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Abstract—This paper explores the possibility of localizing an
automotive-radar-equipped vehicle within an urban environment
relative to an existing map of the environment created using data
from visible light cameras. Such cross-modal localization would
enable robust, low-cost absolute localization in poor weather
conditions based only on radar even when the vehicle has
never previously visited the area. This is because a pre-existing
absolutely-referenced visible-light-based map (e.g., constructed
from Google Street View images) could be exploited for localiza-
tion provided that a correspondence between features in this map
and the vehicle’s radar returns can be established. The greatest
challenge presented by cross-modal localization with automotive
radar is the extreme sparseness of automotive-radar-produced
features, which prevents application of standard computer vision
techniques for the cross-modal registration. To the best of the
authors’ knowledge, cross-modal localization using automotive-
grade radar within a visible-light-based map is unprecedented.
The current paper demonstrates that it can be used for vehicle
localization with horizontal errors below 61 cm (95%).

Index Terms—cross modal; localization; radar-based localiza-
tion; vision-based localization

I. INTRODUCTION

Abundant visible light imagery—from spaceborne cameras
[1], airborne platforms [2], and ground-based cameras [2]—
has given rise to large (often public) collections of visible-light
images and 3D maps based on these. Localizing a visible
light camera by comparing its images against collections of
geotagged images is by now a mature technique for urban
navigation [3], [4]. Indeed, the recently-released Google Maps
augmented reality (AR) pedestrian navigation solution is based
exactly on this technique: features extracted from images
taken by the user’s camera are correlated with similar features
extracted from Google’s vast trove of Street View imagery,
with the result that pedestrians can confidently and precisely
navigate within urban environments even when global naviga-
tion satellite system (GNSS) coverage is poor.

Given the abundance of geotagged visible-light imagery and
the need to perform localization in adverse lighting or weather
conditions, there has been longstanding interest in cross-modal
image registration [5] and cross-spectral visual odometry [6]
and simultaneous localization and mapping (SLAM) [7]. For
spaceborne and airborne sensing, vision-to-synthetic-aperture-
radar (SAR) image registration has been the focus of a

sustained research effort over the past two decades [8]–[10].
For ground vehicles, cross-modal data association has focused
exclusively on correspondences between thermal (infrared)
imagery and visible light imagery [6], [7], [11].

The authors of the present paper were unable to find
prior work in radar-to-visible-light cross-modal odometry or
SLAM for ground vehicles. Indeed, as regards the type of
low-cost automotive radar common on modern cars, there is
but a scant literature in radar-based odometry and SLAM.
Apart from recent promising work by the current authors
[12], only one other research group has demonstrated useful
performance, and this within a highly favorable and compact
landscape [13], [14]. Better SLAM and odometry peformance
has been demonstrated using high-cost scanning radars on
shipborne [15] and automotive [16]–[18] platforms. These
rotating radar units produce image-like scans that are amenable
to feature extraction. The image-like radar scans shown in [16]
and [17] suggest that cross-modal registration between such
rotating-radar scans and geotagged visible-light images may
be possible, but this has not been explored.

The present work explores the more-challenging task of
cross-modal registration between sparse scans produced by
automotive-grade radar and geotagged visible-light imagery.
Fig. 1 illustrates why this problem is hard: there is only weak
correspondence between features extracted from a stereo pair
of visible-light cameras and the sparse radar features produced
by a trio of automotive radar sensors.

II. DATA COLLECTION

A. Sensing Platform

This paper’s experimental exploration of cross-modal local-
ization was based on the data set described in [19], collected
by the University of Texas Sensorium platform, shown in Fig.
2. The platform is equipped with stereo grayscale visible light
cameras and three automotive-grade radar units. The stereo
camera pair has a ±37 deg. field of view, shown in Fig. 1.
The coverage patterns of the three radar units are shown in
Fig. 3.

Two Antcom G8 triple-frequency GNSS patch antennas are
flush-mounted in the cross-track direction on the Sensorium’s
upper plate, separated by 1.05 meters. The port (driver’s
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Fig. 1: Left: An image from the left camera in the Sensorium stereo camera pair. Right: Radar point features from the
Sensorium’s trio of radar units over four subsequent 20-Hz scans (blue) overlaid on scale invariant feature transform (SIFT)
features from a single stereo image pair (including the image to the left) projected onto the horizontal plane (orange). The
orange shaded area represents the common stereo camera field of view.

side) antenna feeds analog signals to an iXblue ATLANS-
C GNSS-disciplined tactical-grade inertial navigation system,
about which more details are provided in Sec. II-C.

LTE Antenna
Triple-Frequency
GNSS Antennas

Delphi ESR 2.5 Radar

Delphi SRR2 Radars

Basler acA2040-35gm
Cameras

Fig. 2: The University of Texas Sensorium is a platform
for automated and connected vehicle perception research.
It includes stereo visible light cameras, an industrial-grade
inertial measurement unit (IMU), an automotive radar unit, a
dual-antenna, dual-frequency software-defined GNSS receiver,
4G cellular connectivity, and a powerful internal computer.
The long-range electrically scanning radar (ESR) is shown
mounted at the center of the sensorium’s front plate. Two
short-range radar (SRR2) units are mounted at a 30-deg.
outward-facing angle at the ends of the front plate.

B. Collection Interval and Location

Data were collected on May 12, 2019 during approximately
45 minutes of driving in and around the dense urban center
of Austin, TX.

The test route, depicted in Fig. 4, runs the gamut of light-to-
dense urban conditions, from open-sky to narrow streets with
overhanging trees to the high-rise urban city center.

C. Ground Truth Trajectory

A trustworthy ground truth trajectory against which to
compare cross-modal localization peformance is an indispens-
able feature of the experimental setup. The present work
adopts the traditional approach of taking the forward-backward
smoothed trajectory generated in after-the-fact processing by
a coupled real-time-kinematic (RTK) -inertial system with a
tactical-grade IMU as the ground truth [20]–[22]. In particular,
an iXblue ATLANS-C mobile mapping INS/GNSS system,
which incorporates a professional-grade Septentrio AsteRx3
RTK receiver, was used to generate the ground truth [23].
The ATLANS-C was rigidly mounted to the Sensorium and
attached to the port GNSS antenna. A cm-accurate lever arm
estimate from the inertial sensor to the GNSS antenna was
determined. Self-reported 3D accuracy of the ATLANS-C’s
smoothed estimate varied between 2 and 20 cm (1-sigma)
along the test route.

III. DATA PROCESSING

This section details a procedure that achieves 61 cm RMS
position error at the 95th percentile cross-modal re-localization
using data collected with the University of Texas Sensorium.
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Fig. 3: Coverage patterns for the three Sensorium radar units.
The ESR provides simultaneous sensing in a narrow (±10
deg.) long-range (120 m) coverage area and a wider (± 45
deg.) medium-range (60 m) area. The SRR2 units each have
a coverage area of ±75 deg. and 80 m. The line l1 marks the
left-most extent of the right SSR2’s field of view. Similarly, l2
marks the right-most extent of the left SSR2’s field of view.
Each SRR2 is installed facing outwards at an angle of 30 deg.

Fig. 4: Overview of the test route through the urban core of
Austin, TX.

What is remarkable here is not the complexity of the
procedure, but its simplicity. There is little reason to expect, on
physical grounds, that a radar-sensing vehicle equipped with a
map constructed from visual markers alone will be capable of
accurate localization. The physical mechanisms of generation
of radar returns are very different from those for visible-
light features, giving very different sensitivity to geometry and
material properties, and the interface provided by the sensors
is totally dissimilar: pixels on the one hand, and time-of-
flight/angle-of-arrival tracking on the other. Nevertheless, the
performance of this “simple” cross-modal localization system
shows that features in a map constructed from visual markers
provide an excellent starting point for inertial-aided radar
localization.

This paper does not address the so-called “lost robot”
problem, wherein a vehicle with largely or totally unknown
coordinates obtains an initial fix. The assumption is rather
that the vehicle has an initial fix, whose fidelity is decaying
steadily during locomotion due to errors in inertial sensing
and odometry. The vehicle uses information from its radar
sensors to compensate for this decay in positioning accuracy,
leading to an equilibrium. The more information it can extract
from the radar sensors, the greater the positioning accuracy
at equilibrium. This paper also does not address orientation
uncertainty. The assumption is rather that via a combination of
gyroscopic and magnetic sensors, the inertial system is largely
capable of maintaining its orientation.

The problem can thus be divided into three parts: map-
making, map-matching, and inertial tracking. This section
details a viable approach to the first two; the third is well-
understood.

A. Map-Making

In order to build a map from visual markers, one must
first characterize the cameras. The Sensorium vision system
collects ten frames per second from each camera, with shutter
times traceable to GNSS timing and with software exposure
control. Each frame has a resolution of 2048×732 pixels and
a depth of 8 bits per pixel. The cameras are mounted forward-
facing with wide-angle lenses, ultraviolet-blocking filters, and
lens hoods, 25 cm to either side of the center of the Sensorium.

1) Calibration: Each camera is modeled as a pinhole with
two radial and two tangential distortion coefficients, and four
intrinsic parameters: focal length in two axes, and focal center
in two axes. The extrinsic transformation matrix between
the coordinate systems of the two cameras represents an
additional six degrees of freedom. These 22 total degrees-of-
freedom within the stereo vision system must be calibrated
experimentally by photographing an appropriate test pattern
and solving a system of equations. The procedure for this is
well-known [24].

An additional six degrees of freedom connect the coordinate
system of the cameras to that of the ATLANS-C INS/GNSS
device. To an accuracy of roughly one centimeter of distance
and a few degrees of angle, these degrees of freedom may be
assumed to match their specifications in the Sensorium CAD
documents. For the localization system described in this paper,
it proved necessary to calibrate out an overall system bias of
roughly 40 cm; this may be largely attributed to angular errors
in the mounting of various components, which have since been
refined.

2) Rectification: Once the intrinsic, inter-camera extrinsic,
and distortion parameters of the stereo camera model are
determined by calibration, the inverse distortion is applied to
each camera frame in the dataset. Ideally, the calibration is
“baked in” to the vehicle’s onboard processor, and images are
un-distorted before being saved to non-volatile storage: this is
not a costly step, and can be performed on a low-end graphics
processor.

3) Depth Recovery:
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a) Feature Extraction: To make a map from visual mark-
ers, one must supplement the two-dimensional information
present in a camera frame with a depth estimate based on
the geometry of the stereo vision system. This is a well-
known problem, and many well-known solutions are available.
The present work proceeds in three phases, beginning with
the Scale Invariant Feature Transform (SIFT) of Lowe [25].
This first phase detects local extrema in an augmented, three-
dimensional “x-y-scale” representation of the camera frame,
formed by repeated Gaussian filtering and downsampling.
These extrema are refined and tested for contrast and selectiv-
ity versus small offsets in any direction. The extrema, now
known as keypoints, become the loci of a “fingerprinting”
procedure that summarizes nearby gradient orientations and
magnitudes to form a 128-dimensional descriptor. Up to
this point, all features (i.e. keypoints and descriptors) are
independent between the left and right camera frames.

b) Feature Matching and Filtering: In the second phase
of depth recovery, the present work computes the two nearest
neighbors in 128-dimensional descriptor space of each left-
camera descriptor among the set of right-camera descriptors,
using the Euclidean distance. (This may produce a many-to-
one set of matches). It then discards any best-matches which
are not at least 30% better than the second-best match for the
same left-camera descriptor, according to Lowe’s ratio test,
and it discards all but the best match for each individual right-
camera descriptor. The matches are now one-to-one between
a subset of the original left-camera features and an equal-
sized subset of the original right-camera features, and are now
known as stereo correspondences.

c) Stereo Disparity and Depth: The procedure next com-
putes the delta, in pixels within their respective focal planes,
between the positions of the left and right halves of each stereo
correspondence. Correspondences with a vertical delta larger
than a threshold of four pixels are discarded, since a well-
calibrated system should have purely horizontal displacements
(“disparities”) due to parallax. The horizontal delta finally
becomes the denominator in an expression for the distance
from the left camera to the location in space where a physical
object would have to be in order to gave rise to the observed
stereo correspondence.

SIFT may become “cross-eyed”. That is, if it detects two
independent but similar patterns in the far distance, it may
mistake them for a single, nearby object. In this case, there
is of course no physical object at the reported distance. The
present results do not require further steps to reject cross-eyed
stereo correspondences.

The geometric degrees of freedom gathered from the Sen-
sorium CAD documents in Sec.III-A1 allow the stereo corre-
spondences to be transformed from the 3-D coordinate system
aligned with the left camera to the 3-D coordinate system
aligned with the ATLANS-C INS/GNSS device.

4) Building the Map: One must finally transform these
points into a global (i.e. geodetic) coordinate system. The
present work did this by interpolating transformation matri-
ces constructed from the 1Hz latitude, longitude, ellipsoidal
height, heading, pitch, and roll estimates tabulated in the post-
processed INS/GNSS data. Finally, to enable fast look-ups for

later steps, the East and North coordinates of the transformed
stereo correspondences are inserted into a two-dimensional K-
D tree data-structure.

This K-D tree data-structure is the in-memory representation
of the map constructed from visual markers. It may be
visualized by forming a two-dimensional histogram of the
feature density in an area of interest (left sides of Figs. 5,
7).

An attempt has not yet been made to separate positioning
errors caused by the visual map-making process from posi-
tioning errors caused by radar processing. Only total errors
will be reported.

B. Radar
Automotive radar units like the ESR and SRR2 units are

not camera-like. Where an imager typically contains a two-
dimensional array of millions of independent incident power
detectors, each with angular selectivity better than a millira-
dian in each of the horizontal and vertial directions, an automo-
tive radar contains a one-dimensional array of inter-dependent
radio front-ends, with perhaps 9◦ of angular selectivity. One
factor that sets these two problems apart is sparsity: the world
as seen through active radar “eyes” is fairly well described
as a small number of points of light in darkness. For this
reason, an automotive radar unit with 9◦ of selectivity can
nevertheless track a small number of reflectors with single-
degree angular resolution–in the horizontal direction. These
units are not selective in the vertical direction.

In order to make good use of limited bandwidth on the
vehicle’s controller area network (CAN) bus, an automo-
tive radar unit will typically run an internal digital signal
processor (DSP) pre-coded with proprietary algorithms for
the acquisition and tracking of individual reflectors in the
environment. Thus, the present work relies on periodic (20Hz)
reports from the radar units, each of which tabulates up to 64
individual trackers, each of which in turn incorporates state
machine logic, amplitude estimation, and Doppler velocimetry.
The present work ignores all of this information except for
range and bearing. It is most likely possible to improve
upon the results presented here by taking advantage of more
information.

Range and bearing relative to the known locations of the
radar units, plus the heading of the vehicle, are sufficient
to compute the locations of the tracked objects in two-
dimensional East and North vehicle-relative coordinates.

For visualization purposes only, the fully-known vehicle
pose was combined with these vehicle-relative coordinates to
build the radar “maps” shown on the right side of Figs. 5, 7.

1) Filtering Predicates: A phenomenological examination
of the visual and radar maps suggested the need for a
number of additional filters to restrict the features used to
build each map. In particular, one might expect that stereo
correspondences due to foliage and road markings are not
good candidates for radar returns. In addition, distant corre-
spondences are poor candidates for map-making, since small
angular errors in calibration, amplified by long distances, form
large displacements between mapped features and their real-
world locations.
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Fig. 5: Maps of portions of 10th and 11th streets and Red River street, Austin, Texas. As seen in the density of stereo vision
features (left) and radar returns (right). Remarkably, even though the similarity between these views might, at best, be called
messy, the visual map provides a highly accurate basis for radar localization. This is most likely attributable to the accumulation
of both radar and visual features along walls and distinctive architectural markers, as well as parked vehicles. Because the
binning approach of the present work side-steps the issue of finding a one-to-one association between visual and radar features,
the computational cost of maintaining and aligning these maps is modest.

Fig. 6: View of the same region as Fig 5 in perspective, as seen in Apple Maps. Note how the radar map has resolved
ground-level architectural details, such as (one of) the L-shaped planters on the west side of Red River street.
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Fig. 7: Close-up of the south-southwesterly leg of the trip down Red River St., once again gridded at 1m. Both maps resolve
the two parked cars on each side of the street.

Fig. 8: Camera view facing south-southwest on Red River St., corresponding to the leg shown in Fig. 7. The metal street sign
with its lettering forms a strong cluster of features in both vision and radar, just to the west of the second car. The smooth
concrete wall along the sidewalk forms a poor visual feature, but a strong radar feature, where it is visible to the Sensorium’s
line-of-sight between the parked cars.
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These reasons motivate three heuristics: discarding stereo
correspondences higher than 3.5m from the road surface;
discarding correspondences more than 120m from the vehicle;
and discarding correspondences “too close” to the road. This
last is the most subtle, because the road is not flat, and system
complexity would increase substantially if one were to require
an accurate digital elevation model. As a stopgap, one may
define a plane tangent to the road surface directly below the
vehicle, and discard all stereo correspondences whose distance
h from this plane is less than some function of the radial
distance r from the vehicle to the stereo correspondence.
In the present work, this lower bound was taken to be
h ≥ 10 cm + r2/1000m, representing the mask needed to
avoid including road markings on a half-pipe-shaped road with
a radius of curvature of 500m—that is, a curvature of 4◦ in
35m, a crude upper bound for this dataset.

Both the visual and radar maps suffer non-idealities around
locations where the test vehicle came to a complete stop. The
visual map contained a simple over-density of points collected
from these vantages. The radar map, however, showed a
number of concentric circles with large numbers of returns
from locations where no object was present, or even locations
beyond the vehicle’s line-of-sight. These erroneous returns
may be attributable to standing waves formed between the
stationary radar tranceiver and its environment, analogous to
the speckle pattern formed by a laser beam on a diffuse
reflector. When the vehicle was in motion, these erroneous
returns were rapidly eliminated by the radar units’ internal
DSPs. The solution for both maps was to discard map features
collected at a velocity below 0.5m/s. For the radar, an
additional filter excluding returns beyond a range of 50m
limited the sensitivity of the system to angular calibration
errors.

C. Scan Stacking Time

One cannot form a full radar map without prior knowledge
of the vehicle’s pose trajectory to perform local-to-global
coordinate transformations, and so the vehicle cannot simply
compare the visual and radar maps. However, with the aid of
inertial sensors and odometry, the vehicle can form an accurate
estimate of a short segment—perhaps five seconds—of its pose
trajectory, measured relative to its current position. Using this
trajectory segment, the vehicle can perform a speculative local-
to-global transformation on radar sensor data from the same
5 s interval of time to form a “map fragment”. The 5 s interval
is the scan stacking time of the system, since it accumulates,
or stacks, many individual radar scans to form a radar map
fragment.

(The stacking time is perhaps a less critical parameter than
it may at first appear. Shorter stacking times may be com-
pensated by providing more frequent, less confident position
estimates to the downstream tracking filter.)

The radar map fragment is correct in its scale, orientation,
distances, and angles, but suffers an overall (two-dimensional)
position ambiguity. The vehicle must compare each radar map
fragment to the visual map to constrain its position.

D. Map-Matching

To compare a visual map to a radar map fragment, it is
possible to conceive of many very convoluted approaches:
recognizing materials based on hyperspectral imagery and
predicting radar returns; matching geometric primitives such as
walls or fences in the visual data and searching for specular
reflection points; skeletonizing the visual map via Delaunay
triangulation and searching for overlap with a similar skeleton
of the radar map fragment; and on, and on. The reason for
considering convoluted approaches is the lack of a reason
to expect a direct correspondence between points which are
visually distinctive, triggering SIFT processing, and points
which are highly retro-reflective at 77GHz, triggering radar
tracking. Many visually distinctive features in an urban setting
are painted or printed onto walls, signs, and roads. Visually
contrasting shades of ink or paint are unlikely to generate
substantial radar contrast.

Nevertheless, before trying convoluted solutions, one ought
to verify that simple solutions are not adequate. In this case,
however, a naı̈ve heuristic works better than it has any right
to do. This heuristic is point-cloud density overlap. One
discretizes northing and easting, forming a pixel grid. One
assigns each three-dimensional feature to a pixel, and counts
features in each pixel to compute a two-dimensional number
density map. Visual features are counted in one density map,
and radar features in another. The visual features have known
global coordinates, and so their density map may be said to
be parameterized by absolute easting and northing. The radar
features only have known relative coordinates, and so their
density map is parameterized by easting and northing relative
to the location of the vehicle. Given these two pixelized density
maps, one computes the cross-correlation as the alignment
metric.

E. Justification

Why might a visual map be useful for radar localization?
One possibility is that cities simply contain a great deal of
radar reflective material, and that a high density of visual
features is a good predictor of the presence of a large amount
of material, some portion of which is likely to be reflective
at radar frequencies. Another possibility is that dense visual
features indicate geometric complexity, increasing the number
of potential diffractors to yield non-specular radar returns.

One may also offer some justification for the idea of
histogram cross-correlation as a generic tool for localization.
If the visual map consists of a set of points {~gi}, and the
radar map fragment consists of a set of points {~hi}, then
a likely hypothesis regarding the vehicle’s inertial odometry
error ~x ought to approximately satisfy the relation ~gi = ~hj+~x
for many pairs (i, j). In fact, this is exactly what the cross-
correlation of histograms evaluates: when evaluated at an
offset of ~x from the center of the correlogram, it gives the
number of pairs (gi, hj) that, when rounded to the nearest
bin, differ by exactly ~x.

If one assumes that each of the events eij(~x)—representing
the possibility that a given pair of features (i, j) is consistent
with hypothesis ~x—is independent and equally likely, then
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the log likelihood of the hypothesis ~x is proportional to the
number of consistent pairs.

The use of binning has two key advantages: it side-steps
both the association and cardinality problems of traditional
point-cloud alignment. That is, there is no need to determine
a particular one-to-one matching between visual and radar
map features, and there is no need for the two maps to
have equal numbers of features. Finding good matchings is
a hard problem in its own right, even when both feature
sets have a common nature. The trade-off is that the binning
approach weights each bin in the cross-correlation according
to the product of the bin occupancies in the visual and radar
histograms, rather than according to the number of points in
one map which can be matched to a point in the other map.
This may be expected to bias the system towards regions of
higher feature density.

In the end, the effectiveness of this naı̈ve point-cloud density
overlap heuristic is an empirical observation. Qualitatively,
the left (visual) and right (radar) halves of Fig. 5 have much
the same structure: large concentrations of features on walls,
fences, and parked cars.

1) Gridding: The cross-correlation is computed on his-
tograms binned with some finite resolution. What is an ap-
propriate choice for the bin width?

Setting a very large bin width limits the fidelity with which
the correlation peak is resolved, making discrimination more
challenging. On the other hand, setting a very small bin width
requires correlating larger arrays. If the bin width is denoted
by δ, then the cost of computing the 2-D cross-correlation
using fast Fourier transforms is O((1/δ)2 log(1/δ)).

Each feature in either map may be viewed as a single noisy
observation of the location of some feature on an unknowable
“true map”. The size of the standard deviation of this noisy
observation defines a spatial scale, the noise scale, below
which one is unable to make easy discriminations between
location hypotheses. In other words, the likelihood function
for the vehicle’s position (for which the cross-correlation is an
heuristic approximation) is smooth over distances comparable
to the observation noise scale.

Consider what happens to a histogram of continuously-
distributed data as the bin width goes to zero, holding the
data constant: the number of features falling into a typical
bin goes to zero, and the histogram becomes “sparse”. If the
cross-correlation is computed with histograms that are zero in
most bins, then the cross-correlation will also be zero in most
bins, and the few bins which are non-zero will typically have
a value of one. This leads, in the limit, to zero discriminating
power between good and poor hypotheses, which will all have
a test statistic (cross correlation) of one.

Thus, cross-correlating ordinary histograms cannot be a
good proxy for the likelihood function if the bin width is
set too low. In that case, one should prefer a “splatting”
approach, in which the contribution to the histogram of each
feature is spread over multiple bins according to the likelihood
function of the observation model (for instance, a Gaussian).
One should certainly be concerned with the need for such
a splatting approach if “shot noise” in the cross-correlation
becomes great enough to obscure the correlation peak. This

type of shot noise is just visible in Fig. 10 as a slight non-
smoothness. In the present work, the number of features
acquired in the map-making phase was great enough that
the correlogram maintained adequate smoothness with 10 cm
gridding.

2) Peak Fitting: Rather than reporting the location of the
maximum value of the correlogram evaluated on a discrete
grid, it is possible to obtain a continuous estimate of the ve-
hicle’s location from the discrete correlogram. One way to do
this is by fitting a polynomial function to the neighborhood of
the correlogram peak, and using this polynomial to interpolate
the correlogram to non-integer indices.

The first step is to find the location of the correlogram’s peak
value. Since this work assumes that inertial odometry provides
a robust prior distribution on the location of the vehicle, the
search for the peak may be narrowed to a small window
centered around the inertial estimate of the vehicle position
(for instance, a 2.4m square). Given this location, the vehicle
then extracts a neighborhood of 3 × 3 bins around the peak,
and carries out a least-squares regression for an interpolating
quadratic of the form z = a + bx + cy + dx2 + ey2 + fxy.
The peak is then declared to lie at the solution of ∂z/∂x =
∂z/∂y = 0.

The quadratic regression provides the system with access
to a number of additional statistics—including the correlation
value at the peak and the eigenvalues of the Hessian matrix at
the peak—that could be exploited to improve robustness and
more accurately weight position estimates in a downstream
tracking filter.

3) Bias Estimation: After evaluating the cross-correlation
and peak fitting procedure on each of 10,000 five-second
epochs sampled (with overlap) from the Sensorium dataset,
it became clear that a systematic bias with a vector magnitude
of 40 cm was present when residuals were plotted in vehicle
coordinates. This systematic bias is most likely attributable to
angular dimensional inaccuracy in a radar mounting bracket
that was incorrectly specified and required manual rework.
This source of error could be mitigated by repeating the
analysis using each of the three radars separately, one by
one, and computing the sensitivity of the correlogram to small
angular deflections in the sensors.

IV. RESULTS

The procedure of Sec.III yields a bias-corrected location
residual for each sampled epoch. If one fuses cross-modal
radar localization using a visual map plus inertial odometry,
then these residuals may be interpreted as the difference
between the true location of the vehicle on the one hand, and
on the other the location estimates supplied to the tracking
filter.

A. Root-mean-square Error

The complementary cumulative distribution of these resid-
uals (i.e. the fraction of epochs exceeding any given level of
error) is plotted on a log scale in Fig. 9. In 95% of epochs,
the error magnitude was no greater than 61 cm.
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Fig. 9: The complementary cumulative distribution (also known as a survival function) indicates how often (that is, in what
fraction of sampled 5 s epochs) the localization procedure in the text was found to exceed a given level of RMS positioning
error. The logarithmic vertical scale makes the tails of the distribution, corresponding to outliers that may cause tracking errors,
more visible. Above and to the right, the gray region of no information shows what the complementary cumulative distribution
would look like if the cross-correlation localization procedure was non-informative, i.e. uniformly random.

The “null hypothesis”, that naı̈ve point-cloud density over-
lap is no better than random guesswork, corresponds to the
gray region in the figure: in this case, the location of the
correlogram peak within the 2.4m-square search window is
uniformly random. The complementary cumulative distribu-
tion for the given procedure lies far to the left of this “no-
information” region, indicating that the correlation procedure
is giving strong cross-modal localization performance.

B. Map Feature Distributions

Figs. 5 and 7 spotlight a region of three blocks by one block
in a low-rise part of downtown Austin, Texas, visited along the
test route. Each frame shows a bird’s-eye view of the density
of map feature points, either from visual (left) or from radar
(right), gridded into 1m bins. Dark cells contain no features;
bright cells contain many features.

Fig. 7 is a blow-up of the south-southwesterly leg of the turn
from the right of each frame in 5. Coordinates are East-North
meters relative to a nearby GNSS reference station, and the red
curve is the ground-truth vehicle trajectory. For comparison, a
perspective view of the same region is shown in Fig. 6.

Clearly visible on both the visual and radar maps are
buildings, landscaping features like ledges, fences, and parking
lots, and parked cars. Bright streaks along the roads are likely
attributable to other traffic.

C. Correlograms

The localization procedure calls for stacking 5 s of radar
scans (roughly 100 scans and 13,000 individual returns) and

binning at the 10 cm level to form a radar map fragment.
Fig. 10 shows the result of cross-correlating such a map
fragment against a visual map centered on the same point.
Each point in the correlogram corresponds to one particular
shift that might be applied in an attempt to bring the two
maps into alignment. Brighter points indicate better alignment.
There is a distinct bright correlation peak, in this case roughly
50 cm south of ground truth. Part of this correlation peak error
is due to the systematic bias, which has not been corrected at
this stage in the processing.

To demonstrate a broader range of scenarios, cross-
correlations are shown for 16 randomly-sampled epochs from
the dataset in Fig. 11. Within each 10m frame, a distinct bright
correlation peak is visible. A number of frames, notably the
last four, show strong linear features corresponding to a one-
dimensional translational ambiguity (or rather, near-ambiguity)
between the visual map and the radar map fragment. Broad,
bright areas like that in the 11th frame indicate translational
ambiguity in more than one dimension. In practice, the vehicle
must be prepared to survive a number of such potentially non-
informative epochs before its inertial odometry uncertainty
grows large enough to disrupt tracking.

V. CONCLUSION

In this paper, accurate cross-modal localization of a radar-
equipped vehicle using a map built from visual markers has
been demonstrated to be feasible and reliable at the sub-
meter level using a combination of careful heuristics and
known algorithmic tools. Cross-modal localization represents
an unprecedented new low-cost form of alternative navigation,
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Fig. 10: Result of cross-correlating a visual map, containing at each point the density of visual features at that geographic
location, with a radar map fragment, containing at each point the density of radar returns over a 5 s stacking interval at that
vehicle-relative location. Bright spots indicate that many visual features align with many radar returns, conditioned on the
hypothesis that the location of the vehicle is given by the coordinates of the bright spot. Subtle gradations indicate a partial
ambiguity along the NNW-SSE and WSW-ENE axes. A strong, isolated correlation peak is visible just SSW of the center.

and one which will increase in relevance as sensors continue to
evolve and autonomous vehicles face dynamic and difficult-to-
map environments, poor weather conditions, and coordination
challenges with dissimilar, heterogeneous vehicle platforms.
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