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ABSTRACT

A receiver with no a priori knowledge about its own states
is dropped in an unknown environment comprising multi-
ple signals of opportunity (SOPs) transmitters. Assum-
ing that the receiver could control its maneuvers in the
form of acceleration commands, two problems are con-
sidered. First, the minimal conditions under which such
environment is completely observable are established. It

is shown that receiver-controlled maneuvers reduce the
minimal required a priori information about the environ-
ment for complete observability. Second, the trajectories
that the receiver should traverse in order to build a high-
fidelity signal landscape map of the environment, while
simultaneously localizing itself within this map in space
and time with high accuracy are prescribed. To this end,
the one-step look-ahead (greedy) strategy is compared to
the multi-step look-ahead (receding horizon) strategy. The
limitations and achieved improvements in the map qual-
ity and localization accuracy due to the receding horizon
strategy are quantified, and the associated computational
burden is discussed.

I. INTRODUCTION

A new navigation paradigm, termed opportunistic navi-
gation (OpNav), has been proposed to improve navigation
robustness in Global Navigation Satellite Systems (GNSS)-
challenged environments. This paradigm aims to extract
positioning and timing information from ambient radio fre-
quency signals of opportunity (SOPs) [1]. OpNav treats
all signals as potential SOPs, from conventional GNSS sig-
nals to communications signals never intended for use as
timing or positioning sources, such as signals from cellular
towers and iridium satellites [2,3]. In collaborative oppor-
tunistic navigation (COpNav), multiple OpNav receivers
share information to construct and continuously refine a
global signal landscape [4].

The OpNav estimation problem is similar to the simultane-
ous localization and mapping (SLAM) problem in robotics
[5, 6]. Both imagine an agent, which starting with incom-
plete knowledge of its location and surroundings, simul-
taneously builds a map of its environment and locates it-
self within that map. In traditional SLAM, the map that
gets constructed as the robot moves through the environ-
ment is composed of landmarks with associated positions.
OpNav extends this concept to radio signals, with SOPs
playing the role of landmarks. In contrast to a SLAM en-
vironmental map, the OpNav signal landscape is dynamic
and more complex. In pseudorange-only OpNav, the re-
ceiver must estimate simultaneously with its own states,
the states of each SOP, namely the position and velocity
of the transmitter, time offset from a reference time base,
rate of change of time offset, and a set of parameters that
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characterize the oscillator stability. Metaphorically, the
signal landscape map can be thought of as a “jello map,”
with the jello firmer as the oscillators are more stable.

The observability of COpNav environments comprising
multiple receivers with velocity random walk dynamics
making pseudorange measurements on multiple SOPs was
thoroughly analyzed in [7,8], and the degree of observabil-
ity, also known as estimability, of the various states was
quantified in [9]. While observability is a Boolean prop-
erty, i.e. it asserts whether a system is observable or not,
it does not specify which trajectory is best for information
gathering, and consequently estimability. This is the sub-
ject of this paper. To this end, the receiver dynamics is
modified so to allow for receiver-controlled maneuvers.

Optimizing an observer’s path in tracking problems has
been studied extensively [10,11]. In such problems, the ob-
server, which has perfect knowledge about its own states,
is tracking a mobile target. The trajectory optimization
objective is to prescribe trajectories for the observer to
maintain good estimates of the target’s states. In SLAM,
the problem of trajectory optimization is more involved,
due to the coupling between the localization accuracy and
map quality [12, 13].

Trajectory optimization in OpNav environments can be
thought of as a hybrid of: (i) optimizing an observer’s path
in tracking problems and (ii) optimizing the robot’s path
in SLAM. First, due to the dynamical nature of the clock
error states, the SOP’s state space is non-stationary, which
makes the problem analogous to tracking non-stationary
targets. Second, the similarity to SLAM is due to the
coupling between the receiver localization accuracy and
signal landscape fidelity. A unique feature of OpNav is that
the quality of the estimates not only depends on the spatial
trajectory the receiver traverses within the environment,
but also depends on the velocity with which the receiver
traverses such trajectory [14].

An initial receiver trajectory optimization study was con-
ducted in [14]. The following problem was considered. A
receiver with no a priori knowledge about its own states
is dropped in a planar OpNav environment. Assuming
that the receiver could prescribe its own trajectory in the
form of velocity commands, what motion planning strat-
egy should the receiver adopt to build a high-fidelity map
of the OpNav signal landscape, while simultaneously lo-
calizing itself within this map in space and time? To this
end, an optimal closed-loop information-theoretic greedy
strategy was proposed for receiver motion planning. Three
information measures were compared: D-optimality, A-
optimality, and E-optimality. It was demonstrated that
all such strategies outperformed a receiver moving ran-
domly and in a pre-defined trajectory. Among these mea-
sures, the D-optimality outclassed the A-optimality and E-
optimality criteria. In [15], it was shown that with proper

reformulation, the greedy innovation-based motion plan-
ning strategy could be cast into a tractable convex pro-
gram, the solution of which is computationally efficient and
suitable for receivers with limited processing power. Active
collaborative signal landscape map building was addressed
in [16], and the price of anarchy was assessed, which mea-
sures the degradation in the solution quality should the
receivers produce their own maps and make their own ma-
neuver decisions versus a completely centralized approach.

This paper’s contribution is to extend the work of [14] in
two ways. First, it generalizes the receiver dynamics model
from a simple first-order model to a second-order model, in
which the receiver commands its acceleration. It is shown
that the same observability results achieved in [14] still
hold even with such higher-order model. In particular, the
OpNav environment is fully-observable if and only if the
receiver’s initial state is known or the initial state of at
least one “anchor” SOP is known. Subsequently, in con-
trast to the findings in [8], it is concluded that a receiver
with controlled maneuvers requires less a priori knowledge
about the OpNav environment for complete observability.
The second contribution is to extend the greedy motion
planning strategy to a multi-step look-ahead trajectory
optimization strategy. It is well-established in the liter-
ature that multi-step look-ahead strategies, also known as
receding horizon, outperform greedy strategies [13,17,18].
However, receding horizon strategies come at the cost of
increased computational burden. This paper studies the
achieved improvement in the fidelity of the signal land-
scape map and receiver localization, should the receiver
employ receding horizon trajectory optimization instead
of the greedy approach. Moreover, the sensitivity of re-
ceding horizon strategies to observation noise is studied.
It is demonstrated that as the observation noise increases,
the receding horizon strategy becomes less effective. Also,
the increased computational burden due to receding hori-
zon approaches is discussed.

The remainder of this paper is organized as follows. Sec-
tion II describes the OpNav environment dynamics and ob-
servation model. Section III analyzes various OpNav sce-
narios and establishes the minimal conditions under which
the environment is fully-observable. Section IV formu-
lates the receding horizon receiver trajectory optimization
problem. Section V presents simulation results comparing
the signal landscape map quality and localization accuracy
achieved from the greedy and receding horizon strategies.
Concluding remarks are given in Section VI.

II. MODEL DESCRIPTION

A. Dynamics Model

The receiver’s dynamics will be assumed to evolve accord-
ing to the controlled velocity random walk model. An
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object moving according to such dynamics in a generic co-
ordinate ξ, has the dynamics

ξ̈(t) = u(t) + w̃ξ(t),

where u(t) is the control input in the form of acceleration
command and w̃ξ(t) is a zero-mean white noise process
with power spectral density q̃ξ, i.e.

E [w̃ξ(t)] = 0, E [w̃ξ(t)w̃ξ(τ)] = q̃ξ δ(t− τ),

where δ(t) is the Dirac delta function. The receiver and
SOP clock error dynamics will be modeled according to
the two-state model, composed of the clock bias δt and
clock drift δ̇t. The clock error states evolve according to

ẋclk(t) = Aclk xclk(t) + w̃clk(t),

where

xclk =

[

δt

δ̇t

]

, w̃clk =

[

w̃δt

w̃δ̇t

]

, Aclk =

[

0 1
0 0

]

,

where w̃δt and w̃δ̇t are modeled as zero-mean, mutually in-
dependent white noise processes with power spectra Sw̃δt

and Sw̃δ̇t
, respectively. The power spectra Sw̃δt

and Sw̃δ̇t

can be related to the power-law coefficients, {hα}
2
α=−2,

which have been shown through laboratory experiments
to characterize the power spectral density of the fractional
frequency deviation y(t) of an oscillator from nominal fre-

quency, namely Sy(f) =
∑2

α=−2 hαf
α [19]. It is com-

mon to approximate such relationships by considering only
the frequency random walk coefficient h−2 and the white
frequency coefficient h0, which lead to Sw̃δt

≈
h0

2 and
Sw̃δ̇t

≈ 2π2h−2 [20].

The receiver’s state vector will be defined by augmenting
the receiver’s planar position rr and velocity ṙr with its
clock error states xclk to yield the state space realization

ẋr(t) = Ar xr(t) +Br ur(t) +Dr w̃r(t), (1)

where xr =
[

rT

r , ṙ
T

r , δtr, δ̇tr

]T

, rr = [xr, yr]
T
, ur =

[ux, uy]
T, w̃r =

[

w̃x, w̃y, w̃δtr , w̃δ̇tr

]T

,

Ar=





02×2 I2×2 02×2

02×2 02×2 02×2

02×2 02×2 Aclk



 , Br=





02×2

I2×2

02×2



 , Dr=

[

02×4

I4×4

]

.

The receiver’s dynamics in (1) is discretized at a constant
sampling period T , tk+1 − tk, assuming zero-order hold
of the control inputs, i.e. {u(t) = u(tk), tk ≤ t < tk+1}, to
yield the discrete-time (DT) model

xr (tk+1) = Fr xr(tk)+Gr ur(tk)+wr(tk), k = 0, 1, 2, . . .

where wr is a DT zero-mean white noise sequence with
covariance Qr = diag [Qpv, Qclk,r], with

Fr=





I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk



 , Gr=





T 2

2 I2×2

T I2×2

02×2



 , Fclk=

[

1 T
0 1

]

Qclk,r=

[

Sw̃δtr
T+Sw̃δ̇tr

T 3

3 Sw̃δ̇tr

T 2

2

Sw̃δ̇tr

T 2

2 Sw̃δ̇tr
T

]

Qpv =











q̃x
T 3

3 0 q̃x
T 2

2 0

0 q̃y
T 3

3 0 q̃y
T 2

2

q̃x
T 2

2 0 q̃xT 0

0 q̃y
T 2

2 0 q̃yT











.

The SOP will be assumed to emanate from a spatially-
stationary terrestrial transmitter, and its state will consist
of its planar position and clock error states. Hence, the
SOP’s dynamics can be described by the state space model

ẋs(t) = As xs(t) +Dsw̃s(t), (2)

where xs =
[

rTs , δts, δ̇ts

]T

, rs = [xs, ys]
T, w̃s =

[

w̃δts , w̃δ̇ts

]T

As =

[

02×2 02×2

02×2 Aclk

]

, Ds =

[

02×2

I2×2

]

.

Discretizing the SOP’s dynamics (2) at a sampling interval
T yields the DT-equivalent model

xs (tk+1) = Fs xs(tk) +ws(tk),

where ws is a DT zero-mean white noise sequence with
covariance Qs, and

Fs = diag [I2×2, Fclk] , Qs = diag [02×2, Qclk,s] ,

where Qclk,s is identical to Qclk,r, except that Sw̃δtr
and

Sw̃δ̇tr
are now replaced with SOP-specific spectra, Sw̃δts

and Sw̃δ̇ts
, respectively.

Defining the augmented state as x ,
[

xT

r , x
T

s

]T

, the aug-

mented process noise vector as w ,
[

wT

r , w
T

s

]T

, and

u , ur, yields the system dynamics

x (tk+1) = Fx (tk) +Gu (tk) +w(tk), (3)

where F = diag [Fr, Fs], G =
[

GT

r ,0
T

4×2

]T

, and w is
a zero-mean white noise sequence with covariance Q =
diag [Qr,Qs]. While the model defined in (3) considered
only one receiver and one SOP, the model can be read-
ily extended to multiple receivers and multiple SOPs by
augmenting their corresponding states.

3



B. Observation Model

To properly model the pseudorange observations, one must
consider three different time systems. The first is true
time, denoted by the variable t, which can be considered
equivalent to Global Positioning System (GPS) time. The
second time system is that of the receiver’s clock and is
denoted tr. The third time system is that of the SOP’s
clock and is denoted ts. The three time systems are related
to each other according to

t = tr − δtr(t), t = ts − δts(t),

where δtr(t) and δts(t) represent the amount by which
the receiver and SOP clocks are different from true time,
respectively.

The pseudorange observation made by the receiver on a
particular SOP is made in the receiver time and is modeled
according to

ρ(tr) =

‖rr [tr − δtr(tr)]− rs [tr − δtr(tr)− δtTOF]‖2 +

c . {δtr(tr)− δts [tr − δtr(tr)− δtTOF]}+ ṽρ(tr), (4)

where c is the speed of light, δtTOF is the time-of-flight
of the signal from the SOP to the receiver, and ṽρ is the
error in the pseudorange measurement due to modeling
and measurement errors. The error ṽρ is modeled as a zero-
mean white Gaussian noise process with power spectral
density r̃ [21]. In (4), the clock offsets δtr and δts were
assumed to be small and slowly changing, in which case
δtr(t) = δtr [tr − δtr(t)] ≈ δtr(tr). The first term in (4) is
the true range between the receiver’s position at time of
reception and the SOP’s position at time-of-transmission
of the signal, while the second term arises due to the offsets
from true time in the receiver and SOP clocks.

The observation model in (4) can be further simplified by
converting it to true time and invoking mild approxima-
tions to arrive at [8]

z(t)= ρ(t) , h [x(t)] + ṽρ(t)

≈ ‖rr(t)− rs(t)‖2 + c · [δtr(t)− δts(t)] + ṽρ(t). (5)

Discretizing the observation equation (5) at a sampling
interval T yields the DT-equivalent model

z(tk) = y(tk) + vρ(tk) (6)

= ‖rr(tk)− rs(tk)‖2 + c · [δtr(tk)− δts(tk)] + vρ(tk),

where vρ is a DT zero-mean white Gaussian sequence with
covariance r = r̃/T .

III. OBSERVABILITY ANALYSIS

The observability of OpNav environments in which a re-
ceiver moved according to velocity random walk dynamics,

i.e. without active control over its maneuvers, was consid-
ered in [8, 9]. The objective of such observability analysis
was twofold: (i) determine the minimal a priori knowledge
about the environment required for full observability, and
(ii) in cases where the environment is not fully-observable,
determine the observable states. In this section, the effects
of allowing the receiver to actively control its maneuvers
on the OpNav environment observability are considered.

A. Theoretical Background: Observability of Non-
linear Systems

For nonlinear systems, it is more appropriate to analyze
observability through nonlinear observability tools rather
than linearizing the nonlinear system and applying linear
observability tools. This is due to two reasons: (i) non-
linear observability tools capture the nonlinearities of the
dynamics and observations, and (ii) while the control in-
puts are never considered in the linear observability tools,
they are taken into account in the nonlinear observability
tools [22].

For the sake of clarity, the nonlinear observability test
employed in this paper is outlined next. Consider the
continuous-time (CT) nonlinear dynamic system in the
control affine form [23], given by

ΣNL :

{

ẋ(t) = f0 [x(t)] +
∑r

i=1 f i [x(t)]ui, x(t0) = x0

y(t) = h [x(t)] ,
(7)

where x ∈ R
n is the system state vector, u ∈ R

r is the
control input vector, y ∈ R

m is the observation vector,
and x0 is an arbitrary initial condition.

Several notions of nonlinear observability exist for ΣNL

[22]. The most general, is (global) nonlinear observability,
in which it might be necessary to travel a considerable dis-
tance or for a long period of time to distinguish between
initial conditions in R

n. Observability of ΣNL does not im-
ply that every input u distinguishes initial conditions in
R

n. Stronger and weaker notions of nonlinear observabil-
ity exist, namely local observability, weak observability,
and local weak observability. A somewhat simple algebraic
test exists to assessing local weak observability, which in-
tuitively means that x0 is instantaneously distinguishable
from its neighbors. This test is based on constructing the
so-called nonlinear observability matrix defined next.

Definition 1. The first-order Lie derivative of a scalar
function h with respect to a vector-valued function f is
defined as

L
1
fh(x) ,

n
∑

j=1

∂h(x)

∂xj

fj(x) = 〈∇xh(x),f (x)〉 , (8)

where f (x) , [f1(x), . . . , fn(x)]
T
. The zeroth-order

Lie derivative of any function is the function itself, i.e.
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L
0
fh(x) = h(x). The second-order Lie derivative can be

computed recursively as

L
2
fh(x) = Lf

[

L
1
fh(x)

]

=
〈[

∇xL
1
fh(x)

]

,f(x)
〉

. (9)

Higher-order Lie derivatives can be computed similarly.
Mixed-order Lie derivatives of h(x) with respect to differ-
ent functions f i and f j, given the derivative with respect
to f i, can be defined as

L
2
fifj

h(x) , L
1
f j

[

L
1
f i
h(x)

]

=
〈[

∇xL
1
f i
h(x)

]

,f j(x)
〉

.

The nonlinear observability matrix, denoted ONL, of ΣNL

defined in (7) is a matrix whose rows are the gradients of
Lie derivatives, specifically

ONL ,

{

∇T

x

[

L
p
f i,...,fj

hl(x)
]

∣

∣

∣

∣

∣

i, j = 0, . . . , p; p = 0, . . . ,

n− 1; l = 1, . . . ,m

}

(10)

where h(x) , [h1(x), . . . , hm(x)]
T
.

The significance of ONL is that it can be employed to fur-
nish necessary and sufficient conditions for local weak ob-
servability [22, 24]. In particular, if ONL is full-rank, then
ΣNL is said to satisfy the observability rank condition, in
which case the system is locally weakly observable. More-
over, if a system ΣNL is locally weakly observable, then the
observability rank condition is satisfied generically. The
term “generically” means that the observability matrix is
full-rank everywhere, except possibly within a subset of
the domain of x [25].

B. Observability Analysis of OpNav Environments

B.1 Scenarios Overview

The various scenarios considered in the observability anal-
ysis are outlined Table I, where m ∈ N. The first scenario
corresponds to a single receiver and a single SOP whose ini-
tial states are unknown (no a priori knowledge about any
of the states is available). Subsequent scenarios consider
cases of partial or full knowledge of initial states. In Table
I, fully-known means that all the initial states are known.
Thus, a fully-known receiver is one with known xr(t0),
whereas a fully-known SOP is one with known xs(t0). On
the other hand, partially-known means that only the ini-
tial position states are known. Thus, a partially-known re-
ceiver is one with known rr(t0), whereas a partially-known
SOP is one with known rs(t0). For the cases of multiple
SOPs, it is assumed that the SOPs are not colocated at
the same position. Moreover, it is assumed that the re-
ceiver identifies the SOPs according to their classification:
unknown, partially-known, or fully-known.

TABLE I

OpNav observability analysis scenarios considered

Case Receiver SOP(s)

1 Unknown 1 Unknown
2 Unknown m Partially-known
3 Unknown 1 Fully-known
4 Unknown 1 Fully-known &

1 Partially-known
5 Partially-known 1 Unknown
6 Partially-known m Partially-known
7 Partially-known 1 Fully-known
8 Fully-known 1 Unknown

B.2 Observability Analysis Results

The nonlinear observability test discussed in Subsection
III-A was applied to the scenarios outlined in Table I. Ta-
ble II compares the observable states for the case where
the receiver moves according to the controlled velocity ran-
dom walk dynamics versus the uncontrolled velocity ran-
dom walk dynamics. It is concluded that adding inputs
reduces the a priori knowledge needed for observability of
the OpNav environment. This conclusion is captured in
the following theorem.

Theorem 1. A planar OpNav environment comprising
a receiver moving according to velocity random walk dy-
namics making pseudorange observations on m terrestrial
stationary SOPs is fully-observable if and only if the ini-
tial states of at least: (i) the receiver is fully-known,
(ii) the receiver is partially-known and one SOP is fully-
known, or (iii) one SOP is fully-known and one SOP is
partially-known. If the receiver controls its maneuvers in
the form of acceleration commands, the environment is
fully-observable if and only if the initial states of at least:
(i) the receiver is fully-known or (ii) one SOP is fully-
known.

TABLE II

OpNav observability analysis results: Observable states

Case Without Control With Control

1 none ẋr, ẏr
2 m = 1: none m ≥ 1: xr, yr, ẋr, ẏr

m ≥ 2: xr, yr, ẋr, ẏr

3 δtr, δ̇tr all
4 all all
5 ẋr , ẏr, xs, ys ẋr, ẏr, xs, ys
6 ẋr , ẏr ẋr, ẏr
7 all all
8 all all

5



IV. RECEDING HORIZON RECEIVER TRA-
JECTORY OPTIMIZATION

The proposed receding horizon trajectory optimization
loop is illustrated in Fig. 1. At a particular time-step tk,
the pseudorange observations made by the receiver on the
SOPs in the environment, z(tk) , [z1(tk), . . . , zm(tk)]

T,
are fused through an estimator, an extended Kalman filter
(EKF) in this case, which produces state estimate x̂(tk|tk)
and associated estimation error covariance P(tk|tk). The
estimate and associated covariance are fed into a Re-
ceding Horizon Optimal Control block, which solves for
the optimal admissible N -step look-ahead control actions
(

UN
tk

)⋆

, {u⋆(tk+N−j), j = 1, . . . , N}. In Fig. 1, vr,max

and ar,max represent the maximum speed and acceleration,
respectively, with which the receiver can move.

OpNav Environment: Dynamical System

ΣOpNav :







xr(tk+1) = Fr xr(tk) +Gr ur(tk) +wr(tk)
xsi(tk+1) = Fs xsi(tk) +wsi(tk)
zi(tk) = h [xr(tk), xsi(tk)] + vsi(tk), i = 1, . . . ,m

Estimator: EKF

Receding Horizon Optimal Control

z(tk)

x̂(tk|tk), P(tk|tk)

u
⋆(tk)

(UN
tk
)⋆ =































minimize
U

N

tk

J
[

U
N
tk

]

= − log detP−1(tk+N |tk+N)

subject to ΣOpNav

‖ur(tk+N−j)‖2 ≤ ar,max, j = 1, . . . , N

‖ur(tk+N−j) +
1

T
v
⋆
r(tk+N−j−1)‖2 ≤

1

T
vr,max

Fig. 1. Receding horizon receiver motion planning loop

Note that if N = 1, the receding horizon trajectory op-
timization problem reduces to greedy optimization. The
cost functional J was chosen as the D-optimality crite-
rion, which was demonstrated in [14] to be superior to
the A-optimality and E-optimality criteria. To evaluate
the N -step estimation error covariance, P(tk+N |tk+N ),
the zero future innovations assumption, namely z̃(tj+1) =
z(tj+1)− h [x̂(tj+1|tj)] ≡ 0, for j = k, . . . , k +N − 1, will
be invoked [13, 17]. Once the optimal N -step look-ahead

control actions
(

UN
tk

)⋆

are found, only the first control

action u⋆(tk) is applied, whereas the rest of the control
actions are discarded. At the next time-step, tk+1, a new
measurement becomes available, which contains informa-
tion that will be utilized to refine the optimal trajectory
by repeating the same procedure. A single iteration of the
algorithm for finding the receding horizon optimal receiver
trajectory is outline in Algorithm 1.

The main drawback of receding horizon trajectory opti-
mization methods is increased computational burden. Fig.
2 illustrates the cascade of feasibility regions that should

be considered as the horizon is increased. In particular,
each point in the black shaded region corresponding to the
feasibility region of the first-step look-ahead has an as-
sociated feasibility region of its own signifying the feasible
maneuvers the receiver could take for the second-step. The
number of optimization variables for an N -step look-ahead
problem are 2N . Denoting the number of feasible maneu-
vers in a particular time-step tj by nj , it is easy to see that
an exhaustive search-type algorithm has a computational

burden O
(

∏N
j=1 nj

)

.

Algorithm 1 Receding horizon trajectory optimization

Given: x̂(tk|tk), P(tk|tk), N
for j = k, . . . , k +N − 1 find
x̂(tj+1|tj) = Fx̂(tj |tj) +Gu(tj)

H(tj+1) =
∂h[xr(tj+1),xs(tj+1)]

∂x

∣

∣

∣

x=x̂(tj+1|tj)

P(tj+1|tj) = FP(tj |tj)FT +Q
S(tj+1) = H(tj+1)P(tj+1|tj)HT(tj+1) +R
W(tj+1) = P(tj+1|tj)HT(tj+1)S

−1(tj+1)
P(tj+1|tj+1)=P(tj+1|tj)−W(tj+1)S(tj+1)W

T(tj+1)
x̂(tj+1|tj+1) ≡ x̂(tj+1|tj)

end for
Solve:

minimize
UN

tk

J
[

UN
tk

]

= − log detP−1(tk+N |tk+N )

subject to ΣOpNav

‖ur(tk+N−j)‖2≤ar,max, j = 1, . . . , N
∥

∥

∥

∥

ur(tk+N−j) +
v⋆
r(tk+N−j−1)

T

∥

∥

∥

∥

2

≤
vr,max

T
Apply: u⋆(tk)
Discard: {u⋆(tk+1), . . . ,u

⋆(tk+N−1)}

ux

uy

ar,max

1

T
vr,max

u(tk)

1

T
v(tk−1)

ux

uy

ar,max

1

T
vr,max

u(tk+1)

1

T
v(tk)

Fig. 2. Feasibility regions for two-step look-ahead horizon

V. SIMULATION RESULTS

This section presents simulation results to demonstrate
the limitations and effectiveness of the receding horizon
trajectory optimization method versus the greedy ap-
proach. An OpNav environment comprising a receiver,
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one known “anchor” SOP, and three unknown SOPs was
simulated according to the settings presented in Table
III. The receiver’s and SOPs’ clocks were assumed to be
temperature-compensated and oven-controlled crystal os-
cillators (TCXOs and OCXOs), respectively. For purposes
of numerical stability, the clock error states were defined
to be cδt and cδ̇t. Four receiver trajectories were gener-
ated: a random trajectory, a greedy trajectory, and two
receding horizon trajectories with N = 2 and N = 3.

TABLE III

Simulation Settings

Parameter Value

xr(t0) [0, 0, 10, 0, 100, 10]
T

xs1(t0) [0, 150, 10, 0.1]
T

xs2(t0) [100, −150, 20, 0.2]
T

xs3(t0) [200, 200, 30, 0.3]T

xs4(t0) [−150, 50, 40, 0.4]T

x̂r(t0|t0) ∼ N [xr(t0),Pr(t0|t0)]
x̂si(t0|t0) ∼ N [xsi(t0),Psi(t0|t0)] , i = 2, 3, 4
Pr(t0|t0) (104) · diag

[

1, 1, 1, 1, 1, 10−2
]

Psi(t0|t0) (104) · diag
[

1, 1, 1, 10−2
]

, i = 2, 3, 4
{h0,r, h−2,r}

{

2× 10−19, 2× 10−20
}

{

h0,sj , h−2,sj

} {

8× 10−20, 4× 10−23
}

, j = 1, . . . , 4

q̃x, q̃y 0.1 (m/s
3
)2

r {250, 300, 350} m2

{vmax, amax} {10m/s, 3m/s
2}

T 0.2 s

To assess the localization accuracy and signal landscape
map quality, the natural logarithm of the posterior estima-
tion error covariance, namely log det [P(tk+1|tk+1)], was
adopted. Such metric is proportional to the volume of the
estimation error uncertainty ellipsoid [14]. Three sets of
simulations were performed for three different observation
noise intensities, specifically r ∈ {250, 300, 350} m2.

The resulting receiver trajectories for r = 250m2 are il-
lustrated in Fig. 3. The resulting localization and signal
landscape map uncertainties for r ∈ {250, 300, 350} m2

are plotted in Fig. 4-6. The reduction in receiver local-
ization and signal landscape map estimation uncertainty
for the receding horizon approaches over the greedy ap-
proach at the end of the simulation time is tabulated in
Table IV. The following conclusions can be drawn from
the presented simulations. First, greedy motion planning
and receding horizon trajectory optimization yielded su-
perior results to random trajectories. Second, receding
horizon trajectory optimization outperformed greedy mo-
tion planning. Third, the superiority of receding horizon
over greedy motion planning depends on the observation
noise intensity – the larger the observation noise, the less
effective the receding horizon strategy becomes. In fact,
for large enough observation noise, receding horizon could
yield identical (or worse) performance than greedy.

(a)

SOP1

SOP2

SOP3

SOP4

(b)

(c) (d)

Fig. 3. Receiver trajectories due to (a) random motion, (b) opti-
mal greedy motion, (c) optimal two-step look-ahead motion, and (d)
optimal three-step look ahead motion
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⋆
=
lo
g
d
et
[P

⋆
(t

k
+
1
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N = 2

N = 3

Random

N = 1

Fig. 4. Localization & signal landscape map uncertainty for r = 250
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Fig. 5. Localization & signal landscape map uncertainty for r = 300
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⋆
=
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⋆
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+
1
|t
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+
1
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Random

N = 1

Fig. 6. Localization & signal landscape map uncertainty for r = 350
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TABLE IV

% Reduction in receiver localization and signal landscape

map estimation uncertainty for the receding horizon

approaches over the greedy approach

N r = 250 r = 300 r = 350

2 14.08 3.32 -4.81
3 36.54 28.43 10.75

VI. CONCLUSIONS

This paper studied the problem of multi-step look-ahead
(receding horizon) receiver trajectory optimization for si-
multaneous signal landscape map building and receiver lo-
calization. To this end, it was first shown that the mini-
mal observability conditions for a planar environment com-
prising a receiver moving according to controlled velocity
random walk dynamics making pseudorange observations
on multiple terrestrial SOPs are identical to the minimal
conditions established for a receiver moving according to
controlled position random walk dynamics. In particu-
lar, the environment is fully-observable if and only the ini-
tial state of the receiver is fully-known or the initial state
of at least one anchor SOP is fully-known. Furthermore,
random receiver trajectories, greedy motion planning, and
receding horizon strategies were compared. It was demon-
strated that optimal greedy and receding horizon receiver
motion planning resulted in higher fidelity signal landscape
maps and more accurate receiver localization than ran-
dom receiver trajectories. Moreover, it was demonstrated
that while the receding horizon strategy outperformed the
greedy method, the receding horizon strategy became less
effective as the observation noise intensity was increased.
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