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Abstract—A system developed at The University of Texas for

low-cost precise urban vehicular positioning is demonstrated

to achieve a probability of correct integer fixing greater than

96.5% for a probability of incorrect integer fixing surely less

than 2.3% and likely less than 1%. This is demonstrated using

data captured during 3.4 hours of driving on a repeating

urban test route over three separate days. The results are

achieved without any aiding by inertial or electro-optical sensors.

Development and evaluation of the unaided GNSS-based precise

positioning system is a key milestone toward the overall goal of

combining precise GNSS, vision, radar, and inertial sensing for

all-weather high-integrity precise positioning for automated and

connected vehicles. The system described and evaluated herein

is composed of a densely-spaced reference network, a software-

defined GNSS receiver whose processing can be executed on

general-purpose commodity hardware, and a real-time kinematic

(RTK) positioning engine. All components have been tailored in

their design to yield competent sub-decimeter positioning in the

mobile urban environment. A performance sensitivity analysis

reveals that navigation data bit prediction on the GPS L1 C/A

signals is key to high-performance urban RTK positioning.

Keywords—urban vehicular positioning; CDGNSS; low-cost

RTK positioning.

I. INTRODUCTION

Few of the leading self-driving car projects exploit carrier-

phase differential GNSS (CDGNSS) positioning for vehicle

localization. Waymo’s GNSS needs are reportedly satisfied by

a pair of ublox M8 receivers performing a standard code-

and Doppler-based navigation solution. Likewise, a recent

teardown of Tesla’s Hardware 2.0 Autopilot module revealed

nothing more than a single ublox M8L receiver [1], which

is not capable of precise CDGNSS-type positioning. But as

automated vehicles become increasingly connected, and as

they enter markets beyond the sunny confines of Silicon

Valley and Chandler, Arizona, they will need some way of

determining their globally-referenced position to better than

30 cm in all weather conditions.

Future Vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) connectivity will permit vehicles to

relay their positions and velocities to each other with

millisecond latency, enabling tight coordinated platooning

and efficient intersection management. More ambitiously,

broadband V2V and V2I enabled by 5G wireless networks

will permit vehicles to share unprocessed or lightly-processed

sensor data. Ad hoc networks of vehicles and infrastructure

will then function as a single sensing organism. The risk

of collisions, especially with pedestrians and cyclists—

notoriously unpredictable and much harder to sense reliably

than vehicles—will be significantly reduced as vehicles and

infrastructure contribute sensor data from multiple vantage

points to build a blind-spot-free model of their surroundings.

Such collaborative sensing and traffic coordination requires

vehicles to know and share their own position. How accu-

rately? The proposed DSRC basic safety message, a first

step in V2V coordination, does not yet define a position

accuracy requirement, effectively accepting whatever accu-

racy a standard GNSS receiver provides [2]. But automated

intersection management [3], tight-formation platooning, and

unified processing of sensor data—all involving vehicles of

different makes who may not share a common map—will be

greatly facilitated by globally-referenced positioning with sub-

30-cm accuracy.

Poor weather also motivates high-accuracy absolute po-

sitioning. Every automated vehicle initiative of which the

present authors are aware depends crucially on lidar or cam-

eras for fine-grained positioning within their local environ-

ment. But these sensing modalities perform poorly in low-

visibility conditions such as a snowy whiteout, dense fog,

or heavy rain. Moreover, high-definition 3D maps created

with lidar and camera data, maps that have proven crucial to

recent progress in reliable vehicle automation, can be rendered

dangerously obsolete by a single snowstorm, leaving vehicles

who rely on such maps for positioning no option but to fall

back on GNSS and radar to navigate a snow-covered roadway

in low-visibility conditions. When, as is often the case on rural

roads, such snowy surroundings offer but few radar-reflective

landmarks, radar too becomes useless. GNSS receivers operate

well in all weather conditions, but only a GNSS receiver

whose errors remain under 30 cm 95% of the time could

avoid drifting onto a snow-covered road’s soft shoulder. Code-

and Doppler-based GNSS solutions will find it challenging to

meet this requirement, even with modernized GNSS offering

wideband signals at multiple frequencies.

Carrier-phase-based GNSS positioning can meet the most

demanding accuracy requirements envisioned for automated

and connected vehicles, but has historically been either too

expensive or too fragile, except in open areas with a clear view

of the overhead satellites, for widespread adoption. Coupling
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a CDGNSS receiver with a tactical grade inertial sensor,

as in [4]–[7] enables robust precise positioning even during

the extended signal outages common in dense urban areas.

Apollo 2.0, Baidu’s open self-driving platform, includes such

a coupled positioning system, in particular, the NovAtel SPAN

system, among the core sensors of its reference hardware 1.

But GNSS-inertial systems with tactical-grade inertial mea-

surement units (IMUs) cost tens of thousands of dollars and

have proven stubbornly resistant to commoditization. Cou-

pling a GNSS receiver with automotive- or industrial-grade

IMUs, is much more economical, and significantly improves

performance, as shown in [8]. But such coupling only allows

approximately 5 seconds of complete GNSS signal blockage

before the IMU no longer offers a useful constraint for

so-called integer ambiguity resolution, which underpins the

fastest, most accurate, and most robust CDGNSS techniques,

namely, single-baseline RTK, network RTK, and PPP-RTK

[9]–[11].

University of Texas researchers have recently proposed a

novel and inexpensive technique for robustifying RTK posi-

tioning: tightly coupling carrier-phase-based GNSS position-

ing with inertial sensing and vision [12], [13]. Such coupling

takes advantage of the remarkable progress in high-resolution,

low-cost cameras within the intensely competitive smartphone

markets. The current authors are engaged in developing a high-

integrity RTK-vision system for precise vehicular positioning

in rural and urban environments. Further coupling with radar

will make the system robust to low-visibility conditions.

As a step toward this goal, it is of interest to evaluate the

performance of stand-alone RTK techniques—those unaided

by IMUs or vision—in urban environments. Such a study

will reveal why and when aiding is necessary, and how an

RTK positioning system might behave if aiding were somehow

impaired or unavailable, whether due to sensor faults or, in the

case of exclusive visual aiding, poor visibility conditions.

Little prior work has explored stand-alone RTK performance

in urban environments, likely because the performance results

tend to be somewhat poor. Short-baseline RTK experiments

between two vehicles in [14] revealed that multi-frequency

(L1-L2) GPS and Glonass RTK yielded poor results in residen-

tial and urban environments. Only along a mountain highway

with a relatively clear view of the sky was availability greater

than 90% and accuracy better than 30 centimeters. RTK

positioning in downtown Calgary was disastrous, with less

than 60% solution availability and RMS errors exceeding 9

meters.

More recently, Li et al. [8] show that, with the benefit of

greater signal availability, stand-alone dual-frequency GPS +

BDS + GLONASS RTK can achieve correct integer fixing

rates of 76.7% on a 1-hour drive along an urban route in

Wuhan, China. But Li et al. do not provide data on the

incorrect fixing rate, nor do they assess the accuracy of their

ground truth trajectory, so the significance of their correct

fixing rate is difficult to assess.

1http://apollo.auto/platform/hardware.html

Recent urban RTK testing by Jackson et al. [15] indi-

cates that no low-to-mid-range consumer RTK solution offers

greater than 35% fixed solution availability in urban areas, de-

spite a dense reference network and dual-frequency capability.

A key failing of existing receivers is their slow recovery after

passing under bridges or overpasses. Jackson et al. show that

the Piksi Multi and the Eclipse P307 dual-frequency receivers

require from 25 (Eclipse) to 40 (Piksi) seconds to recover a

fixed position after passing under an overpass.

Professional-grade receivers appear to handle momentary

obstructions better, but the primary markets of professional-

grade receivers have traditionally been surveying, machine

control, and precision agriculture—applications that typically

enjoy a relatively unobstructed view of overhead satellites

compared to urban vehicular positioning. Consider that in

2018 a professional-grade multi-constellation multi-frequency

Trimble receiver requires 4 seconds to produce an RTK fix on

a short baseline with a clear sky view (see Fig. 15 in [16]).

This may be an acceptably short time-to-fix for traditional

RTK applications, but not for urban vehicular positioning.

This paper describes and evaluates an unaided RTK po-

sitioning system developed at The University of Texas that

has been designed for vehicular operation in both rural and

urban environments. Solution availability and accuracy have

been markedly improved since publication of preliminary

results in [17]. This paper’s primary contributions are (1) a

demonstration of the remarkably good performance that can

be achieved with a low-cost software-defined stand-alone RTK

GNSS platform in an urban environment, and (2) a thorough

evaluation of the system’s sensitivity to various impairments.

II. CHALLENGES OF MOBILE PRECISE POSITIONING IN

URBAN ENVIRONMENTS

The mobile urban satellite-to-user channel is distinguished

by rapid channel evolution. As the vehicle travels along streets

closely lined with tall buildings, only glimpses of power

are available from signals arriving from directions roughly

perpendicular to the roadway. A GNSS receiver designed to

provide phase-locked carrier measurements for RTK position-

ing in such environments must simultaneously (1) prevent

frequency unlock during the deep fades caused by building

occlusions, and (2) exploit momentary signal availability by

immediately acquiring full-cycle phase lock and indicating this

to downstream processing.

Tracking in the mobile urban channel is unlike indoor

or weak-signal tracking, such as explored in [18], [19], in

that the urban fading environment is substantially binary:

either the line-of-sight signal is present at a fairly healthy

carrier-to-noise ratio C/N0, or it is hopelessly attenuated after

passing through entire buildings constructed of concrete, steel,

and glass. The traditional weak-signal-tracking technique of

extending the signal integration time and lowering the tracking

loop bandwidths can be useful to slow the rate of frequency

unlock during such fading, but not for actually recovering

a weak signal from the noise. There is simply no signal to

recover.
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Fig. 1 illustrates this fact. The initial disturbance at 950

seconds is due to an overhead traffic light. This is followed in

rapid succession by a complete signal blockage due to a tall

building on the south side of the east-west street, a brief (four-

second) interval of clear satellite availability as the receiver

catches a glimpse of the signal between two buildings, and

another signal eclipse by a second building.

A GNSS receiver designed for urban tracking will make full

use of such between-building glimpses. This requires immedi-

ate (within approximately 100 ms) recovery of full-cycle phase

lock, which is only possible on suppressed-carrier signals

like GPS L1 C/A if the receiver can accurately predict the

modulating data symbols. Downstream RTK processing must

also be poised to exploit signal glimpses by (1) identifying and

rejecting observables from blocked or otherwise compromised

signals, and (2) immediately re-evaluating the corresponding

integer ambiguities when signals reappear. A multi-stage cycle

slip detection and recovery technique, such as proposed in

[20], is too slow for urban positioning.
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Fig. 1. In-phase (green, top) and quadrature (blue, bottom) 10-ms complex
correlation products for a GPS L1 C/A signal at 35 degrees elevation arriving
from the south to a vehicle traveling west on an urban roadway. The 20-
ms LNAV navigation data bits have been wiped off to allow full carrier cycle
recovery. Rapid fading—and rapid recovery—occur as buildings intermittently
block the signal.

A related hallmark of the urban mobile channel is the wide

and rapid variation of the number of signals available for

RTK positioning. Fig. 2 shows the number NDD of double-

difference (DD) signals (each one providing a DD pseudorange

and a DD carrier phase observable) over a 600-second segment

of urban driving. NDD remains constant only when the vehicle

is stopped. The implication for RTK processing is that integer

ambiguity continuity will often be lost, requiring rapid and

continuous re-estimation of ambiguities.

The histogram shown in 3 indicates that, although volatile,

NDD remains above 16 for more than half the measurement

epochs, which implies that this particular urban environment

is not an especially challenging one. Even still, because
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Fig. 2. The number of double difference signals, NDD, available for RTK
positioning over a 600-second interval of urban driving.

single-epoch integer ambiguity resolution becomes unlikely

for NDD < 14 [21], one should expect unaided RTK to

struggle.

0 5 10 15 20 25
0

1000

2000

3000

4000

Number of double−differenced signals

Fig. 3. Histogram of NDD over a 1-hour interval of urban driving.

III. SYSTEM DESCRIPTION

A. Overview

GNSS components of the University of Texas precise po-

sitioning system are shown in Fig. 4. The sub-components

enclosed in the gray box are the target of the present work’s

optimization efforts for good performance in urban environ-

ments.

Two rover antennas feed analog signals to a radio frequency

(RF) front end, which down-mixes and digitizes the signals,

producing a stream of intermediate frequency (IF) samples.

The RF front end used in the present work produces samples

at 9.8 Msps for two antennas and two frequencies: a band

centered at GPS L1 and one centered at GPS L2. The (single-

sided) analog bandwidth of each band is 4 MHz—wide enough

to capture over 90% of the power in the GPS L1 C/A, Galileo

E1 BOC(1,1), and GPS L2C signals.

Four IF sample streams, one for each antenna and band,

are fed to PpRx, an embeddable multi-frequency software-

defined GNSS receiver developed primarily at the University

of Texas [22]–[24]. PpRx draws ephemeris data and GPS

LNAV data bit estimates from the Longhorn Dense Reference

Network (LDRN), a set of 8 GNSS reference stations deployed

in Austin, TX. Each reference station in the LDRN runs a

strict-real-time variant of PpRx and sends its data to a central

network server from which any compatible receiver in Austin

can draw assistance data and network observables. The master

and alternate master reference stations produce observables at

5 Hz. The other stations, which produce data at a slower rate,
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are used primarily to estimate ionospheric and tropospheric

corrections according to simple linear model, as described in

[17], [25].

PpRx feeds code and carrier observables, and other useful

signal information, to PpEngine, an RTK engine developed

by members of the UT Radionavigation Laboratory. For the

results presented in this paper, PpEngine draws observables

and ephemeris data from a single LDRN reference station at

a time—the traditional RTK topology. The precise solution

produced by PpEngine is a fixed (integer-resolved) or float

solution depending on the results of an integer aperture test

[26].

end

RF

LDRN

front

Components subject to optimization

Precise 
solutionIF samples

Rover
antennas

PpRx PpEngine

Fig. 4. The University of Texas precise positioning system.

B. Performance Metrics

The performance of precise positioning systems in safety-

of-life applications is assessed in terms of integrity, accuracy,

and availability [27], [28]. For several emerging applications

of practical interest, such as automated and connected vehicles,

no regulatory body has set clear positioning performance

requirements. An industry consensus appears to be emerging

which calls for a 95% accuracy requirement of 30 cm, but it

is not clear what the associated integrity risk or continuity

requirements should be. It is likely that the U.S. National

Highway Traffic Safety Administration, and other regulatory

bodies worldwide, will eventually issue positioning perfor-

mance requirements for connected and automated vehicles.

Assuming that a CDGNSS solution whose integer ambigui-

ties are correctly fixed will be more than sufficiently accurate

for all urban RTK applications of practical interest, this paper

focuses on two performance metrics: PS , the probability (or

rate in repeated trials) of correctly (successfully) resolving

the full integer set, and PF , the probability that one or more

integer ambiguities failed to resolve correctly [27]. A third

probability, PU = 1 − PF − PS , that of the undecided event,

is the probability that a float solution, or no solution at all,

is produced, due to an aperture test failure or failure of some

other validation test.

An unavoidable tradeoff between PS and PF exists such

that any increase in PS comes at the expense of an increase

in PF (not necessarily of the same amount) [29]. Therefore,

an optimization problem can be stated in terms of PS and

PF as follows: maximize PS for PF ≤ P̄F , where P̄F is

a fixed tolerable probability of failed fixing. Integer aperture

bootstrapping techniques such as [29] and its generalization

to partial ambiguity resolution in [27] analytically determine

thresholds for the integer aperture test to ensure PF ≤ P̄F .

For the optimal integer least squares (ILS) approach adopted

in this paper, it is not possible to calculate an analytical

aperture threshold, but an approximate one can be obtained

via simulation such that PF ≤ P̄F is satisfied almost surely

[30]. A value of P̄F = 0.001 was adopted for the present

paper, meaning that a fixing failure rate less than 1 in

1000 epochs was deemed acceptable. However, as will be

illustrated later on, multipath, GNSS signal passage through

foliage, and other signals impairments common in urban areas

cause the empirical PF to significantly exceed P̄F when the

aperture threshold is chosen according to the Gaussian error

assumptions ubiquitous in the integer aperture literature. Thus,

a looser empirical upper bound ¯̄PF must be chosen. The

optimization problem is then to maximize PS subject to the

empirical PF respecting the bound PF ≤ ¯̄PF .

C. Design Philosophy

With origins in scintillation-resistant carrier tracking [31],

[32], PpRx was designed from the beginning for robust carrier

recovery. Likewise, from its inception PpEngine was targeted

for the harsh urban environment. Over the past few years, de-

velopment of PpRx, PpEngine, and the LDRN has proceeded

as a parallel evolution, with each subsystem benefiting from

improvements in the others.

The overriding design philosophy of this development has

been to adapt, rebuild, and reconfigure all three subsystems,

separately and in parallel, with a singular goal, namely, to

maximize PS subject to PF ≤ ¯̄PF . This approach benefits

greatly from a purely software-based approach to GNSS signal

processing (as opposed to processing that exploits dedicated

silicon or FPGAs), for two reasons. First, a software-defined

approach is almost infinitely flexible: all processing down-

stream from the RF front end can be reconsidered, rebuilt, and

re-evaluated in a rapid iterative process using an efficient and

common high-level programming language. Second, software-

defined receivers can exploit multiple cores to run faster than

real time on recorded IF samples [23]. The PpRx-PpEngine

pipeline runs at 10x real time on a 6-core Intel Xeon 2.27 GHz

processor, enabling rapid iteration cycles for quickly probing

the optimization landscape.

Rapid iteration is especially important when the GNSS

signal environment is difficult to characterize and highly

variable, as is the case for urban GNSS. Signal tracking

and integer fixing strategies optimized for traditional RTK

applications such as surveying and precision agriculture tend

to perform poorly when confronted with bridges, tall reflective

buildings, and overhead foliage in an urban environment

[15]. In fact, it is doubtful whether robust urban RTK can

be grounded so strongly on fundamental signal processing
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theory as weak signal GNSS tracking [18], [19] and benign-

environment mixed real/integer filtering [33]. To be sure,

optimal approaches such as those in [33] offer an excellent

starting point. But the current authors have been surprised to

see some reasonable adaptations of these strategies fail, and

counterintuitive strategies succeed, in urban RTK (examples

will be offered in subsequent sections). This has engendered

a certain epistemological humility and renewed respect for

rapid-cycle experimentation.

D. Carrier and code tracking

GNSS carrier and code tracking in an urban environment

must be opportunistic, taking advantage of short clear glimpses

to overhead satellites as they present themselves. PpRx’s code

and carrier tracking architecture, illustrated in Fig. 5 has been

designed for immediate (within approximately 100 ms) recov-

ery of full-cycle phase lock after a blockage, and, importantly,

for prompt lock indication. The following subsections describe

the essential elements of PpRx’s tracking strategy, calling

out parameters whose values significantly affect urban RTK

performance.

| · |2

1
s
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Filter
Loop

∑NL

k=1
(·) I2−Q2

I2+Q2

sθ

Sk = Ik + jQk

sθt̂s(τj)

Tracking
Loop

Estimator
Central

f̂D

x(τj)

sθ

and

f̄D

∆f̂D

d̂k

atan2(·)

t̂s(τj){Sk, Se,k, Sl,k}
θ̂(τj)

Accumulation

Correlation

Code

Lock Statistic Calculation

Fig. 5. PpRx’s carrier and code tracking architecture.

1) Correlation and accumulation: Correlation and accu-

mulation is performed on a sequence of noisy IF samples

x(τj), j = 0, 1, ..., where τj denotes the time of the jth

sample according to the receiver’s clock. Within the correlation

and accumulation block, a complex local replica signal is

formed with code and carrier phase estimates, t̂s(τj) and θ̂(τj),
provided by the code and carrier tracking loops. The outputs

of the correlation and accumulation block are prompt, early,

and late complex correlation products Sk, Se,k, and Sl,k of the

form Sk = Ik + jQk, where Ik and Qk are the in-phase and

quadrature accumulations. (The green and blue traces in Fig.

1 correspond to Ik and Qk, respectively.) The accumulation

interval, Ta, is an important configuration parameter for urban

RTK.

2) LNAV data bit prediction: For the GPS L1 C/A signal,

which has no dedicated pilot component, estimates d̂k of

the LNAV data bits, whose structure is detailed in [34], are

provided to the local signal replica generator by a predic-

tion engine within PpRx. Extensive testing has shown that

subframes 1-3, which contain ephemeris data, can be nearly-

perfectly predicted after the first 18 seconds following a 2-

hour GPS time boundary. Almanac data in subframes 4 and 5

are also highly predictable, as they remain constant between

approximately daily update events. However, it is worth noting

that almanac data can be updated asynchronously—at times

not aligned with a 2-hour boundary. For all subframes, re-

served bits of the TLM word, and the TLM word’s parity

bits, must be treated with caution as they can be updated

asynchronously with unpredictable content.

The PpRx LNAV prediction engine labels each data bit

with one of three certainty levels. The 30-bit HOW word,

non-reserved and non-parity bits of the TLM word, and all

ephemeris words that have passed parity are marked certain.

Parity-checked almanac data and reserved and parity bits of

the TLM word are marked almost certain. Incomplete words,

or those that fail parity checking, are marked uncertain. The

source of each data bit in the local signal replica depends

on the prediction engine’s corresponding certainty. Prediction

engine bits marked uncertain are never applied; instead, the

observed bit from the received signal is used in the signal

replica. This amounts to decision-directed suppressed carrier

recovery [35]. Predicted bits marked almost certain are used

if the signal to noise ratio (SNR) of the prompt complex

correlation product Sk falls below a threshold SNRpull; oth-

erwise the observed bit is used. Bits marked certain are used

unconditionally in the local replica.

It will be shown in a later section that LNAV data bit

prediction is critically important for robust urban RTK.

3) Lock statistic calculation: Also key to robust urban RTK

is the ability to exclude corrupt or otherwise inaccurate carrier

phase measurements. But, due to poor signal availability, an

urban RTK engine cannot afford to be overly conservative: it

must minimize the number of adequate-quality measurements

that get falsely labeled as corrupt. An important indicator for

this wheat-from-tares separation process is the lock statistic

sθ. Let I and Q be coherent sums of Ik and Qk over NL

accumulation intervals. Then sθ is calculated as [36]

sθ =
I2 −Q2

I2 +Q2

The goal of the carrier tracking loop is to adjust its phase

estimate θ̂k to shift signal power from Qk to Ik . Thus, for a

loop in lock, I2/ggQ2 and sθ is near unity.

A new lock statistic is produced every NL accumulations.

NL must be chosen large enough to suppress thermal noise in

Ik and Qk, but small enough to provide a prompt indicator

of phase lock to all dependent processing. PpEngine relies

crucially on sθ to screen out bad measurements. Note from

Fig. 5 that sθ is also fed to the code tracking loop and to

PpRx’s central state estimator; each one adapts its behavior to

rely less on Doppler measurements when sθ is low.

4) Carrier tracking: As illustrated in Fig. 5, PpRx em-

ploys a vector signal tracking architecture wherein a central

estimator, implemented as a Kalman filter with a nearly-

constant-velocity polynomial-type dynamics model, receives
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observables from all tracking channels and drives local replica

generation for each channel [37]. More particularly, PpRx

employs a hybrid strategy in which, for each channel, a local

phase tracking loop is closed around a modeled Doppler value

f̄D provided by the central estimator. The local loop’s residual

Doppler frequency estimate ∆f̂D is added to f̄D to produce

the full estimate f̂D used in replica generation.

A four-quadrant arctangent phase discriminator,

atan2(Qk, Ik), which is nearly optimal for decision-

directed carrier recovery, and optimal for data-free signals,

or when data bit wipeoff is error-free, feeds a phase error

measurement at every accumulation interval to the carrier

tracking loop filter. PpRx’s carrier loop filter is designed

according to the controlled-root formulation of [38]. The

filter adapts its bandwidth Bθ at every accumulation interval

according to the value of |Sk|. The adaptation schedule has a

significant effect on RTK performance.

One might expect that adapting Bθ so to maintain a constant

loop SNR as |Sk| varies would yield the best results. This

is effectively the adaptation schedule that gets applied in

Kalman-filter-based weak signal tracking [18]. However, this

reasonable approach was found to yield reduced urban RTK

performance. More effective is a three-tiered schedule that

reduces Bθ when |Sk| falls below a fairly low threshold γ1,

and sets Bθ to zero if |Sk| falls below another threshold

γ0 < γ1. Within this lowest tier, ∆f̂D is also driven to zero

over a few accumulation intervals, thereby breaking the local

feedback loop. In this open-loop mode, the local replica’s

phase estimate is driven entirely by the model Doppler f̄D. The

lock statistic sθ continues to be calculated. If sθ is sufficiently

close to unity, the central estimator, the code tracking loop, and

the RTK engine continue to treat θ̂(τj) as a valid measurement.

But this is a rare occurrence; sθ is typically far from unity in

open-loop mode.

Open loop tracking has been found to be useful for prevent-

ing frequency unlock during intervals when signals are entirely

blocked, e.g., by buildings or bridges, and for enabling fast re-

acquisition of carrier lock immediately following the blockage.

5) Code tracking: PpRx’s code tracking loop, which is

aided by the Doppler estimate f̂D, is implemented as a 1st-

order loop that toggles between a non-coherent (dot product)

discriminator and a coherent discriminator. The coherent dis-

criminator is applied when the channel is phase locked and

no recent phase trauma (indicated by sθ) has been detected;

otherwise, the non-coherent discriminator is applied. A flag

attached to each code phase measurement t̂s(τj) indicates

whether it was produced under coherent or non-coherent

tracking.

As with carrier tracking, the code tracking loop filter’s

bandwidth, Bts , is adaptive. But rather than responding to

|Sk| as the carrier loop’s bandwidth does, Bts takes on a

different value for each of four code tracking modes: (1) pre-

phase lock, (2) first post-lock transient, (3) second post-lock

transient, and (4) steady-state. These modes are designed to

ensure rapid convergence of the code phase estimate t̂s(τj)
after initial signal acquisition, or in the aftermath of phase

unlock.
6) Discussion on Optimization: The tracking architecture

diagrammed in Fig. 5 and described in the foregoing subsec-

tions yields remarkably good urban RTK performance, but it

is not claimed to be optimal for this application. It is likely

that further vectorization, in which the code tracking loop’s

code phase estimate is also driven by a central-estimator-

provided model value t̄s(τj), would yield better performance.

Or perhaps entirely replacing the local code and carrier

loops with a local batch estimator that takes in an interval

of {Sk, Se,k, Sl,k} values generated using central-estimator-

provided t̄s(τj) and f̄D(τj) time histories over the interval, and

computes from this batch of correlation products residual code

phase, carrier phase, and Doppler estimates, would prove to

be even more robust to the frequent signal outages and severe

multipath in urban tracking.

The larger point is that the usefulness of reasoning a

priori about optimal architectures for urban RTK is somewhat

limited. Likewise, it is hard to say a priori what values of

the various parameters in the current tracking architecture are

optimal in the sense of maximizing PS for PF ≤ ¯̄PF . Consider

the parameters, listed below with default values for the GPS

L1 C/A channels, that have been shown to yield good urban

RTK tracking for a land vehicle. Default parameter values

for the other PpRx channel types are similar. Note too that

different parameter values are adopted for the PpRx instances

embedded in the LDRN network, as the LDRN stations are

static and positioned with a clear view of the sky.

Ta accumulation interval, 10 ms

NL phase lock calculation averaging interval, 2

s̄θ phase lock statistic threshold for the code tracking loop

and for the central estimator, 0.4

Bθ default carrier tracking loop bandwidth, 25 Hz

γ0 SNR of Sk below which carrier tracking operates in open-

loop mode, 14.8 dB

γ1 SNR of Sk above which carrier tracking operates closed-

loop mode with bandwidth Bθ , 20 dB

B1
θ carrier tracking loop bandwidth that applies when Sk’s

SNR lies between γ0 and γ1, 5 Hz

B0
ts

pre-phase-lock code tracking bandwidth, 3 Hz

B1
ts

first transient code tracking bandwidth, 3 Hz

B2
ts

second transient code tracking bandwidth, 0.5 Hz

Bts steady-state code tracking bandwidth, 0.5 Hz

Several other tracking parameters, such as the timing for the

staged code phase tracking modes and the interval over which

sθ ≥ s̄θ must hold before a transition to coherent code phase

tracking, have been omitted for brevity. Moreover, the many

parameters that govern the behavior of the central estimator,

which, due to the vector tracking architecture shown in Fig.

6, influences signal tracking, have not been mentioned at all.

Clearly, there are many degrees of freedom over which signal

tracking may be optimized for urban RTK.

Are the values listed above optimal for urban RTK? Surely

not. Could better values be selected a priori based on signal

processing theory? Not likely. Is it reasonable to adjust param-

eter values one at a time to maximize PS for PF ≤ ¯̄PF ? Yes;
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such was the approach taken for the current paper. But it is

quite possible that a combinatorial approach such as a genetic

algorithm would yield better results.

E. Precise positioning

PpRx and the LDRN send carrier and code phase observ-

ables, together with signal quality indicators sθ and C/N0, and

various other meta-data, to PpEngine for processing. PpEngine

is capable of processing observables from both rover antennas

simultaneously, exploiting the known distance between these.

But for the results presented in this paper, PpEngine was

invoked only in its simplest single-antenna mode, producing

a precise 3-dimensional baseline between the primary rover

antenna and a selected reference station antenna in the LDRN.

This simple single-baseline RTK mode was chosen so that the

precise positioning system’s performance could be evaluated

in a familiar configuration and easily compared with other

single-baseline RTK evaluations such as [8].

1) Treatment of real- and integer-valued states: The current

embodiment of PpEngine adopts a straightforward approach

to RTK. It first forms code and carrier measurement double

differences (DDs) from the rover and reference data, then

sends these to a mixed real/integer extended Kalman filter

for processing. The filter is implemented as a square-root

information filter, as in [33], but limits growth of the number

of integer states by either (1) marginalizing at each epoch over

float-valued integer ambiguity states modeled as Gaussian-

distributed, or (2) conditioning on the estimated integer values.

Thus, PpEngine’s current approach is to discard all integer

states, by marginalization or by conditioning, after each mea-

surement epoch. The marginalization option, which yields the

so-called float solution, can be thought of as a special case of

the sub-optimal filter in [33] with a window length i = 1. The

conditioning option, which yields the so-called fixed solution,

is invoked only if the integer estimates, found by integer least

squares (ILS) [39], are validated by an aperture test.

Conditioning the real-valued states on the lowest-cost inte-

ger estimates yields a maximum a posteriori 3D baseline es-

timate. After each measurement update, the real-valued states

are propagated to the next measurement epoch, whereupon a

new set of integer estimates are formed and conditioning or

marginalization occurs yet again. Importantly, if the integer

states are validated at the lth measurement epoch, it is the

integer-conditioned real-valued states that are propagated to

the (l + 1)th measurement epoch. Thus, although all integer

states are discarded between measurement updates, correct

integer resolution is highly likely at the (l + 1)th epoch if

integer ambiguities were correctly resolved at the lth epoch

because the real-valued states carry forward a decimeter-

accurate position estimate.

Carrying forward integer-conditioned real-valued states is

perilous because eventually an erroneous integer estimate

passes the aperture test, whereupon the integer-conditioned

real-valued states are corrupted by conditioning on the incor-

rect fix. What is more, the associated square-root information

matrices indicate high confidence in the erroneous real-valued

state, raising the chances that the next integer estimates, which

are constrained by the prior real-valued states, will also be

incorrectly fixed. This vicious cycle, which can persist for

several seconds, is eventually broken by an aperture test

failure prompted by signal loss, large measurement errors,

or the persistent lack of consistency between the incoming

observables and the current state.

How often is this cycle entered? For an aperture test config-

ured for a fixed failure rate of P̄F , it occurs with probability

as high as P̄F even in the ideal case where code and carrier

measurement errors are mutually independent, independent

in time, and Gaussian-distributed. In fact, all three of these

conditions are violated in significant measure for urban RTK,

leading to false fixing rates several times larger than P̄F .

Of course, if the PF experienced in practice could somehow

be bounded below an extremely small value, the risk associated

with carrying forward integer-conditioned real-valued states

could be made tolerably low. To this end, one might expect

that, for good geometry and an adequate number of signals

(a strong a priori model in the language of [28]), and for

some arbitrarily small bound ¯̄PF , there ought to exist an

aperture test that, when configured to respect a sufficiently

small P̄F , would yield an empirical PF ≤ ¯̄PF while still

maintaining a reasonably high PS . But this does not appear

to be the case. Urban multipath and blockage can at times

conspire to generate an extremely self-consistent yet erroneous

measurement set whose associated integer solution can pass all

but the strictest of aperture tests. To prevent such erroneous

integer estimates from slipping through and corrupting the

real-valued states requires an aperture test so strict that it also

excludes almost all correctly-fixed integer estimates, despite a

strong underlying model.

Given the above considerations, it would seem folly to

pursue a strategy of carrying forward integer-conditioned real-

valued states. Recognizing this, the authors are developing

a generalization of PpEngine that can manage growth in

the number of integer state elements using a variant of the

suboptimal approach of [33]. Nonetheless, as will be shown,

the current approach is remarkably effective in a moderate

urban environment. It also has the virtue of simplicity, making

it a good choice for initial development, and of computational

efficiency, permitting rapid experimental iteration.

2) Dynamics Model: Because this paper’s focus is on

RTK unaided by any non-GNSS sensors, the mixed real- and

integer-valued state estimator within PpEngine was configured

to ignore all available inertial measurements and instead rely

on a simple nearly-constant-velocity dynamics model for state

propagation between measurements [40]. The dynamics model

assumes roughly equivalent process noise in the along-track

and cross-track directions, but much smaller process noise (by

a factor of 10) in the vertical direction, in keeping with a land

vehicle operating in a relatively flat urban environment.

3) Robust measurement update: Urban multipath and

diffraction cause code and carrier observables to exhibit large

errors with a much higher probability than even a conservative

Gaussian model would predict. Dealing with measurement
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error processes such as these, which have thick-tailed distribu-

tions, requires robust estimation techniques; that is, techniques

with reduced sensitivity to measurement outliers [41].

Outliers are especially problematic for integer fixing in

RTK positioning. By action of the decorrelation adjustment

preceding ILS, a single bad measurement can contaminate

multiple measurements in the decorrelated domain, render-

ing resolution of the associated integers impossible. Partial

ambiguity resolution, as in [42], [43], offers little relief in

such cases because contamination caused by outliers is not

necessarily limited to an identifiable subset of integers. It is

more effective to exclude questionable measurements before

the decorrelation adjustment.

PpEngine implements a multi-level exclusion process, de-

picted in Fig. 6, to mitigate the effects of measurement outliers.

At each measurement epoch, measurements are first screened

on the basis of three quality indicators: carrier-to-noise ratio

C/N0, phase lock statistic sθ, and elevation angle θel. Signals

whose values fall below user-selected thresholds for these

quantities are excluded from all DD combinations.

No

by C/N0, sθ, and θel
Screen observables

Perform float solution

Pass

test?
innovations

Reset

Begin lth iteration

Exceed

depth?
exclusion

Exceed

depth?
exclusion

Pass

test?

Perform ILS

Perform IA test

integer aperture

Yes

No

Yes

Condition on integers Marginalize over float amb.

YesYes

End lth iteration

Perform scored exclusion

No

No

Fig. 6. Flow diagram for the PpEngine exclusion and fixing logic.

A second level of exclusion occurs as part of the float

solution. A χ2-type test is applied to all DD measurement

innovations [40], with exclusion triggered if the normalized

innovations squared statistic exceeds a chosen threshold. For

the current implementation of PpEngine, this test is only ef-

fective at excluding anomalous DD code phase (pseudorange)

measurements, since the float states are discarded, and thus

unconstrained, from epoch to epoch. Note that innovations

testing benefits strongly from a correctly integer-constrained

state because the exclusion threshold can be made tighter.

However, with an incorrectly-integer-constrained state, inno-

vations testing may end up excluding the very measurements

necessary to correct the state.

If a set of innovations fails the innovations test, DD mea-

surements (both code and carrier for a particular DD combina-

tion) are excluded one at a time (with replacement). Exclusion

is ordered such that the next DD combination removed is the

one with the next-lowest quality score that has not yet been

removed. A quality score is formed for each DD combination

via a linear combination of scores based on C/N0, sθ, and

θel. If such N -choose-1 elimination fails to create a subset of

DD measurements that passes the innovations test, exclusion

can proceed to N -choose-m elimination, with m > 1. If a

user-configurable exclusion depth is exceeded, the estimator

state is reset.

The third level of exclusion is based on the integer aperture

test following integer estimation via ILS. This is the standard

data-driven integer fixing process whereby the integer-fixed

solution is selected only on successful validation by some

type of aperture test; otherwise, the float solution is accepted

[27]. The aperture test is configured for a fixed failure rate

(under independent Gaussian errors) of P̄F . If the integer

aperture test fails, N -choose-1 exclusion (with replacement) is

attempted, starting with the lowest-scoring DD combinations

and working up through higher-scoring combinations. N -

choose-m exclusion, with m > 1, is currently not attempted

at this layer of exclusion because testing a large number of

subsets is eventually “doomed to succeed” at passing the

aperture test, causing PF to significantly exceed P̄F even

under benign conditions [43].

If the aperture test is passed before the permissible exclusion

depth is exceeded, the solution is conditioned on the integers

and the integer states are dropped. Otherwise, the integer state

elements are marginalized out as float values. In either case,

the state is propagated to the next measurement epoch via the

dynamics model and the process repeats.

IV. EXPERIMENTAL SETUP

The precise positioning system was evaluated experimen-

tally using data collected on December 18 and 21, 2017, and

January 15, 2018 in a moderate urban environment north of

the University of Texas campus in Austin, TX. A total of 3.4

hours of data were collected in 4 sessions over the three days.

A. Rover platform

The rover GNSS receiver is one among several sensors

housed in an integrated perception platform called the Sen-

sorium, pictured in Fig. 7. Designed for connected and au-

tomated vehicle research, the Sensorium is a self-contained

sensor housing that can be mounted atop any standard

passenger vehicle. Although hardly visible in Fig. 7, two

Antcom 53G1215A-XT dual-frequency patch antennas are

flush-mounted in the cross-track direction on the Sensorium’s
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upper plate, separated by just over 1 meter. The antennas’

signals are routed to a unified RF front end whose output IF

samples are processed in real time (to within less than 10 ms

latency) by the Sensorium’s onboard computer. The samples

are also stored to disk for post-processing.

Data from both the primary (driver’s side) and secondary

(passenger’s side) antennas were used to reconstruct the

ground truth trajectory, as described below. But only data from

the primary antenna were used in the urban RTK performance

evaluation. No other Sensorium sensors were involved in the

current paper’s results.

Fig. 7. The University of Texas Sensorium is a platform for automated
and connected vehicle perception research. It includes stereo visible light
cameras, an industrial-grade IMU, an automotive radar unit, a dual-antenna,
dual-frequency software-defined GNSS receiver, 4G cellular connectivity, and
a powerful internal computer.

B. Test route

The test route was primarily composed of two nested loops,

as shown in Fig. 8, although other roadways near this area

were also explored. The route includes a variety of light-

to-moderate urban conditions, from open-sky to overhanging

trees to built-up areas. The Dean Keeton corridor, pictured in

Figs. 9 and 10, is the most challenging stretch along the test

route. It passes below two pedestrian bridges and is flanked

on both sides by buildings ranging from 30 to 65 meters tall

set back 28 meters from the center of the roadway.

A repeating route is not ideal for evaluating urban RTK

performance; a route with greater variety of urban locations

would be better. The route in Fig. 8 was chosen to support

other research in visual 3D mapping for which repeated

sessions through the same corridors was necessary to explore

the map’s accuracy convergence. Future work in urban RTK

will explore routes with greater variety. Meanwhile, the current

route remains useful for urban RTK performance evaluation

because satellite movement causes multipath and signal block-

age conditions to differ significantly from lap to lap and day

to day.

V. GROUND TRUTH TRAJECTORY

A primary challenge in urban RTK performance evaluation

is obtaining a ground truth trajectory against which to compare

the reported trajectory of the system under test. Ideally, the

ground truth should be complete and provably accurate to bet-

ter than 5 cm. Under such conditions, the incorrect fixing rate

Fig. 8. Overview of the test route. The smaller triangular loop was driven 30
times, the larger loop 19 times, both clockwise. The area shown lies on the
north side of The University of Texas campus in Austin, TX.

Fig. 9. A 3D overview of the Dean Keeton corridor, spanned by two pedestrian
bridges and flanked by buildings on both sides.

PF can be measured by declaring an incorrect fix whenever

the reported trajectory deviates by more than 15 cm from the

ground truth. A more straightforward comparison of resolved

integers between the reference and test systems, as in [4], is

not generally possible in urban areas because the systems may

not track the same set of satellites at each epoch throughout

the test.

But what system is capable of provably determining the

location of a mobile GNSS antenna in an urban area to within

5 cm of its true location? Prior work in urban positioning

has relied on forward-backward smoothed trajectories from

coupled RTK-inertial systems with a tactical-grade IMU [8],

[14]. But the estimated 95% accuracy of the truth trajectory

in [14] was only 55 cm in residential areas, and 59 cm in

urban canyons, which is far too loose to allow confident

measurement of PF . And the authors of [8] make no attempt

to assess the accuracy of their reference system.

A. Examination of DD carrier phase residuals

A defensible claim of better-than-5-cm ground truth accu-

racy is made in [4], where a tactical-grade IMU was tightly

integrated with an RTK system on a short baseline in nearly-

perfect open-sky rural conditions. The reference system did

experience one brief GNSS outage as the vehicle passed under

a roadway sign, but Petovello et al. assert that “an analysis of

the measurement residuals and the static position at the end

9



Fig. 10. A street-level view of the Dean Keeton corridor just before passing
below the east pedestrian bridge.

of the run confirmed that the ambiguities had indeed been

resolved correctly.”

In urban areas, DD code and carrier measurement resid-

uals likewise carry valuable information about whether the

reference system’s integer ambiguities have been correctly

resolved. In particular, the absence of a pronounced secular

trend in the DD carrier residuals over an interval spanning 30

seconds or more during which the integer estimate remains

constant is a strong indicator that the associated ambiguity

has been resolved correctly over that interval. Unfortunately,

these conditions do not always hold in urban testing. The DD

carrier residuals shown in Fig. 11 for a particular GPS signal

are small (all less than 50 mm) and appear to be free from

secular trends. Moreover, the vast majority of intervals over

which the associated estimated ambiguities remain constant

span more than 30 seconds. For these intervals, a confident

declaration of correct integer resolution can be made. But over

the 1-hour interval shown, there are several constant-integer

intervals that are too short to allow confident declaration of

correctly-resolved integers.

B. Dual-antenna ground truth generation

Given that residuals analysis alone appears insufficient to

confidently discern a truth trajectory for urban RTK, an

alternative approach is adopted for this paper.

1) Independent RTK solutions: Independent RTK solutions

are obtained for both the primary and secondary rover anten-

nas. Because these are separated by several GNSS wavelengths

on the Sensorium’s top plate, and given the wavelength-scale

sensitivity of multipath phase to path length, they experience

significantly uncorrelated carrier multipath except when the

multipath source is to the front or rear of the vehicle, which

is rare (multipath reflections come primarily from buildings to

the left or right of a vehicle [44]).

2) Strict trajectory: From the independent RTK solutions,

a strict trajectory is constructed. Let SP be the set of primary

antenna positions that have passed aperture test validation, and

let TP be the set of associated time points. Let SS and TS be

equivalent sets, respectively, for the secondary antenna. The

intersection set T∩ = TP ∩ TS contains time points at which

both the primary and secondary fixed solutions are available.
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Fig. 11. DD carrier phase (top) and pseudorange (center) residuals for GPS
PRN 26’s L1 C/A signal for the 1-hour Jan. 15, 2018 test session. The
lower plot shows the satellite’s elevation angle (gray) and the pivot satellite’s
elevation angle (black).

Let SP∩ and SS∩ be the sets of positions for the primary

and secondary antennas associated with T∩. These are ordered

such that the kth primary position sP,k ∈ SP∩ corresponds to

the kth secondary position sS,k ∈ SS∩. The strict trajectory

Sstrict
S∩ ⊆ SS∩ is defined as the set of positions sP,k for which

|bk − b| < ǫ, where

bk = ‖sP,k − sS,k‖

is the measured baseline length between the two antennas at

the kth epoch, b is the known baseline length, and ǫ is an

acceptable error threshold, taken to be 15 cm for this paper.

Thus, the strict trajectory consists of all fixed primary antenna

positions that can be checked against, and are consistent with,

a corresponding fixed secondary antenna position. The strict

trajectory for an inner loop in the test route is shown as the

blue trace in Figs. 12 and 13.

3) Filling gaps in the strict trajectory: Approximately

95.5% of epochs in the 3.4 hours of collected data find

correspondence in the strict trajectory. The remaining 4.5%

of epochs are those for which either the primary or secondary

antenna did not produce a fixed solution, or the magnitude

of the solution difference disagreed with the known baseline

b by more than ǫ = 15 cm. Perhaps unsurprisingly, almost

all of these missing or outlier epochs occur near the bridges

along the Dean Keeton corridor. Two techniques are applied

to attempt fill-in of the strict trajectory gaps.

Transfer via the baseline-constrained solution: A fixed

local RTK solution between the primary and secondary rover

antennas is obtained at every epoch possible. This local

solution’s availability is increased by applying the known

baseline constraint b, as in [45]. A missing epoch in the strict

trajectory is populated via transfer from the secondary antenna

under the following conditions: (i) a fixed secondary antenna

position is available, (ii) a fixed baseline-constrained primary-
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Fig. 13. Vertical component time history associated with the trace in Fig. 12.

to-secondary solution is available, and (iii) when the secondary

and local solution vectors are added, the resulting “transferred”

primary antenna location is within ǫ of the position predicted

by a shape-preserving piecewise cubic interpolation across

the strict trajectory gap. The interpolation is carried out

via Matlab’s interp1 function with METHOD = ’cubic’.

Transferred epochs are shown as green points in Figs. 12 and

13.

Short-hop interpolation: After all permissible secondary-

to-primary solutions have been transferred, an attempt is made

to bridge the remaining gaps via cubic interpolation (again

using the interp1 function). Only spans shorter than 5

seconds are allowed to be interpolated. Interpolated epochs

are shown as red points in Figs. 12 and 13.

C. Ground truth completeness and accuracy

The ground truth trajectory constructed as described above

from the strict trajectory, with gaps filled where possible,

encompasses approximately 97% of all epochs in the 3.4-hour

data set. The missing 3% of epochs almost all coincide with

areas near the bridges passing over the Dean Keeton corridor.

The west bridge is especially problematic, as the rover vehicle

is often stopped for an extended time near or under the bridge

while waiting for the stoplight at Dean Keeton and Guadalupe.

Visual inspection of the ground truth trajectory reveals no

obvious errors. However, the authors concede that better-

than-5-cm accuracy of the available ground truth cannot be

guaranteed. Future work will explore additional approaches

for completing and verifying ground truth for urban RTK.

VI. BASELINE SYSTEM PERFORMANCE

The baseline urban RTK system is the configuration of the

University of Texas precise positioning system that maximizes

PS while respecting PF ≤ ¯̄PF for some chosen empirical

incorrect fixing probability bound ¯̄PF . This section discusses

the baseline system’s performance. The following section will

compare the baseline system against several alternatively-

configured systems.

A. Baseline configuration

1) PpRx: The baseline system’s carrier tracking loops were

configured as detailed in Section III-D, with minor variations

for the different signal types. The code tracking loops’ default

bandwidth was 0.5 Hz. PpRx was configured to track the

following signal types: GPS L1 C/A, GPS L2C (combined M +

L tracking), Galileo E1 BOC(1,1) (combined B + C tracking),

and SBAS (WAAS) on L1. PpRx was configured to output

observables at 5 Hz.

2) PpEngine: The baseline system’s RTK engine was con-

figured as follows. The master LDRN reference station, located

within 1.2 km of all points on the test route, was taken as the

reference receiver, producing reference observables at 5 Hz.

The master station’s antenna is a Trimble Zephyr II geodetic

antenna. A single-baseline RTK solution with a near-zero age

of data was performed between the rover’s primary antenna

and the reference station at a 5-Hz cadence. The following

thresholds were applied in the first-level screening processing

within PpEngine: C/N0 ≥ 37.5 dB-Hz, sθ ≥ 0.55, and

θel ≥ 15 deg. Signals whose values fell below any one of

these thresholds were excluded from all DD combinations.

Elevation-dependent weighting was applied in the float so-

lution. The threshold above which float innovation statistics

failed the normalized innovation squared test was chosen to be

2. Scored N -choose-1 exclusion was applied for both failed

float innovations tests and failed aperture tests. A depth of

5 signals was allowed for the N -choose-1 exclusion, after

which the estimator was either reset or integers marginalized,

according to the flow diagram in Fig. 6. The difference test of

[30], which was found to work as well in urban environments,

was chosen as the integer aperture test. The test was configured

for a fixed failure rate of P̄F = 0.001. The undifferenced
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pseudorange and phase measurement error were taken to be

σρ = 1 m and σφ = 3.5 mm, respectively. The nearly-

constant-velocity dynamics model was configured for a 0.2

m/s deviation in horizontal velocity, and a 0.02 m/s deviation

in vertical velocity over a 1-second interval.

A rough calibration of the vertical L1-L2 phase center offset

was attempted for the primary rover antenna as mounted on

the Sensorium.

B. PS and PF for the baseline system

Because the ground truth trajectory is incomplete, empirical

PS and PF can only be determined to within upper and

lower bounds. Let PV denote the empirical probability of

successful integer validation at any given epoch, whether the

estimated integers are correct or not. In other words, PV is the

availability of a fixed solution. Let PT denote the fraction of

validated epochs that are testable; that is, the fraction having a

corresponding populated epoch in the ground truth trajectory.

Let PE denote the fraction of testable epochs that are assumed

to have incorrect integer estimates because their 3-dimensional

position differs by more than ǫ = 15 cm from the ground truth

position.

For the baseline system over the 3.4-hour data set taken

over three days, the average values of PV , PT , and PE were

PV = 0.988, PT = 0.976, PE = 0.0048

With these values one can bound the probability of incorrect

fix PF as

PV PTPE = 0.0046 ≤ PF ≤ 0.0234 = PV (1− PT )

The lower bound optimistically assumes that none of the non-

testable validated epochs were in error, whereas the upper

bound pessimistically assumes that all non-testable validated

epochs were in error. Given that the probability of successful

fix PS = PV − PF , one can similarly bound PS :

PV PT = 0.965 ≤ PS ≤ 0.984 = PV (1− PTPE)

Whether the baseline system’s performance is impressive

depends on the actual value of PF . Visual inspection seems

to indicate that PF < 0.01, which is a factor of 10 larger than

P̄F but may be tolerable for a larger system that combines

stand-alone RTK with inertial and electro-optical sensing, as

the Sensorium of Fig. 7 is intended to do.

The current system’s lower bound for PS , 0.965, is signifi-

cantly higher than the PS = 0.767 reported by Li et al. [8] for

dual-frequency GPS + BDS + GLONASS stand-alone RTK,

but a fair comparison is complicated by the facts that (1) Li

et al. do not report PF , and (2) the Wuhan and Austin urban

testing environments are different.

C. Error distribution

Fig. 14 shows the cumulative distribution function (CDF)

and a time history of errors for the baseline system’s testable

aperture-test-validated positions for the Jan. 15, 2018 data set.

Positioning performance appears excellent, with over 99.7%

of testable epochs having errors smaller than 10 cm. But

one should bear in mind that errors in aperture-test-validated

but non-testable solutions are not shown in Fig. 14. Also,

among the few errors that do appear, two exceed 1 meter over

the 1-hour interval, which would make the baseline system

unacceptable as the sole positioning sensor for connected or

automated vehicles.
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Fig. 14. Cumulative distribution function (top) and time history (bottom) of
positioning errors with respect to the ground truth for the baseline system.

D. Residuals Time Histories

It is instructive to examine the DD carrier and code residuals

for urban RTK. Fig. 11, discussed previously, shows residuals

for GPS PRN 26 during the 1-hour Jan. 15, 2018 session. The

RMS values of the time histories correspond to undifferenced

phase and pseudorange deviations of σφ = 4.1 mm and σρ =
0.65 m. Note that the pseudorange errors are large during the

first 250 seconds, over which the vehicle was stationary. This

is because PpRx was configured with a large code tracking

bandwidth (0.5 Hz) and operates on fairly narrow-band signals

(4 MHz) without any dedicated multipath mitigation. When

the vehicle begins to move, code multipath gets averaged out

non-coherently due to rapid changes in the multipath phase.

Fig. 15 is identical to Fig. 11 but for the L2C signal from

GPS PRN 26. For this signal, the undifferenced deviations

are slightly larger than for its L1 C/A counterpart: σφ = 4.6
mm and σρ = 0.78 m. This appears to be generally the case

for L2C signals despite their having the same ranging code

bandwidth, and nearly the same power, as L1 C/A signals.

Fig. 16 shows DD residuals for Galileo PRN 4, whose

elevation time history is similar to GPS PRN 26 over the same

interval. For this signal, σφ = 4.2 mm and σρ = 0.78 m.

Finally, Fig. 17 shows DD residuals for WAAS PRN 131,

for which σφ = 4.4 mm and σρ = 0.65 m. The WAAS

signal benefits from a high (49-deg. from Austin) and constant

elevation angle, but its DD pseudorange residual has a 1.5-

meter bias, likely due to asymmetry in the WAAS signal’s

autocorrelation function. Similarly-constant biases, albeit with

different values, are observed for WAAS PRNs 135 and 138.
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Fig. 15. As Fig. 11 but for PRN 26’s L2C signal.
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Fig. 16. As Fig. 11 but for Galileo PRN 4’s E1 (B+C) signal.

VII. PERFORMANCE DEGRADATION ANALYSIS

This section reports on one of this paper’s most significant

contributions, a performance degradation analysis in which

features of the baseline system are removed or altered one at

a time to assess their relative contribution to baseline system

performance. The analysis was limited to the 1-hour data set

from Jan. 15, 2018. Table I, where PV , PT , and PE are

as defined previously, summarizes the results of the analysis.

Starting with Scenario 2, subsections below will discuss each

scenario in turn.

A. LNAV data bit prediction disabled

Eliminating the baseline’s system’s LNAV data bit predic-

tion capability, which was described in Section III-D2, has a

devastating effect on performance. The availability of validated

epochs is scarcely reduced, but PE rises tremendously, from

0.23% to 36.4%. Fig. 18 shows that large errors persist over
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Fig. 17. As Fig. 11 but for WAAS PRN 131 on L1.

many tens of seconds. It is possible that the PpRx carrier

tracking strategy, or the PpEngine integer fixing strategy, could

be better tailored for the case where LNAV data bit prediction

is disabled, thus reducing PE , but this would likely cause a

significant drop in PV . Clearly, LNAV data bit prediction is a

key capability for urban RTK.
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Fig. 18. As Fig. 14 but for Scenario 2.

B. Scalar tracking with adaptive Bθ

Eliminating vector tracking, as described in Section III-D4,

in favor of scalar tracking, but retaining carrier tracking loop

bandwidth adaptation, has no significant effect on PV but PE

increases from from 0.23% to 5.1%. Fig. 19 shows that the

increase in PE is primarily due to a single 150-second interval

with a persistent large error. Further inspection reveals that the

error interval begins at the west bridge. Thus, vector tracking

appears helpful, but not critically so.

13



TABLE I
SUMMARY OF PRECISE POSITIONING RESULTS

Scenario Description PV : Validated Epochs (%) PT : Testable (%) PE : Errors (%)

1 Baseline system 98.9 96.0 0.23
2 LNAV data bit prediction disabled 97.6 96.2 36.4
3 Scalar tracking with adaptive Bθ 98.7 96.2 5.1
4 Scalar tracking with fixed Bθ 98.5 96.2 4.3
5 GPS L2CL tracking 94.3 96.2 1.8
6 Age of data = 200 ms 98.8 96.0 0.27
7 Age of data = 400 ms 98.4 96.4 0.27
8 Age of data = 600 ms 98.3 96.4 0.35
9 Age of data = 800 ms 98.3 96.4 0.35

10 10 km baseline 97.9 96.4 2.0
11 Sans WAAS 98.7 96.0 4.2
12 Sans GPS L2C (L+M) 97.0 96.4 2.7
13 Sans Galileo E1 (B+C) 95.9 96.5 6.8
14 No scored exclusion 96.6 96.8 4.9
15 35 deg. el. mask 92.3 96.1 6.6
16 35 deg. el. mask, 10 km baseline 81.1 95.9 16.8
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Fig. 19. As Fig. 14 but for Scenario 3.

C. Scalar tracking with fixed Bθ

Eliminating both vector tracking and carrier tracking loop

bandwidth adaptation does not appear to cause significant

further degradation beyond eliminating vector tracking.

D. GPS L2CL tracking

For GPS L2C tracking, PpRx jointly tracks the pilot (CL)

and data-bearing medium-length (CM) codes, wiping off the

INAV data symbols modulating the CM code with symbol

value estimates based not on prediction, as with LNAV, but

merely on observation. The rationale for this strategy is that

the CL pilot renders prediction less necessary than for the GPS

L1 C/A signal, which does not enjoy a pilot. Eliminating joint

L2C L+M tracking in favor of pure L2CL tracking might be

thought a more reliable strategy given that no symbol wipeoff

mistakes are ever made when tracking only the pilot. But the

results of Table I indicate that joint L+M is indeed valuable,

as it increases PV and decreases PE .

E. Age of data

Scenarios 6-9 explore the effect of increased age of refer-

ence data, from the baseline age (near zero latency relative

to the rover stream) to 800 ms. Very little reduction occurs

in PV , and little increase in PE , indicating that the baseline

system is not particularly sensitive to increased age of data.

However, other experimentation has shown that an age of data

beyond 800 ms begins to affect the WAAS carrier DDs. The

cause of this degradation is the relatively poor stability of the

WAAS clocks, which degrades the accuracy of carrier phase

extrapolation to the rover epoch. No such effect appears for

GPS or Galileo signals until an age of data beyond 10 seconds.

F. 10-km baseline

The baseline system’s distance to the reference receiver,

commonly referred to as the reference-rover baseline, is no

greater than 1.2 km. For Scenario 10, the LDRN alternate

master station, which sits 10 km from the test route, was

instead taken as reference. The alternate master station has

a Trimble Zephyr II antenna identical to the master station’s.

Note that a 10-km baseline is still considered to be within the

short-baseline regime for standard RTK [46]. Nonetheless, a

slight decrease in PV and increase in PE is observed. The

CDF in the top panel of Fig. 20 also shows that the main

drawback of the longer baseline is the increase in large errors,

presumably due to incorrect integer fixing, rather than the

slight decrease in accuracy of correctly-fixed solutions caused

by the longer baseline.

G. Value of additional signals

Scenarios 11-13 explore the degradation in the baseline

system that occurs when all signals of a particular type are

eliminated from the RTK solution. Over the 1-hour interval,

DDs based on 3 WAAS, 3 Galileo, and 4 GPS L2C signals

were originally available. Table I indicates that loss of any one

of the signal types degrades performance, with Galileo being

the most important for the 1-hour data interval studied.
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Fig. 20. As Fig. 14 but for Scenario 10.

H. No Scored Exclusion

Scenario 14 removes the scored exclusion strategy described

in Section III-E3 by setting the exclusion depth to 0 caused a

noticeable reduction in PV and increase in PE . Increasing the

exclusion depth beyond 5, the baseline system’s value, had no

discernible effect.

I. 35 degree elevation mask angle

Scenarios 15 and 16 explore the effect on system perfor-

mance of increasing the elevation mask angle from 15 to 35

degrees, simulating a denser urban environment. For these

scenarios, the average number of DDs drops from above 16

(for the baseline system) to less than 11. Scenario 15 takes

the usual ∼ 1-km baseline whereas Scenario 16 takes the 10-

km baseline. Both scenarios exhibit significant degradation in

both PV and PE , but the degradation is especially pronounced

for the 10-km baseline, with PV dropping to 81.1% and PE

rising to 16.8%. This is consistent with the argument in [17]

that a dense reference network is especially important in urban

settings with reduced signal availability.

VIII. CONCLUSIONS

A low-cost urban real-time kinematic (RTK) positioning

system developed at The University of Texas for precise

vehicular location has been described and evaluated. The

system is unaided by inertial or electro-optical sensors. Over

3.4 hours of urban testing, the system achieves a probability

of correct integer fixing greater than 96.5% for a probability

of incorrect integer fixing surely less than 2.3% and likely

less than 1%. Fixed integer solutions are available for 99%

of measurement epochs. Of these, 96% are testable against a

ground truth trajectory and are shown to be accurate to within

10 cm over 99.7% of the time. A performance sensitivity

analysis revealed that navigation data bit prediction on the

GPS L1 C/A signals is key to high-performance urban RTK

positioning, and that various other features of the positioning

system contribute in minor but cumulatively significant ways.
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