions perform positioning based on code ranging
[1]. This technique lends itself well to aggressive duty cycling,
which permits a low-power implementation, but its positioning
accuracy is limited to approximately 3 to 10 meters [2].
By contrast, the carrier-phase differential GNSS (CDGNSS)
technique developed by the surveying and precise GNSS
communities during the 1990s offers exquisite (centimeter-
level) relative accuracy [3]–[5] but has not been seen as
amenable to a duty-cycled low-power implementation because
of a supposed continuous carrier phase tracking requirement
[6], [7]. This, among other reasons, has prevented adoption
of CDGNSS in power-constrained mobile devices. Note that
CDGNSS based on a single measurement epoch, as in [5] and
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[8], would not require continuous carrier tracking, but this
technique is only reliable in favorable signal and multipath
environments [9], [10] such as would be uncommon for
mobile devices. Accordingly, this paper assumes that suc-
cessful CDGNSS will require multiple measurement epochs.
Relaxing the continuous phase tracking requirement of multi-
epoch CDGNSS by first reconstructing a continuous phase
time history from intermittent carrier phase measurements
prior to performing a CDGNSS solution, thus permitting
power-saving duty cycling, is the focus of this paper. While
previous work has investigated multi-epoch CDGNSS-based
attitude determination on the basis of intermittent carrier phase
measurements [11], insofar as this paper’s authors are aware,
no prior work has investigated performing a more-general
multi-epoch CDGNSS position solution on the basis of such
measurements.

A continuous phase time history can be reconstructed from
intermittent (duty-cycled) phase measurements if so-called
phase ambiguities can be resolved. These phase ambiguities
are unknown integer- or fractional-cycle offsets from the true
phase that arise at the beginning of each measurement interval
for two reasons: (1) the receiver does not track the carrier
phase evolution between measurement intervals, and (2) the
receiver’s phase discriminator is not capable of measuring
absolute phase.

The problem of reconstructing a continuous phase time
history from intermittent, ambiguous phase measurements can
be posed as a mixed real and integer estimation problem
where the real parameter is the time-varying continuous phase
and the integer parameters are the phase ambiguities. Prior
work in mixed real and integer estimation has led to the
development of a general Kalman-filter- [12] and smoother-
based [13] framework which has been implemented, not for
carrier-phase reconstruction, but for CDGNSS ambiguity res-
olution [14]. In prior work by the current authors, this frame-
work was modified to construct a continuous carrier phase
from time division multiple access (TDMA) Iridium satellite
communication signals, enabling their use in navigation [15].
Other authors have constructed a similar framework for fixed-
baseline CDGNSS attitude determination [11]. The integer
ambiguities in these problems and in the current work bear a
strong resemblance to similar integer ambiguities in CDGNSS
positioning and in sphere decoding, the resolution of which has
been the subject of much research in the GNSS community
[5], [16], [17] and in the communications community [18]–
[20], respectively.

This paper makes two contributions. First, a technique is
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developed for continuous carrier phase reconstruction from
duty-cycled phase measurements. The technique builds on
the Kalman-filter-and-smoother-based solution to the mixed
real and integer estimation problem introduced in [13], but
modifies this to incorporate measurement models characteriz-
ing carrier phase errors such as the receiver front-end noise,
propagation-induced phase errors, and line-of-sight range-
errors. The modified solution also incorporates carrier phase
structure parameters such as the measurement burst length,
the measurement burst period, and the unknown whole- or
fractional-cycle phase ambiguities. Moreover, the technique
presented in this paper improves upon the framework in [15]
by differencing phase measurements made by two GNSS
receivers to substantially cancel errors that would otherwise
make it more difficult to resolve the phase ambiguities and
reconstruct a carrier phase time history. A second improvement
is the addition of an inertial measurement unit (IMU) into
the reconstruction framework, which enables more accurate
between-burst receiver motion modeling, leading to improved
phase reconstruction.

The second contribution of this paper is a performance
evaluation of the proposed reconstruction technique. This eval-
uation extends the Monte-Carlo-simulation-based sensitivity
study of [15] to include theoretical upper and lower bounds
on the probability of successful integer ambiguity resolution.
These bounds allow for a quick measure of the reconstruc-
tion technique’s reliability as a function of the previously-
mentioned signal error and structure parameters.

The next section sets up the system model, motivating the
need for and the effects of carrier-phase reconstruction. Subse-
quent sections describe in detail the reconstruction technique
and evaluate its performance.

II. CARRIER PHASE MODELS

Three GNSS carrier phase models are introduced in this
section; one applies before, one during, and one after carrier
phase reconstruction.

A. Before Reconstruction: Undifferenced Residual Carrier
Phase Model

Let the undifferenced residual carrier phase φr(t) be defined
as the measured phase after duty-cycled downmixing and
correlation with the local signal replica. The term “residual”
refers to this phase being the difference between the received
carrier phase and the receiver’s best prediction of the received
carrier phase. The undifferenced residual carrier phase for a
GNSS signal can be modeled by the following adaptation of
the GPS carrier phase measurement model given in [21]:

φr(t) , received carrier phase - predicted carrier phase

=

 φ̃r(t) + 1
M η(t) for tbi ≤ t < tbi + Tb,

i = 0, 1, ..., Nb − 1
undefined otherwise

(1)

φ̃r(t) =
1

λ
re(t) +

c

λ
[δtRX(t)− δtTX(t)] + γ0 − ψ0

+ εp(t) + vφ(t)

with the following definitions:

φ̃r(t) the continuous, ambiguity-free residual carrier phase,
in cycles.

tbi the start time of the ith discrete phase measurement
interval, or burst, in seconds.

Tb the burst duration, in seconds.
Nb the number of bursts.
M the ambiguity factor used to depict whole-cycle

phase ambiguities (M=1) or fractional-cycle phase
ambiguities (M >1), whichever is appropriate for
the receiver setup. If the broadcast binary phase-shift
keying (BPSK) GNSS navigation data symbols are
provided to the receiver and the receiver knows its
position and time to a fraction of a data symbol
interval such that it can align the data symbols to
the incoming signal to perform data symbol wipeoff,
or if the receiver is tracking a data-symbol-free pilot
signal, then M = 1; otherwise M = 2 due to the
necessary usage of a squaring-type phase detector
[22], that is, a detector which is insensitive to half-
cycle phase changes induced by the data symbols.

η(t) an integer that remains constant during each discrete
phase measurement interval; i.e., η(t) = ni for tbi ≤
t < tbi + Tb. When scaled by 1

M this represents the
offset of the signal’s measured phase from that of the
unambiguous phase at the beginning of each burst.
In this paper, ni will be referred to as the integer
ambiguity over the ith burst.

λ the carrier wavelength, in meters.
re(t) the error in the predicted range between the receiver

and transmitter, in meters. This term includes errors
due to the receiver’s inertial measurement unit noise,
as discussed briefly in the next paragraph and in
detail in section V-B1.

c the speed of light, in meters per second.
δtRX(t) the difference between the predicted and actual

receiver clock offset from true time, in seconds.
δtTX(t) the difference between the predicted and actual

transmitter clock offset from true time, in seconds.
γ0 the initial replica carrier phase at receiver clock time

0, in cycles.
ψ0 the initial transmitted carrier phase at satellite clock

time 0.
εp(t) the carrier phase deviation due to unmodeled propa-

gation and multipath effects, in cycles.
vφ(t) the measurement noise introduced by the receiver

front-end, in cycles.

This model captures all the significant effects that cause the
received carrier phase to be different from what the receiver
would predict on the basis of its own clock, its assumed
position, and its internal models for propagation and multipath
effects, satellite motion, and satellite clock offset.

It is important to point out that to facilitate reliable recon-
struction, a dynamic receiver needs to have a rough estimate
of its motion. Unmodeled or poorly modeled receiver motion
may result in large variations in the receiver-satellite range
error re(t), which, as will be seen later, decreases the prob-
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ability of successful reconstruction. Fortunately, a simple 3-
axis inertial measurement unit (IMU) can be used to measure
the receiver’s 3-dimensional acceleration and angular velocity.
These measurements, in conjunction with an initial position
and orientation, can be integrated to predict the receiver’s posi-
tion changes and substantially eliminate variations in re(t). Of
course, inertially-aided motion prediction is imperfect: noise
in the IMU measurements will still produce residual variations
in re(t), which must be accurately characterized to enable
optimal phase reconstruction. Further details on IMU-aided
phase reconstruction will be presented in Sections V-B and
VII.

B. During Reconstruction: Double-Differenced Residual Car-
rier Phase Model

It is possible to reconstruct a continuous time phase history
from measurements of the undifferenced residual carrier phase,
as done in [15]. But some error sources modeled in (1),
such as errors in the predicted transmitter and receiver clock
offsets δtTX(t) and δtRX(t) and the propagation errors εp(t)
can often be too unstable to support reliable reconstruction.
By implementing a technique known as double-differencing,
where measurements between two GNSS satellites and two
GNSS receivers (a rover and a reference) are differenced,
many of these error sources can be entirely or substantially
canceled, increasing the probability of successful reconstruc-
tion. To enable this, carrier phase measurements made by
the rover and reference receivers can be passed off to a
cloud server using a cellular or other wireless connection,
where double-differencing (and subsequent reconstruction) can
be performed. A secondary benefit of double-differencing is
that the resulting reconstructed carrier phase will be in the
proper form for CDGNSS, which, as mentioned earlier, is a
commonly-used technique that achieves cm-accurate relative
positioning by taking advantage of double differencing, not
for phase reconstruction, as suggested here, but for precise
positioning [3]–[5]. The CDGNSS positioning solution can
similarly be performed in the cloud subsequent to reconstruc-
tion.

Let the double-differenced residual carrier phase
∇∆φijrAB(t) be defined as the difference of the undifferenced
residual carrier phases made between satellites i and j and
receivers A and B:

∇∆φijrAB(t) ,
[
φirA(t)− φjrA(t)

]
−
[
φirB (t)− φjrB (t)

]
. (2)

In this model, receiver B differences its undifferenced residual
carrier phase measurements made by tracking satellites i and
j. This difference is then subtracted from the difference made
at receiver A between the same two satellites. Performing the
subtractions in (2) and dropping the sub- and superscripts for
clarity yields

∇∆φr(t) =

∇∆φ̃r(t) + 1
M∇∆η(t) for tbi ≤ t < tbi + Tb,

i = 0, 1, ..., Nb − 1
undefined otherwise

(3)

∇∆φ̃r(t) =
1

λ
∇∆re(t) +∇∆εp(t) +∇∆vφ(t)

t

∇∆φ̃r(t)
4
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Fig. 1. Illustration of the double differenced residual carrier phase measure-
ments formed during each burst. The solid gray trace represents ∇∆φ̃r(t),
the continuous but unmeasurable ambiguity-free phase. To represent the
measurable phase ∇∆φr(t), ∇∆φ̃r(t) is structured into periodic bursts and
aliased between 0 and 1

M
cycles, forming the intermittent dark traces. The

aliasing leads to a phase ambiguity for each burst and occurs due to the
insensitivity of the receiver’s phase detector to 1

M
-cycle phase offsets. Tp

represents the burst period and Tb represents the burst duration.

with the following new definitions:

∇∆φ̃r(t) the continuous, ambiguity-free double-differenced
residual carrier phase, in cycles.

∇∆η(t) an integer, constant over each measurement burst
and measured in cycles, that represents the double
difference of the integer η(t) term from (1). In
addition, ∇∆η(t) incorporates the double-difference
of the initial transmitter and receiver replica carrier
phases ψ0 and γ0 between the two satellites and two
receivers. For properly designed GNSS receivers this
latter double difference is an integer and remains
constant during the entire dataset [21].

∇∆re(t) the error in the double-differenced predicted range
between the two receivers and two satellites, in
meters. This term includes errors due to the receiver’s
inertial measurement unit noise, as discussed later on
in Sec. V-B1.

∇∆εp(t) the double-differenced carrier phase deviation due
to unmodeled propagation and multipath effects, in
cycles.

∇∆vφ(t) the double-differenced measurement noise in-
duced by the receivers’ front-ends, in cycles.

Note that the double-differencing operation has canceled the
error terms δtTX(t) and δtRX(t) introduced in (1). Because of
these cancellations and substantial reductions in the variations
of other terms, it is more effective to apply phase reconstruc-
tion to the double-differenced residual carrier phase rather
than to the undifferenced residual carrier phase. Accordingly,
(3) will be taken to model the received carrier phase during
reconstruction.

Fig. 1 illustrates the formation of the phase ambiguities
1
M∇∆η(t) modeled in (3). The upper gray trace represents
the continuous and ambiguity-free double-differenced residual
carrier phase ∇∆φ̃r(t), which could be measured if both the
reference and rover receivers were continually tracking GNSS
signals. Instead, due to the measurement duty-cycling by one
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or both receivers, the measurable phase becomes periodic and
phase-aliased as illustrated by the lower black trace. Aliasing is
caused by the insensitivity of the receiver’s phase discriminator
to whole- or fractional-cycle phase drifts between bursts and
leads to the formation of the phase ambiguities.

C. After Reconstruction: Reconstructed Double-Differenced
Carrier Phase Model

One final model is presented here to characterize the double-
differenced carrier phase after reconstruction. Although this
model is not used during reconstruction, it nicely illustrates
the effects of reconstruction errors and relates them to the
so-called “ideal” or error-free reconstructed carrier phase. In
this model, the reconstructed double-differenced carrier phase
∇∆φR(t) is given by

∇∆φR(t) =∇∆φideal(t) + β(t) +
1

M
[∇∆η(t)−∇∆η̂(t)] .

(4)

Here, the following new definitions apply:
∇∆φideal(t) the ideal double-differenced residual carrier

phase. This term represents the double-differenced
carrier phase as it would appear if it were perfectly
reconstructed, i.e., if the receivers involved in the
double-differencing were continuously tracking the
GNSS signals and there was no measurement noise.

β(t) the non-ambiguity related reconstruction errors,
measured in cycles. This term encompasses all
non-ambiguity-related deviations of ∇∆φR(t) from
∇∆φideal(t).

∇∆η̂(t) the reconstruction technique’s best estimate of the
time-varying double-differenced integer ambiguity
term ∇∆η(t), measured in cycles. The difference
1
M [∇∆η(t) − ∇∆η̂(t)] is the time-varying recon-
struction error that arises during ambiguity resolu-
tion.

∇∆φR(t) is the reconstruction technique’s best estimate of
∇∆φideal(t), the continuous, noise-free, and ambiguity-free
double-differenced residual carrier phase. Errors in phase
reconstruction cause ∇∆φR(t) to deviate, sometimes signifi-
cantly, from ∇∆φideal(t). This deviation is modeled by β(t)
and 1

M [∇∆η(t)−∇∆η̂(t)], the non-ambiguity and ambiguity-
related reconstructed errors, respectively. Typically, the second
term dominates, as errors in ambiguity resolution tend to be
much larger than non-ambiguity errors.

Because the receiver only has access to the intermittent am-
biguous phase∇∆φr(t), as represented by the lower dark trace
in Fig. 1, the reconstruction algorithm must determine in which
whole-cycle vertical partition (or fractional-cycle partition if
M > 1) each solid black curve would reside if ∇∆φr(t)
were instead unambiguous. That is, it must determine the time-
varying integer-valued phase-ambiguity term ∇∆η(t). Fig. 2
helps to illustrate this challenge. The horizontal dashed lines
illustrate vertical partitions in which the reconstructed phase
∇∆φR(t) could lie. Here M = 1, so each partition is 1 cycle
in height. These partitions repeat infinitely in each direction
along the vertical axis. This leads to an infinite number of
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Fig. 2. Illustration of possible reconstructed phase trajectories, only 1 of
which corresponds to the true trajectory. It is the job of the reconstruction
algorithm to reconstruct the true trajectory using measurements of the periodic
and aliased double-differenenced residual carrier phase ∇∆φr(t), which, in
this particular illustration, has 1 cycle phase ambiguities, i.e., M = 1.

possible phase time histories, or trajectories, 16 of which are
depicted in the figure. However, just one of these trajectories
accurately depicts the continuous, ambiguity-free phase time
history ∇∆φ̃r(t). It becomes the task of the reconstruction
algorithm to use past, present, and future measurements of
∇∆φr(t) to resolve the phase ambiguities and attempt to
reconstruct ∇∆φ̃r(t). If one or more ambiguities are resolved
incorrectly, an incorrect reconstructed phase trajectory would
be chosen, leading ∇∆φR(t) to deviate significantly (≥ 1

M

cycles) from ∇∆φ̃r(t). Such errors will degrade the utility
of the reconstructed phase time history in the context of a
CDGNSS solution, as they will lead to a positioning solution
that is no longer cm-accurate (see Sec. VII). Accordingly, it
becomes useful to examine the probability of correctly resolv-
ing the phase ambiguities; this will be done both theoretically
and empirically in subsequent sections.

III. RECONSTRUCTION TECHNIQUE

This section presents the proposed technique for recon-
structing a continuous carrier phase time history from in-
termittent phase measurements made by the receiver. By
intermittent, we mean non-continuous measurements. The
measurements are assumed in this paper to be periodic,
but the reconstruction technique would need to be modi-
fied only slightly to accommodate aperiodic measurements.
The technique takes the double-differenced residual carrier
phase measurements ∇∆φr(t) [modeled in (3)] and forms
the smoothed reconstructed double-differenced carrier phase
time history ∇∆φR(t) [modeled in (4)]. It resolves phase
ambiguities with an integer least-squares solver and “stitches”
discrete phase measurements together with a Kalman filter
and smoother. Square-root information implementations of
the filter and smoother ensure that phase reconstruction is
performed in an accurate and computationally-efficient manner
[13], [23]. For a tutorial on square-root information filtering
and its relationship to traditional Kalman filtering, see [24].

A. Estimation State and Dynamics and Measurement Model

This section describes the reconstruction filter and
smoother’s state as well as its dynamics and measurement
models.

4
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1) State: The state has a real-valued component that mod-
els the noise- and ambiguity-free double-differenced residual
carrier phase, and an integer-valued component that models the
phase ambiguities. The real-valued state component at time tk
is denoted xk, where tk = kT and T ≤ Tb is the time between
consecutive filter and smoother updates. This component can
be expressed as

xk = [∇∆φideal,k, ωk]T (5)

with the following definitions:
∇∆φideal,k the discrete-time noise- and ambiguity-free ideal

double-differenced residual carrier phase at time tk,
in cycles, i.e., ∇∆φideal,k = ∇∆φideal(tk), where
∇∆φideal(t) was defined in (4).

ωk the rate of change of ∇∆φideal(t) at time tk, in Hz.
The integer-valued state component nk at time tk can be
expressed as

nk = [n1, n2, . . . , nik ]T (6)

with the following definitions:
nk an ik × 1 vector of integers, one for each measure-

ment burst that began between time 0 and tk.
nik the integer corresponding to the ithk measurement

burst.
ik a counter representing the number of measurement

bursts that begin at or before time tk.
2) Dynamics Model: The real and integer components

of the state evolve separately; thus their dynamics will be
modeled separately. The real-valued state component xk is
assumed to evolve as a first-order Gauss-Markov process with
process noise representing the variations due to ∇∆re(t)
and ∇∆εp(t) from (3). The integer-valued state component
nk evolves under the assumption that a new ambiguity is
introduced with each measurement burst.

The following models describe the time evolution of the
real- and integer-valued state components:

xk+1 = Φxk + Γwk (7)

nk+1 =


[

nk
nik+1

]
if a new burst began within the
interval (tk, tk+1][

nk
]

otherwise

(8)

with the following definitions:
Φ the state transition matrix.
Γ the process noise influence matrix.
wk the process noise at time tk, modeled as a discrete-

time zero-mean Q covariance Gaussian random vec-
tor, i.e., wk ∼ N (0,Q).

Q the process noise covariance matrix.
The state transition matrix for the real-valued state models
standard Euler integration from tk to tk+1:

Φ =

[
1 T
0 1

]
. (9)

The process noise influence is defined as

Γ =

[
1 0 0
0 1 0

]
(10)

and the process noise covariance matrix is defined as

Q =Sgf
2
0

T
3

3
T 2

2
T 3

8
T 2

2 T T 2

6
T 3

8
T 2

6
T 3

20

+ Sff
2
0

T 0 T
2

0 0 0
T
2 0 T

3

 , (11)

where f0 is the GNSS signal’s nominal carrier frequency, in
Hz. The quantities Sg and Sf parameterize the combined phase
instability caused by the process noise error components in (3),
namely ∇∆re(t) and ∇∆εp(t). The model for the evolution
of the real-valued state elements in (7) with the process-noise
covariance defined by (11) follows a two-state Gauss-Markov
model commonly used to describe clock-error-induced phase
variations (see [25], Ch. 11). This model will be discussed
further in Sec. V-A. Note that wk is of dimension 3-by-1
while xk is of dimension 2-by-1. The third element in wk

and, correspondingly, the third row and column in Q is a
standard way to model the average of the phase process noise
over the interval tk−1 < t ≤ tk [26] and will be needed in the
measurement model discussed next.

3) Measurement Model: The filter ingests measurements
yk of the double-differenced residual carrier phase and relates
these measurements to its state. Each measurement yk repre-
sents the average of ∇∆φr(t) over the interval tk−1 < t ≤ tk,
i.e., yk = 1

T

∫ tk
tk−1
∇∆φr(t). It should be noted that filter mea-

surement updates occur only within measurement bursts when
measurements are available. The filter’s measurement model
relates yk to the real- and integer-valued state components xk
and nk and to the process-noise wk−1:

yk =

H̃xxk + H̃nknk + H̃wwk−1 + vk for tbi ≤ tk < tbi + Tb,
i = 0, 1, ..., Nb − 1

undefined otherwise
(12)

with the following new definitions:
H̃x the measurement sensitivity matrix for the real-

valued state components.
H̃nk the measurement sensitivity matrix for the integer-

valued state components at time tk.
H̃w the measurement sensitivity matrix for the process

noise.
vk the average of the continuous-time double-

differenced measurement noise over the interval
tk−1 < t ≤ tk, i.e., vk = 1

T

∫ tk
tk−1
∇∆vφ(t). vk

is modeled as a zero-mean discrete-time Gaussian
white noise process, vk ∼ N (0, σ2

φk), where σ2
φk

has a nonlinear relationship with the mean carrier-
to-noise ratio over the interval (C/N0)k, but for
high (C/N0)k converges to σ2

φk = 1
2T (C/N0)k

[27].

The measurement sensitivity matrices can be expanded as

H̃x =

[
1 − T

2

]
(13)

H̃nk =

[
0 0 . . . 0

1

M

]
(14)

H̃w =

[
−1

T

2
1

]
(15)

5
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where T is the time between consecutive filter updates, as
defined previously, and M is the ambiguity factor defined in
(1). Two features of the 1 × ik matrix H̃nk are noteworthy.
First, the 1

M factor in its last element allows the integer-valued
state nk to relate to a whole-cycle (M = 1) or a fractional-
cycle (M > 1) phase ambiguity. Second, H̃nk has 0s in all but
its last element to ensure that the measurements made during
burst ik are only affected by the most recent integer ambiguity
nik of nk. Because yk is an average, H̃w is needed to model
the accumulation of process noise into the measurement [26].

B. Cost Function

Optimal channel-by-channel estimates of the state compo-
nents xk and nk for 1 ≤ k ≤ K can be obtained according to
the maximum a posteriori criterion based on all measurements
yk from k = 1 to K by determining the state and process noise
time histories that minimize a certain cost function subject to
the dynamics models in (7) and (8). For numerical robustness,
a square-root-information approach is adopted [13], [23]. Let
the square-root information equation for the a priori estimate
of the real-valued state component x0 at k = 0 be given by

zx0 = Rxx0x0 + vx0 (16)

with the following definitions:
zx0 the a priori nonhomogeneous term that stores infor-

mation about x0.
Rx0k the a priori square-root information matrix for x0.
vx0 the error corresponding to x0, a sample from a

discrete-time zero-mean, unity covariance Gaussian
white noise process, i.e., vx0 ∼ N (0, I).

No a priori information is assumed to be available for the
integer-valued state component n. Let the square-root infor-
mation equation for the a priori estimate of the process noise
wk at each time index k be given by

zwk = 0 = Rwwwk + vwk (17)

with the following definitions:
zwk the a priori nonhomogeneous term that stores infor-

mation about wk.
Rww the a priori square-root information matrix for wk,

defined as Rww = Q−
1
2 , where Q is defined in (11).

vwk the error corresponding to wk, a sample from a
discrete-time zero-mean, unity covariance Gaussian
white noise process, i.e., vwk ∼ N (0, I).

The equation in (17) is set equal to zero because the process
noise is assumed to be zero-mean and thus solving (17) for
the a priori process noise estimate ŵk should yield ŵk = 0.
Now, let the measurement model in (12) be normalized by
multiplying both sides by σ−1φk . This normalized measurement
model, now in standard square-root equation form, is written

zk = Hxkxk + Hnknk + Hwkwk−1 + vzk (18)

with the following definitions:
zk the normalized nonhomogeneous term defined as

zk = σ−1φk yk.

Hxk the normalized measurement sensitivity matrix for
the real-valued state components at time tk, defined
as Hxk = σ−1φk H̃x

Hnk the normalized measurement sensitivity matrix for
the integer-valued state components at time tk, de-
fined as Hnk = σ−1φk H̃nk.

Hwk the normalized measurement sensitivity matrix for
the process-noise at time tk, defined as Hwk =
σ−1φk H̃w.

vzk the normalized measurement noise at time tk, mod-
eled as a zero-mean, unit variance, discrete-time,
Gaussian white noise process, vzk ∼ N (0, 1).

Like yk in (12), zk is undefined between bursts.
Given (16), (17), and (18), the phase reconstruction problem

can be posed as follows:

minimize
xi,ni {i: 0<i≤K}
wi {i: 0≤i<K}

J = ||Rxx0x0 − zx0||2︸ ︷︷ ︸
A priori information

+

K−1∑
k=0

||Rwwwk||2︸ ︷︷ ︸
Process noise

+

K∑
k=1

||Hxkxk + Hnknk + Hwkwk−1 − zk||2︸ ︷︷ ︸
Measurements

(19)
subject to the state dynamics models in (7) and (8).

A solution to (19) can be found by breaking the reconstruction
process into three stages: filtering, ambiguity resolution, and
smoothing.

C. Filtering

Filtering is the first stage in the reconstruction process. Filter
estimates of the state at each time index k will be produced by
making optimal use of the measurement at time tk (if within a
measurement burst) and all measurements prior to tk. It can be
shown through a series of orthogonal transformations on (19)
that at each time index k, the filter’s best estimate of the real-
and integer-valued state elements can be found by choosing
xk and nk to minimize the partial cost functional [28]

Jk (xk,nk) = ‖Rxxkxk + Rxnknk − zxk‖2︸ ︷︷ ︸
Term involving the integer- and real-valued states

+ ‖Rnnknk − znk‖2︸ ︷︷ ︸
Term involving only the integer-valued state

+

k∑
i=1

‖zri‖2︸ ︷︷ ︸
Residual term

(20)

with the following definitions:
zxk the nonhomogeneous term corresponding to the real-

valued state component at time tk.
znk the nonhomogeneous term corresponding to the

integer-valued state component at time tk.
zri the residual nonhomogeneous term at time tbi, 1 ≤

i ≤ k.
Rxxk the square-root information matrix corresponding to

xk and zxk at time tk.
Rxnk the square-root information matrix corresponding to

nk and zxk at time tk.
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Rnnk the square-root information matrix corresponding to
nk and znk at time tk.

Jk (xk,nk) is the contribution to the overall cost that is
obtained after filtering measurements z1 to zk. Each term
on the right-hand side of (20) is produced during the filter’s
measurement updates during which a priori state estimates are
combined with measurements. Minimization of (20) proceeds
as follows: First, one determines the integer-valued vector
state estimate n̂k that minimizes the second term of (20),
the term involving only the integer-valued state. This estimate
can be determined efficiently using the integer least-squares
techniques discussed in the next section. Once determined,
n̂k is inserted into the first term, the term involving both the
integer- and real-valued states. At this point, it is possible to
determine the real-valued state estimate x̂k that reduces the
first term to zero, minimizing (20).

D. Integer Ambiguity Resolution

Integer ambiguity resolution is the second stage in the
reconstruction process and must be performed before the real-
valued state component can be determined. At any time index
k during filtering, the cost functional of the form in (20) can
be minimized to provide real-time (causal) estimates of the
real- and integer-valued state components. This entails first
minimizing the following cost function involving the integer-
valued state

Jn (nk) = ‖Rnnknk − znk‖2 . (21)

This minimization can be posed as an integer least-squares
(ILS) problem whose solution has been shown to be NP-hard
and has been studied extensively [5], [17], [18], [29]. ILS
solution algorithms are optimal in the sense that out of the
set of all admissible estimators, they have the largest possible
probability of successful integer ambiguity resolution [30]. For
the definition of an admissible estimator, see [30]. Solution
algorithms accept the matrix Rnnk and the vector znk from
the filter and solve for the vector nk that minimizes (21);
calling this minimizing vector n̂k.

If desired, to save computational resources, the minimizing
procedure to estimate nk only need be performed once, at the
end of the dataset at time index K. This is because n̂k is a
vector that contains integer estimates for all ambiguities up to
through time k. Real-time requirements, however, may require
n̂k to be determined more often, e.g., after each filter update,
as the real-valued state components xk may be needed in real-
time and these cannot be determined without first determining
n̂k.

The ILS solution algorithm can be interpreted geometrically
as a closest point lattice search [17], where the lattice is
defined by the n × n dimensional square-root information
matrix Rnnk and the n-dimensional vector of integers nk. The
product Rnnknk forms an n-dimensional vector which spans
the lattice. Given Rnnk and znk, the ILS solution amounts to
finding the closest lattice point Rnnknk to znk [18]:

n̂k = argmin
nk∈Zik

‖Rnnknk − znk‖2 . (22)

The solution procedure can be broken into a reduction step and
a search step. The reduction step attempts to reduce the search
space; the search step searches for the lowest-cost solution. For
the reduction step, the least-squares ambiguity decorrelation
adjustment method (LAMBDA) [5] and the Lenstra-Lenstra-
Lovász (LLL) reduction [31] are widely used in practice [16],
[17]. Implementations of both the LAMBDA method [32] and
the LLL method [33] were compared by the authors. They
were found to offer comparable computational performance.
For the search step, the solution algorithm introduced in [32]
has been used for the results presented in this paper.

E. Smoothing

Smoothing is the third stage in the phase reconstruction
process. Although a reconstructed carrier phase time history
can be determined by solving for the time-varying real-valued
state component xk after only the first two stages, smoothing
is acausal and thus enables past, present, and future phase
measurements to be incorporated into the estimates of xk
at each time instant. To initialize the smoother, the integer
ambiguity vector estimate n̂K after the final measurement
update is determined as described previously and then incor-
porated, together with RxnK , to form the smoother’s initial
nonhomogeneous term z?xK and initial square-root information
matrix R?

xnK as follows:

z?xK = zxK −RxnK n̂K (23)
R?

xxK = RxxK . (24)

It should be noted that because the smoother is initialized
with the already-resolved integer ambiguity vector n̂K , a
quantity determined solely from filter outputs as described
in Sec. III-D, smoothing has no effect on integer ambiguity
resolution. Consequently, the smoother’s contribution to phase
reconstruction is a minor one; smoothing acts only to remove
abrupt innovation-induced dynamics from xk that do not
conform to the filter’s state dynamics model (see [15], Fig. 5).
Furthermore, because smoothing is performed over a batch of
measurements, a natural lag is introduced between when the
measurements are taken and when the smoothed reconstructed
double-differenced carrier phase estimates are formed. As a
result, for real-time systems, smoothing may be forgone in
favor of removing this lag. Computational lag due to filtering,
ambiguity resolution, and subsequent CDGNSS processing,
however, will still persist.

After this initialization, the smoother begins its processing.
At each time index k, 0 ≤ k ≤ K, the smoother ingests
z?xk and R?

xxk from the previous smoother update as well the
process noise terms zw,k−1, Rww, Rwx,k−1, and Rwn,k−1
from the filtering stage and outputs R?

xx,k−1 and z?x,k−1. It
then decrements k by 1 and repeats, working backward from
index K until it reaches k = 0. Smoothed state estimates x?k
for k = 0, 1, . . . ,K can then be computed from the smoother
output terms as follows:

x?k = (R?
xxk)−1z?xk. (25)
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The minimum cost after smoothing can be shown to be [28]

J
(
{x?i }Ki=1, n̂K , {w?

i }K−1i=0

)
= ‖RnnK n̂K − znK‖2︸ ︷︷ ︸

Integer-fit error

+

K∑
i=1

‖zri‖2︸ ︷︷ ︸
Residual error

. (26)

IV. BOUNDS ON THE PROBABILITY OF SUCCESSFUL
AMBIGUITY RESOLUTION

In Section III-D, it was shown that the reconstruction
algorithm uses an integer least-squares solver to determine
the vector of integer ambiguities nk which minimizes (21).
However, because of noise, there is no guarantee that the
minimizing nk, denoted n̂k, equals the true integer phase
ambiguities of the double-differenced residual carrier phase
trajectory. This section discusses the probability of successful
ambiguity resolution Pc, or the probability that n̂k equals nk.
Only bounds on Pc are presented, as determination of the exact
probability is NP-hard.

As discussed previously, minimizing (21) is equivalent to
finding the closest lattice point Rnnknk to znk, which, in turn,
is equivalent to minimizing the ambiguity measurement noise
vector vnk in the following ambiguity square-root information
equation:

znk = Rnnknk + vnk, vnk ∼ N (0, I). (27)

The vector of integers n̂k that corresponds to the closest lattice
point will be equal to the true vector of integer ambiguities
nk if and only if the ambiguity measurement noise vnk is
such that znk remains closer to the lattice point Rnnknk than
any other point in the lattice. This is equivalent to Rnnknk +
vnk falling within the Voronoi cell VRnnk of Rnnknk. VRnnk is
formally defined as the collection of real-valued `-dimensional
points (where ` = ik) closer to Rnnknk than any other lattice
point. Under this framework, the probability of correct integer
ambiguity resolution Pc can be defined as [17]:

Pc =Pr {Rnnknk + vnk ∈ VRnnk} vnk ∼ N (0, I). (28)

Because the lattice has a periodic structure, VRnnk is merely a
translation of the origin’s Voronoi cell V0k by Rnnknk. Thus
Pc can be written equivalently as

Pc =Pr {vnk ∈ V0k} vnk ∼ N (0, I). (29)

Pc is now a function of solely the Gaussian random ambiguity
noise vector vnk and can be precisely determined by integrat-
ing the probability distribution function of vnk over V0k [34]:

Pc =

∫
V0k
N (vnk; 0, I)dvnk

=

∫
V0k

1

(2π)
n
2

exp

(
−1

2
‖vnk‖2

)
dvnk. (30)

In (30), N (vnk; 0, I) is the multivariate normal distribution
and ‖ · ‖ is the L2-norm. Unfortunately, determining V0k and
integrating over it is a computationally intensive problem [17].
Nonetheless, it is possible to relax the structure of V0k and
solve instead for bounds on Pc [17], [34], [35].

A. Upper Bound on Pc

The volume of a Voronoi cell is equal to the absolute value
of the determinant of its lattice generating matrix [17]. Thus,
the volume of V0k is |det Rnnk|. By making a simplifying
assumption that V0k is an `-dimensional hypersphere with the
same volume, an upper bound on the probability of successful
integer ambiguity resolution can be written as [17]

Pc,ub = Pr {‖vnk‖ < ρ} (31)

where ρ is the radius of the hypersphere defined as

ρ =
√̀
|det Rnnk|/α` (32)

where ` is the dimension of vector vnk and

α` = π
`
2 /Γ(`/2 + 1) and

Γ(`) = (`− 1)!.

Since vnk is an `-dimensional normal random vector, ‖vnk‖2
is equal to the sum of squares of ` independent normally
distributed random variables [17], which has a chi-squared
distribution with `-degrees of freedom. As a result,

Pc,ub = Fχ2(ρ2; `). (33)

where Fχ2(·;n) is the cumulative distribution function of a
n-degree chi-squared random variable.

B. Lower Bound on Pc

The probability of correctly resolving integer ambiguities
using so-called integer bootstrapping [36] offers the sharpest
known lower bound on Pc [37]. Unlike the case with ILS
solvers, it is possible to compute this bootstrapping probability
exactly. The bootstrapping estimator takes an approach where
it rounds the float least-squares solution while taking advan-
tage of correlation between the ambiguities into account. The
bootstrapping estimator’s probability of successful ambiguity
resolution, which offers a lower bound on Pc, can be written
as [36]

Pc,lb =

n∏
i=1

(
2Ψ

(
1

2σn̂|I

)
− 1

)
(34)

where σn̂|I are conditional variances derived from Rnnk [36],
and

Ψ(x) =

∫ x

−∞

1

2π
exp

(
−1

2
y2
)

dy. (35)

For the sensitivity results presented later in Sec. VI, the code
provided by the Ps-LAMBDA software package [38] was used
to compute this lower bound.

V. SIMULATION AND TEST ENVIRONMENT

To evaluate the performance of the reconstruction technique
outlined in Sec. III, a Monte-Carlo-type simulation and test
environment has been designed in MATLAB. The environment
performs three tasks.

First, it simulates double-differenced GNSS residual car-
rier phase time histories ∇∆φr(t). Noise parameters mod-
eling the double-differenced range error ∇∆re(t), the
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double-differenced propagation- and multipath-induced ef-
fects ∇∆εp(t), and the double-differenced measurement noise
∇∆vφ(t) are inputs to the simulator. Structural parameters
such as the measurement burst duration Tb, the time between
consecutive bursts Tp, and the ambiguity factor M are also
inputs. Note that although the reconstruction technique can
handle variations in Tb and Tp, i.e., a non-fixed burst duration
and aperiodic bursts, for the analysis performed in this section,
these quantities will be assumed fixed. From these parameters,
independent time histories of ∇∆φr(t) are generated. Note
that phase-locked loop (PLL) pull-in transients need not be
simulated in ∇∆φr(t) so long as a batch estimation technique
is assumed to be used by the receiver as opposed to a PLL as
will be discussed in Sec. VIII-D.

Second, the reconstruction technique is applied to each gen-
erated ∇∆φr(t) to produce smoothed reconstructed double-
differenced carrier phase time histories ∇∆φR(t).

Third, the environment evaluates the performance of the re-
construction technique by computing the empirical probability
of correct integer ambiguity resolution Pc,emp as well as the
analytical upper and lower bounds Pc,lb and Pc,ub discussed
in Sec. IV. Pc,emp is computed as the ratio of the number
of successful reconstruction attempts to the total number of
attempts. A successful attempt occurs when all ambiguities are
resolved successfully. In the limit, as the number of attempts
approaches infinity, Pc,emp → Pc.

A. Error Component Modeling

To create a high-fidelity simulator and to ensure near-
optimal reconstruction of the simulated phase time histories, it
is important to provide both the simulator and the reconstruc-
tion algorithm with accurate models for the phase variations
caused by each error component of ∇∆φr(t) detailed in (3).
Some of the error components can be realistically modeled by
the following flexible model:

Let Sφ(f) be the single-sided power spectral density (PSD)
of some stationary phase error process φ(t). Sφ(f) can be
expressed as

Sφ(f ) = 4

∫ ∞
0

Rφ(τ) cos(2πf τ)dτ (36)

where Rφ(τ) = E[φ(t)φ(t + τ)] is the autocorrelation func-
tion of φ(t). Let Sφ(f) be approximated by a frequency-
weighted summation of five power-law parameters hα, called
h-parameters [39]:

Sφ(f ) =
ν20
f 2

2∑
α=−2

hαf
α 0 < f < fh (37)

where ν0 is the nominal center frequency of the phase data
(e.g., the GPS L1 center frequency), in Hz, and fh is the
maximum frequency at which Sφ(f) is evaluated, typically
corresponding to the Nyquist frequency of the sampled phase
error process φ(t). Often only the h−2 component (corre-
sponding to frequency random walk) and the h0 component
(corresponding to phase random walk) of the model are
assumed to be nonzero. In this case, the five-parameter model

in (37) reduces to the two-parameter (second-order Gauss-
Markov) clock error model commonly invoked in Kalman
filtering [25].

Two out of the four error components of ∇∆φr(t) can
be accurately characterized by a PSD model of the form in
(37): (1) double-differenced range error term ∇∆re(t) whose
variations are largely induced by IMU errors, and (2) the
double-differenced propagation- and multipath-induced error
term ∇∆εp(t). As discussed in Sec. III-A2, both of these error
components are process noise and are characterized by the Sf
and Sg parameters in the process noise covariance matrix Q
defined in (11). The relationship between Sf and Sg and the
two-parameter h−2 and h0 model is as follows [25]:

Sg = 2π2h−2 (38)

Sf =
h0
2
. (39)

A third error component, the double-differenced measure-
ment noise ∇∆vφ(t), could also be characterized by a PSD
model, in particular by the h2 parameter corresponding to
white phase noise, but ∇∆vφ(t) will instead be characterized
by the more-familiar carrier-to-noise ratio C/N0. Under this
characterization, the measurement noise variance σ2

φk (defined
after (12)) is computed from its full nonlinear relationship to
(C/N0)k, assuming a standard arctangent-type phase detector,
and used to simulate the discrete-time measurement noise vk
of (12). The final term, the phase ambiguity term ∇∆η(t),
need not be modeled, as ambiguities are introduced determin-
istically via an “ambiguity-free” simulation of ∇∆φr(t) which
is then aliased to between 0 and 1

M cycles.

B. Inertial Aiding

As discussed in Sec. II, an inertial measurement unit
(IMU) can model the rover receiver’s changing position,
enabling it to more-accurately predict its line-of-sight range to
each satellite. This modeling substantially eliminates receiver-
motion-induced variations from re(t), and, consequently, from
∇∆φr(t). It is for this reason that while the reconstruction
technique can work without inertial aiding, it works much
better when inertial measurements are available.

1) Characterization of Inertial Errors: Despite its advan-
tages, inertially-aided motion prediction is imperfect. Noise
in the IMU measurements will leave residual variations in
re(t) which enter into ∇∆φr(t). These variations must be
accurately characterized to enable optimal reconstruction. The
two-parameter PSD model, discussed previously, can be used
to characterize these variations. Table I lists h-parameter
values that characterize the undifferenced range-error vari-
ations resulting from use of three different-quality IMUs
to predict the receiver’s motion: (1) a low-end “consumer-
grade” IMU found in consumer-electronic devices, (2) a high-
end “consumer-grade” IMU found in commercial equipment,
and (3) a “tactical-grade” IMU found in military equipment.
These h-parameter values were determined as follows: First,
white noise and bias instability values commonly used to
characterize acceleration and angular velocity measurement
noise were taken from the datasheet of each IMU. Second,
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TABLE I
h-PARAMETER VALUES CHARACTERIZING THE NOISE STATISTICS OF

THREE INERTIAL MEASUREMENT UNITS

Device h−2

(cycles2-Hz)
h0

(cycles2/Hz) Grade

Analog Dev. ADIS16360 5× 10−24 3× 10−27 Consumer
XSENS MTi 5× 10−25 3× 10−28 Consumer

Honeywell HG1900 5× 10−26 3× 10−29 Tactical

these values were used to simulate IMU measurement errors
and, from these, IMU-specific 3-dimensional position error
trajectories were generated [40]. Third, the PSD of the varia-
tions along a randomly chosen dimension was computed and
a weighted least-squares solution was used to determine h-
parameter-values best characterizing each PSD, as per (37).
The final values listed in Table I represent average values
from 20 Monte-Carlo-type simulations. While it is possible
to compute the h-parameter equivalents of the white noise
and bias instability parameters in isolation, it becomes much
more difficult to accurately compute these parameters when
the noise sources are coupled together, such as is the case in
an inertial navigation system as described here.

2) Estimation of Inertial Biases: The foregoing two-
parameter model for errors in ∇∆φr(t) due to imperfect
inertial aiding does not account for biases in the IMU’s ac-
celerometer and rate sensor measurements. Such biases could
be accommodated by augmenting the real-valued state with
a phase-acceleration component and, consequently, the two-
parameter error model with an h−4 parameter. However, this
turns out to be unnecessary so long as these inertial biases and
the receiver orientation are periodically estimated and compen-
sated for. Assuming that a receiver starts with a pseudorange-
based initial position and an accelerometer-and-magnetometer-
provided orientation, then acceleration, angular velocity, and
magnetometer measurements can be integrated in an inertial
navigation system (INS) [40] that approximates the receiver’s
change in position and orientation over an extended period
of many bursts. After each extended period, e.g., roughly 20
seconds for a consumer-grade IMU, the INS-derived position
must be augmented with GNSS code-phase and recently-
reconstructed ambiguity-free GNSS carrier-phase measure-
ments in a tightly-coupled INS/GNSS filter that estimates the
inertial biases and receiver orientation as part of its state [41],
[42]. These recent bias and orientation estimates will enable
the INS to more-accurately approximate the receiver’s change
in position and orientation over the next extended period,
allowing the reconstruction technique to accurately predict
the receiver-motion-induced phase variations. This technique
works so long as the inertial biases remain approximately
constant over the duration of each extended period. Section
VII provides a demonstration of the reconstruction technique
on real data where inertial biases and receiver orientation were
periodically estimated in this way.

VI. SENSITIVITY ANALYSIS

This section discusses the sensitivity of the reconstruction
technique to signal structure parameters such as the burst
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Fig. 3. Probability of successful ambiguity resolution Pc as a function of the
burst period Tp and of IMU quality. The dashed traces denote the empirical
estimate of Pc, Pc,emp, obtained via Monte-Carlo simulation. The solid traces
denote the analytically computed upper and lower bounds Pc,lb and Pc,ub.

period Tp and the 1
M ambiguity factor and to signal error

parameters such as the carrier-to-noise ratio and the underlying
IMU quality. Sensitivity is measured by computing empirical
estimates and analytical bounds on the probability of correct
integer ambiguity resolution Pc as a function of these param-
eters. The purpose of the sensitivity analysis is to discover
parameter bounds beyond which the reconstruction technique
will perform poorly. As it is unwieldy to test all possible
combinations of parameters, testing is performed around a set
of nominal parameters that model a typical low-power mobile
receiver setup. In particular, during each test, sensitivity is
analyzed as a function of the burst period Tp and one other
parameter, namely IMU quality, the ambiguity factor 1

M , or
the carrier-to-noise ratio C/N0. During each test, the strategy
will be to:

1) Fix the burst duration Tb to 0.05 seconds and the time
duration over which reconstruction will be performed to
250 seconds.

2) Vary the time between bursts Tp for each test, along
with one of either IMU quality, M , and C/N0.

3) Fix M = 1, C/N0 = 50 dB-Hz, and the IMU quality
to that of a low-quality consumer-grade IMU when not
being varied.

This will result in three sensitivity scenarios, each of which is
explored in the next three subsections.

A. Sensitivity to IMU Quality

This section illustrates the sensitivity of the reconstruction
technique to the underlying IMU quality, modeled by the h0
and h−2 power-law parameter values listed in Table I, and to
the burst period Tp. During sensitivity testing, the IMU quality
and the burst period were varied while the other important
parameters were held constant at the values discussed earlier.

Fig. 3 illustrates the sensitivity results. The empirical proba-
bility of successful ambiguity resolution Pc,emp was computed
via Monte-Carlo simulation and is represented by the dashed
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Fig. 4. Probability of successful ambiguity resolution Pc as a function of
the burst period Tp and the ambiguity factor M . The dashed traces denote
an upper bound on Pc, Pc,ub, while the solid traces denote a lower bound,
Pc,lb.

trace. The lower and upper bounds Pc,lb and Pc,ub were
computed analytically (see section IV) and are represented by
the solid traces. The waterfall structure of each trace indicates
a breakdown point in successful ambiguity resolution. Each
subplot represents a different underlying IMU quality. It is
evident that the higher the IMU quality, the larger the burst
period Tp that the reconstruction technique can sustain before
a breakdown occurs. A higher quality IMU allows the recon-
struction technique to more accurately predict the underlying
phase trajectory between bursts, making it easier to resolve
the phase ambiguity at the beginning of each burst.

B. Sensitivity to the Ambiguity Factor

Fig. 4 plots Pc,lb and Pc,ub as a function of Tp for two
different values of the ambiguity factor M . (For visual clarity,
empirical results, which always lie close to Pc,ub, were not
plotted.) As shown, a lower M value allows for a larger burst
period Tp before a breakdown in Pc occurs. This is as might
be expected: all else equal, integer-cycle ambiguities are easier
to resolve than fractional-cycle ambiguities. This implies that
a GNSS receiver with a priori knowledge of the binary
navigation data symbols and an approximation of its position
and time (to within a fraction of a data symbol interval) (in
which case M = 1) has the ability to be more power efficient
than a receiver with no such knowledge (M = 2) by extending
its burst period while maintaining the same probability of
successful ambiguity resolution.

C. Sensitivity to the Carrier-to-noise Ratio

Fig. 5 plots lower bounds on Pc as a function of the
burst period for five different carrier-to-noise ratios. Note
that for visual clarity only the lower bounds were plotted.
As illustrated, a higher C/N0 tolerates a longer burst period
before a breakdown in Pc occurs. This is because for lower
C/N0 values the measurement noise variations vk imparted by
the receiver’s front end become a larger share of the overall
variations within yk [see (12)]. This makes it difficult for the
reconstruction technique to separate these variations from the
variations due to the real- and integer-valued state components
xk and nk, leading to a decrease in the probability of correct
ambiguity resolution.
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Fig. 5. Lower bounds on the probability of successful channel reconstruction
as a function of the burst period Tp and the carrier-to-noise ratio C/N0 (in
dB-Hz).

VII. DEMONSTRATION OF A CDGNSS SOLUTION ON
RECONSTRUCTED DATA

This section provides a demonstration of the reconstruction
technique applied to real data collected by a reference and
rover GNSS receiver. Each receiver was running a version
of the GRID software [43]–[45] and is capable of capturing
GNSS signal code- and carrier-phase data. Additionally, the
rover contained an Xsens MTi IMU capable of providing linear
acceleration measurements and attitude estimates derived from
an internal filter.

A. Data Collection, Modification, and Processing

The demonstration was carried out as follows. First, GNSS
signal code- and carrier-phase data were collected simul-
taneously and continuously by both receivers while IMU-
provided acceleration measurements and attitude estimates
were additionally collected by the rover. Two minutes of data
were collected. During this time the rover receiver was moved
about while the reference receiver remained stationary. The
rover’s trajectory was that of a pedestrian moving at a walking-
pace holding the receiver at an approximately fixed pitch and
roll angle, but allowing changes in yaw. Second, the data
collected by the rover receiver were digitally modified in two
ways to simulate collection by a power-constrained receiver:
(1) discrete measurement intervals were selected from the
continuously-recorded GNSS code- and carrier-phase data and
(2) the carrier-phase data were aliased to between 0 and
1 cycle. Third, the intermittent carrier-phase time histories
from the two receivers were differenced to form 7 double-
differenced carrier-phase time histories from 8 GNSS satellite
signals present in the recorded data. Fourth, biases in the
IMU acceleration measurements were estimated once every
60 seconds via an INS/GNSS filtering technique similar to
that described in Sec. V-B2. Fifth, the bias estimates, ac-
celeration measurements, and IMU-derived attitude estimates
were incorporated into an INS to approximate the receiver
trajectory and remove the motion-induced variations from
each double-differenced carrier-phase time history, forming
double-differenced residual carrier-phase time histories. Sixth,
the reconstruction technique was applied to each double-
differenced residual carrier-phase time history. Finally, the
reconstructed time histories (along with the intermittent code-
phase measurements) were passed off to a standard CDGNSS
positioning algorithm which computed a centimeter-accurate
positioning solution for the rover receiver.

11



Preprint of article submitted to IEEE Transactions on Signal Processing

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8
B

as
el

in
e 

E
rr

o
r 

(m
et

er
s)

Successful Reconstruction Attempt

Failed Reconstruction Attempt

Time (seconds)

Fig. 6. Error in the positioning solution provided by the CDGNSS
algorithm whose inputs are phase trajectories from two different reconstruction
outcomes: (1) a successful attempt (lower blue trace) defined when all phase
ambiguities were resolved correctly for all 7 of the reconstructed phase
time histories involved in the positioning solution and (2) a failed attempt
(upper red trace) defined when one or more phase ambiguities were resolved
incorrectly for one or more of the reconstructed phase time histories.

B. Results

Fig. 6 illustrates the accuracy of the CDGNSS-based po-
sitioning solution under two circumstances: (1) a scenario in
which all phase ambiguities from the 7 reconstructed time
histories were resolved correctly, and (2) a scenario in which
one or more phase ambiguities were resolved incorrectly. In
the first scenario, carrier-phase measurements were provided to
the reconstruction algorithm with a burst length of Tb = 0.05
seconds and a burst period of Tp = 1 seconds, which
corresponds to a 5% duty cycle. For the second scenario,
Tb = 0.05 seconds and Tp = 2 seconds, corresponding to
a 2.5% duty cycle. The time duration of the dataset for each
scenario was approximately 120 seconds. In both scenarios,
the error, in meters, from the true position is computed and
plotted as a function of time. The ground truth trajectory
is obtained by separately computing a CDGNSS solution
using the unmodified, ambiguity-free, continuous phase time
histories originally captured by the receivers. As the lower
trace illustrates, when the reconstruction algorithm resolves
the phase ambiguities correctly, the positioning error is very
small (less than 1.5 cm). The small error is primarily due
to the inability of the reconstruction algorithm to perfectly
reconstruct the variations in the residual carrier phase between
measurement bursts. In contrast, as the upper trace illustrates,
incorrectly resolved ambiguities lead to significant positioning
errors well in excess of the accuracy potential of the CDGNSS
algorithm. Large jumps in the positioning error denote an
incorrectly resolved phase ambiguity at that time index.

In this demonstration, the availability of the ground truth
trajectory enables the generation of a simple metric, i.e.,
baseline error, to indicate when reconstruction has failed.
However, a system in the field will not have a ground truth
trajectory with which the baseline error can be generated. In
these cases, the system can compute the upper and lower
bounds on the probability of successful reconstruction, as
introduced in Sec. IV, and use one or both of these as an
indicator as to when reconstruction may have failed, e.g., when
Pc,lb is not above a predetermined threshold for each double-
differenced reconstructed phase time history, the resulting
CDGNSS solution can be presumed inaccurate.

It should be noted that while the results shown here
are promising, these results reveal the performance of the

TABLE II
GNSS CHIP POWER CONSUMPTION

Mfr. Chip Measurements Provided Power (mW)

Broadcom BCM4751 duty-cycled code phase 13
u-blox NEO-6P cont. code & carrier phase 117

reconstruction technique on only one set of collected data.
For a more in-depth and direct analysis of the technique’s
performance, see Sec. VI, where reconstruction was performed
on hundreds of sets of simulated data and compared against
analytical performance bounds.

VIII. POWER CONSUMPTION ANALYSIS

This section provides an analysis of the power consump-
tion of the duty-cycled measurement framework enabled by
the carrier-phase reconstruction technique as compared to a
framework requiring the continuous tracking of GNSS signal
carrier phase.

A. Low-Power GNSS Chips

Table II lists two GNSS chips and their average power con-
sumption. The Broadcom chip, used in many mobile devices,
computes a receiver’s position using only the tracked code-
phase of each GNSS signal. It achieves an impressively low
power draw of 13 mW by aggressively duty cycling its code-
phase measurements [46]. Unlike carrier-phase measurements,
code-phase measurements do not suffer from ambiguity prob-
lems when duty-cycled. Code-phase measurements, however,
can only be used to compute a pseudorange-based position
solution, which is much less accurate than a carrier-phase-
based CDGNSS solution. The other two chips provide both
code- and carrier-phase measurement outputs. To provide
ambiguity-free carrier-phase measurements, these chips con-
tinuously track each GNSS signal, drastically increasing their
power consumption compared to the duty-cycling Broadcom
chip. The NEO-7M, a variant of the NEO-6P, has a low-power
duty-cycled mode with a power draw of 14 mW [47], similar to
that of the Broadcom chip. The NEO-7M, however, does not
provide access its carrier-phase measurements. This paper’s
authors conjecture that both u-blox and Broadcom believe it is
fruitless to provide carrier-phase data fraught with ambiguities
and so do not provide access to these measurements in chips
with duty-cycled tracking modes.

It is important to note that unlike code and carrier phase,
whose measurements are duty-cycled in this low-power frame-
work, acceleration and angular velocity must be continuously
measured by an IMU such that they can be used in pre-
dicting receiver motion between phase measurement bursts
(see Sec. V-B). Fortunately, there exist low-power chip-scale
IMUs which consume power on the order of 10-20 mW [48],
much less than the state-of-the-art u-blox chips that output
continuous code and carrier phase measurements.

B. Power Consumption of the Reconstruction Algorithm

The reconstruction technique outlined in this paper relaxes
the continuous tracking requirement for GNSS chips that pro-
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Fig. 7. Minimum achievable relative power consumption of a duty-
cycled measurement and phase reconstruction framework as compared to a
continuous measurement framework as function of the burst length Tb.

vide carrier-phase measurements. Although duty-cycled mea-
surements will contain phase ambiguities, the reconstruction
technique can be applied to these measurements, enabling,
under favorable circumstances, an ambiguity-free continuous
time phase history to be accurately reconstructed.

The minimum power consumed by a receiver duty cycling
its carrier-phase measurements can be described as a percent-
age of the power consumed by a receiver continuously tracking
the carrier phase:

Power Consumption (%) =
Tb
Tp
× 100. (40)

This power consumption metric is a minimum as it considers
only the power that will be saved by measurement duty-
cycling. It ignores the overhead imposed by the reconstruction
algorithm and the overhead involved in turning on and off the
receiver components associated with sampling and digitizing
the signal. This will be discussed later.

When evaluating the power consumption using (40), it is
logical to check that the chosen combination of Tb and Tp
will result in a successful reconstruction. One way to do this
is to look at the lower bound of the probability of successful
ambiguity resolution Pc,lb and determine if it is above a certain
threshold, e.g., 99.99%. Obviously, as Tb

Tp
→ 1, Pc,lb → 1, but

the power consumption as denoted by (40) will also approach
100%, saving little power. Accordingly, there exists a tradeoff
between keeping Pc,lb close to 1 and minimizing the power
consumption.

Fig. 7 provides an empirical analysis of the minimum
achievable power consumption as a function of the burst
length Tb for performing reconstruction on a simulated double-
differenced residual GNSS signal. The signal was simulated
with a single-sided PSD defined by (37) with the h−2 and
h0 power-law parameters varied according to the values in
Table I, representing the usage of a low-end consumer-, high-
end consumer-, and tactical-grade IMU. Additionally white
phase noise was added to the signal to simulate front-end
noise representative of a receiver C/N0 = 50 dB-Hz. The

simulated dataset duration was 250 seconds. For simplicity, it
was assumed that the contribution to ∇∆φr(t) by unmodeled
propagation and multipath effects was small in comparison
to the other noise sources, and as such, the h-parameters
characterizing the PSD of this noise source were set to 0.

In computing the power consumption values in Fig. 7,
for each Tb the largest value of Tp was chosen such that
Pc,lb remained above .9999. The power consumption was
then computed using (40) and plotted. From the figure, one
can make two interesting observations. First, the minimal
power consumption is attained when the burst length is very
small. This implies that, to save power, it is beneficial for
a GNSS receiver making duty-cycled phase measurements
to use relatively short burst lengths and short burst periods
rather than long burst lengths and long burst periods. Second,
at shorter burst lengths (and burst periods), the quality of
the underlying IMU has a smaller impact on reducing power
consumption. This implies that a high-quality IMU can be
forgone in favor of a lower-quality IMU as long as the burst
length and burst period are reduced enough to achieve the
desired power consumption. This is an important result as
many mobile handheld devices come with consumer-grade
IMUs (or separate consumer-grade accelerometers and rate
sensors).

C. Power Consumption Overhead

Although measurement duty-cycling enables a large reduc-
tion in power consumption at the rover receiver, it would be
negligent to assume that the added computational complexity
required by the reconstruction algorithm to reconstruct a con-
tinuous phase-time history from the duty-cycled measurements
does not consume any power. Much computational complexity
is added by the integer least-squares ambiguity resolution
algorithm, and this complexity increases exponentially with
the number of integer ambiguities to resolve [18]. Fortunately,
unlike carrier-phase measurement, carrier-phase reconstruction
need not be executed at the rover receiver – the discrete phase
measurements can be relayed to the cloud for reconstruc-
tion. Furthermore, because the CDGNSS algorithm requires
a double-differencing of carrier-phase measurements from the
rover and a reference station, the rover would in any case
be required to offload its measurements to the network, since
receiving reference station measurements from the network
and computing the CDGNSS solution locally would likely
consume more power than relaying local phase measurements
to the network.

The additional power required to transmit data in an LTE
network versus receiving it is about 400 mW per 1 Mbps [49].
The average rate at which the rover must send duty-cycled
phase measurements to the cloud is fs · Tb

Tp
measurements per

second, which, for aggressive duty cycling (e.g., Tb

Tp
= 1

10 ) and
a modest sampling rate (e.g., fs = 50 Hz), would result in an
average code- and carrier-phase measurement rate of 5 samples
per second per signal tracked. Given 10 signals tracked and
32 bits allocated per sample, the average transmission data
rate is about 1.6 kbps, or approximately 0.6 mW of added
power to transmit the carrier phase data rather than receive
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it. Although this number does not account for the cost of
transmitting the code-phase and IMU measurements, the total
rover power consumption for a cloud-based CDGNSS solution
will likely be far below the power consumption needed to
perform a local CDGNSS solution. Thus, under the current
framework, the rover will relay a batch of code- and carrier-
phase measurements along with IMU measurements to the
network for processing. The network will perform phase dif-
ferencing, IMU bias correction, reconstruction, and CDGNSS
processing and then relay back to the rover the latter’s precise
position time history over the batch interval.

In addition to the overhead involved in transmitting data
over the network, the power consumption model in (40) also
ignores the power overhead associated with switching on and
off the receiver components involved in sampling and digitiz-
ing the GNSS signals. Such overhead is inversely proportional
to Tp; as Tp is decreased, there will come a point when
the increase in power consumption due to this overhead will
outweigh the additional reduction in power consumption from
measurement duty-cycling. This “break-even” point places a
lower bound on Tp (and its associated Tb), below which the
power consumption will no longer decrease. For the power
consumption analysis described in Sec. VIII-B whose results
are displayed in Fig. 7, Tp is always larger than 1 second.
Such values of Tp are assumed to be well above this break-
even point. As such, the power overhead due to switching is
assumed to be negligible and is not modeled by (40).

D. Avoiding Phase-Locked Loop Transients using Batch Esti-
mation

If the rover receiver’s phase-locked loop (PLL) re-
synchronizes its local carrier replica with the incoming carrier
phase at the beginning of each measurement burst, then this
will result in short phase transients during re-synchronization
[50]. These transients are manageable so long as they settle
prior to the end of the measurement burst, i.e., the convergence
time is less than Tb. However, only the phase measure-
ments taken after this settling period can be used during
reconstruction. Rather than forgo the information contained in
these transients, which could benefit reconstruction, a different
methodology avoids them altogether. Instead of attempting to
track the incoming carrier-phase using a traditional PLL, the
rover receiver can generate a model line of sight trajectory to
each GNSS satellite tracked and employ batch estimation on
raw correlation outputs to measure carrier phase, code phase,
and Doppler with no phase pull-in transient. This model-
trajectory methodology is standard in so-called vector tracking,
where traditional tracking loops are replaced by a navigation
filter that provides prior knowledge of receiver position and
velocity to the local replica generators [26], [51]. The only
requirement is that the model-trajectory be accurate enough
that the difference between the received carrier phase and the
carrier-phase predicted by the model-trajectory does not drift
by more than 1

2 cycle during the sampling interval 1
fs

.

IX. CONCLUSIONS

A technique for reconstructing a continuous carrier-phase
time history from intermittent GNSS carrier-phase measure-

ments has been developed. The technique combines an integer
least-squares method for estimating the phase ambiguity that
arises at the beginning of each measurement burst with a
Kalman filter and smoother that correct for these ambiguities
and “stitch” the bursts together.

A Monte-Carlo-type simulation and test environment has
been built in MATLAB to simulate the intermittent GNSS
phase measurements, implement the phase reconstruction tech-
nique, and analyze the sensitivity of the technique to determine
the parameter space within which successful reconstruction
is possible. Theoretical bounds predicting the probability of
successful reconstruction were compared to empirical results
from the Monte-Carlo simulations.

Simulation results indicate that successful carrier-phase re-
construction is strongly dependent on the burst period, the
carrier-to-noise ratio, the ambiguity factor, and the quality
of the underlying inertial measurement unit employed by the
receiver. A demonstration on real data shows that the recon-
struction technique can successfully reconstruct carrier phase
measurements made at a 5% duty cycle by a GNSS receiver
containing a consumer-grade IMU and receiving GNSS signals
with a carrier-to-noise ratio of 50 dB-Hz. The reconstruction
technique assumes the use of special batch tracking techniques
to avoid PLL transients at the start of each burst. Furthermore,
an analytical power analysis indicates that the reconstruction
technique can permit potential power savings in excess of
95% for a receiver duty-cycling its carrier phase measurements
when compared against a receiver continuously tracking the
incoming carrier phase. These results suggest that the recon-
struction technique could act as an enabler for high-precision
positioning in energy-limited mobile devices.
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