
Long Range, Low SWaP-C FMCW Radar
William A. Lies, Lakshay Narula, Peter A. Iannucci, and Todd E. Humphreys

Radionavigation Laboratory
The University of Texas at Austin

Austin, TX, USA

Abstract—A method is developed, analyzed, and tested to adapt
low-cost, automotive-grade radar chipsets for long-range sensing.
These disruptive chipsets offer impressive performance at low
size, weight, power, and cost (SWaP-C) that could benefit appli-
cations with tight SWaP-C budgets such as urban air mobility
and urban air logistics. The short range of these radars currently
prevents their deployment in long-range applications, so this
paper employs extended measurement intervals coupled with
sophisticated signal processing to significantly extend their range.
After deriving the optimal maximum likelihood estimator, the
paper presents suboptimal, more efficient techniques for target
range estimation that are robust to target motion uncertainty.
These techniques are validated in simulation and demonstrated
via experiment. The results show that low SWaP-C radar chipsets
are capable of operating at low SNR to perform long-range
sensing when augmented with this paper’s signal processing
techniques. This potent combination of low SWaP-C hardware
and advanced signal processing will drive innovation in urban
air mobility, urban air logistics, and other areas in need of long-
range sensing.

Index Terms—FMCW; urban air mobility; model reduction;
maximum likelihood; low SWaP-C; low-cost sensing; long-range
sensing; range bin migration.

I. INTRODUCTION

The recent emergence of low-cost radar chipsets presents
new opportunities in the realm of low-footprint sensing. These
monolithic microwave integrated circuits (MMICs) achieve
impressively low size, weight, power, and cost (SWaP-C),
though they have shorter range than their high SWaP-C
counterparts. For example, Analog Devices offers a chipset for
the 24 GHz band which costs about $70 in volume [1]. These
MMICs are targeted toward the automotive industry, where
relatively short range (on the order of 100 m) is adequate. To
exploit this disruptive technology for high-sensitivity ranging
of distant targets, this paper leverages sophisticated signal
processing and long dwell intervals that boost the radar’s
signal-to-noise ratio (SNR) for distant targets. These tech-
niques are developed with urban air mobility (UAM) and urban
air logistics (UAL) in mind, though they are directly applicable
to any frequency-modulated continuous-wave (FMCW) radar
platform.

UAM and UAL are the subject of an intense worldwide
research and development effort. Existing aerospace compa-
nies and start-ups alike are developing small, vertical take-
off and landing aircraft (VTOLs) with the goal of offering
short-distance air transportation as an alternative to ground
transportation for both people (UAM) and products (UAL).
These aircraft will eventually be autonomously piloted to
reduce cost [2], [3].

Detect and avoid (DAA) is an essential capability for
achieving large-scale UAM and UAL [4]. Autonomously-
piloted aircraft must be able to reliably see and avoid airborne
objects such as conventional aircraft, VTOLs, small delivery
drones, and even large birds. This capability is essential when
a threatening object is not broadcasting its position (non-
cooperative) or during a malfunction of cooperative collision
avoidance systems. DAA systems must match or exceed a
human pilot’s ability to visually avoid obstacles [5], [6]. Cur-
rent research is focused on camera-based systems, attractive
for their low SWaP-C. The fundamental limitation of such
visual DAA systems is their inability to accurately resolve
range. Thus, cameras alone are not sufficient for reliable DAA.
A capable radar system with low SWaP-C would provide a
fundamental complement to visual sensing for autonomous
DAA, since radar has excellent range discrimination.

A. Related Work in DAA for UAM

A growing literature explores camera-based solutions for
DAA [7]–[11]. However, much of the literature does not
consider the problem of range estimation; it focuses instead
on improving the detection and false alarm probabilities of
the vision algorithms. The solutions for camera-based range
estimation that do exist either perform poorly or impose
unrealistic constraints:

1) Contrast-to-Noise Ratio: The authors of [12] propose a
DAA solution that leverages an array of narrow-field-of-view
cameras. It uses a time series of contrast-to-noise ratios to
estimate range, but the errors appear to be at least ±1 km,
which is unacceptably large [12]. Additionally, this method
can be expected to be sensitive to atmospheric conditions such
as fog and precipitation.

2) Stereo Camera Triangulation: Accurate depth sensing is
difficult to achieve at long range because camera separation
is limited to the size of the vehicle, which introduces severe
geometric dilution of precision at long range. This difficulty
is compounded by airframe flexibility [13]. Consider, for
example, stereo cameras separated by 10 m with a focal length
of 4 mm and 4K resolution (3840 × 2160). Assume a target
at 500 m. For these conditions, the range error per degree of
camera misalignment is 440 m/deg, not accounting for noise
in the cameras’ bearing estimates. These properties prompt
the authors of [13] to dismiss stereo cameras as infeasible for
DAA.

3) Bearings-Only 3D Location Estimation: Range can be
observed under bearings-only tracking if the ego-aircraft “out-
maneuvers” the target. But the large maneuvers required of
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the ego-aircraft, and the long filter convergence time (5-
30s), render bearings-only unacceptable as a primary tracking
method [13].

4) Apparent Size: Estimating range based on an object’s
apparent size in an image requires knowledge of the physical
size of the target object, which is generally not available [12],
[13].

B. Deficiency in Existing Radar Solutions

Although radar would be useful in a variety of sensing
applications, the poor SWaP-C characteristics of traditional
systems prevent its widespread use. UAM and UAL are among
those hesitant to adopt commercial radar, which is particularly
SWaP-C prohibitive [13]. For example, the EchoFlight Air-
borne Radar from Echodyne costs $20,000 per unit, consumes
40 W, and has a mass of 800 g [14]. Moreover, three or four
separate units would be required to obtain an adequate field
of view on an aircraft. Thus, even if volume pricing reduced
the unit price significantly, such products would impose a
prohibitive strain on a VTOL’s SWaP-C budget. A long-range
radar solution with low SWaP-C is highly desirable for UAM,
UAL, and a variety of robotics and surveillance applications.

C. Adapting Low SWaP-C Radar for Long Range Applications

Due to their low power, radar systems built around low
SWaP-C radar MMICs typically have ranges only up to 200 m
when operating in a traditional scanning mode. It is possible
to increase their range sensitivity beyond 1 km with greater
transmit power and application of weak-signal correlation
techniques in which the frequency-modulated continuous wave
(FMCW) radar takes measurements over an extended interval
(e.g., up to two seconds) at a chosen azimuth and elevation.
Such measurement intervals make traditional scanning too
slow for many applications, but can be effectively used to
determine range to a target whose azimuth and elevation is
already known.

This paper proposes a two-step process for low SWaP-
C radar range extension. First, a machine vision algorithm
operates on visible light images to detect a target of interest
and determine its azimuth and elevation relative to the ego-
vehicle. Second, radar returns arriving from the detected di-
rection are constructively combined to obtain a range estimate.
The ego-vehicle then has enough information to infer the
relative position of the obstacle. In the following sections,
the signal processing of this technique is described in detail
and developed for robustness against target motion uncertainty.
Experimental results with a low-cost radar chipset demonstrate
the effectiveness of these techniques.

D. Contributions

This paper’s contributions are the concept, theory, im-
plementation, and experimental testing of MMIC-based low
SWaP-C radar for long-range sensing. After an exposition
of FMCW radar and related challenges, Section V derives
and analyzes the optimal maximum likelihood estimator for
FMCW radar systems. Section VI presents two parametric

models for target motion which guide the paper’s search
algorithms. Section VII develops computationally efficient,
practical radar processing algorithms. The simulation results
in Section VIII reinforce the preceding theory and show the
efficacy of the methods from Section VII. Finally, Section IX
demonstrates the viability and performance of low SWaP-C
radar by way of a small-scale experiment. In this way, the
paper lays the groundwork for the extension of emergent low
SWaP-C radar MMICs to long-range sensing applications.

A preliminary version of this paper was published in [15].
The current version significantly expands the estimation dis-
cussion, introduces new methods for carrier phase modeling,
and accounts for range bin migration in the FMCW processing.

II. FMCW RADAR OVERVIEW

FMCW radar determines range to an object by emitting
and receiving “chirp” signals, which are sinusoidal waveforms
whose frequency increases linearly with time. While trans-
mitting a chirp, the radar simultaneously receives the echo
from that chirp. Because the chirp frequency increases linearly
with time, the difference in frequency of the transmitted and
received signals is proportional to the time-of-flight of the
electromagnetic wave. This difference is therefore proportional
to the distance to the reflecting object. This is illustrated in
Fig. 1.
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Fig. 1: FMCW chirp (solid) with corresponding echo (dashed).
Longer time-of-flight corresponds to a greater frequency dif-
ference between the transmitted and received signals.

Ignoring amplitude factors and noise, the transmitted and
received signals for a single target are given by

sTX(t) = cos

(
πβ

Tc
t2 + 2πf0t

)
(1)

sRX(t, td) = cos

(
πβ

Tc
(t− td)2 + 2πf0(t− td)

)
(2)

where
td is the round-trip time-of-flight to a single target (s)
Tc is the chirp duration (s)
f0 is the nominal carrier frequency (Hz)
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β is the chirp bandwidth (Hz)

To measure the frequency difference depicted in Fig. 1,
the transmitted and received signals are mixed and lowpass-
filtered to obtain the so-called intermediate frequency (IF)
signal. Many FMCW front-end systems only handle the in-
phase (real) baseband component. But, as explained in [16],
a complex downmixing and sampling architecture avoids the
aliasing of image frequency noise into the signal passband,
improving the signal-to-noise ratio compared with a real-
valued downmixing and sampling architecture. This paper
assumes such a complex downmixing architecture, in which
case, a single target’s baseband signal is given by

sbb(t, td) = exp

(
j2π

(
βtd
Tc

t− βtd
2

2Tc
+ tdf0

))
(3)

where j is the imaginary unit.
The baseband signal is sampled by the radar processor. Its

frequency, which is proportional to the target range, is esti-
mated in the frequency domain [17]. The discrete frequency-
domain baseband signal will be referred to as the “range
spectrum” because the frequency-domain bins correspond to
discrete target ranges.

III. EXTENDING FMCW RADAR RANGE

The goal of this paper is to maximize the range of the
radar by maximizing the effective signal-to-noise ratio (SNR)
in the FMCW range spectrum. The judicious choice of FMCW
parameters and the initial processing help accomplish this SNR
gain without increasing transmit power.

A. Chirp Interval

For a fixed sampling rate, SNR increases linearly with the
length of the chirp interval [17]. The size of hardware buffers
can limit the maximum chirp interval. For example, the Inras
RadarLog development kit [18] has a maximum buffer size of
10,240 samples. If the sampling rate is set at 2.5 Msps, this
buffer size limits the chirp interval to a maximum of 4.096 ms.

B. Filtering

In addition to the signal of interest, the baseband signal
contains wideband noise. If there are known constraints on
the frequency content of the signal of interest, then SNR can
be increased by filtering out some of the noise. For example,
because the baseband signal is usually sampled by an analog-
to-digital converter (ADC), the signal of interest is known to
reside below the Nyquist frequency of the ADC sampling rate.
In this case, a lowpass filter can remove all of the noise power
above the Nyquist frequency before the final sampling stage.
For this reason, a low sampling rate is preferable for high-
sensitivity FMCW radar.

C. Coherent Integration of Multiple Chirps

The range spectra from multiple chirps can be summed
coherently (retaining phase information in a complex sum)
to increase SNR if the target signal’s phase is consistent or
predictable across the chirps. This causes the signal to add
constructively, while the noise averages out to its mean. The
result is that SNR increases by a factor of Nc, where Nc is
the number of recorded chirps [19].

D. Noncoherent Integration of Multiple Chirps

When coherent integration is not possible due to phase un-
certainty, noncoherent integration may be performed by sum-
ming the magnitudes of range spectra from multiple chirps.
This discards the phase information, and is therefore less
efficient than coherent integration. Noncoherent integration
increases SNR by a factor of Ncγ where γ ∈ (.5, 1) [19].

E. Angle of Arrival Selection

If there is prior knowledge of a target’s azimuth and
elevation, then the FMCW processor may use a phased array to
ignore signals arriving from all but the target direction. In the
DAA application, this direction is determined by cameras. This
relaxes the computational demands of the signal processing,
allowing more time for the other SNR-increasing techniques
mentioned above [15].

IV. LIMITATIONS ON INCREASING SNR

The long measurement interval, which is central to this
paper’s SNR-increasing technique, makes the radar more
sensitive to the relative motion between the radar platform
and the target. Relative target motion is characterized by
changes in slant range and bearing over the measurement
interval. Changes in bearing may be easily detected by the
camera system and compensated for via simple beam steering.
However, changes in range are more problematic.

A. Phase Drift

The phase of a target’s radar echo depends on the modulus
of the round-trip distance and signal wavelength. Due to the
short wavelength of MMIC-based FMCW radars (millimeters),
the phase of the corresponding peak in the range spectrum is
extremely sensitive to changes in target range [17]. This has
two effects:

1) The phase of a target’s peak in the range spectrum is
inconsistent between consecutive range spectra, which
makes coherent integration impossible without phase cor-
rection.

2) Targets with nonzero radial velocity reflect a Doppler-
shifted waveform. This results in a range estimation
error because distance is determined by the frequency
of the radar echoes. However, the radar processor can
compensate for this Doppler shift by associating radar
echoes across an up-chirp and down-chirp [17]. The
Doppler problem is therefore not treated in this paper.

3



B. Range Bin Migration

Low SWaP-C FMCW chirps are configured to be short
enough (e.g., 1 ms) that, for the range rates encountered in
practice, a target’s signal is concentrated in only one range bin
of a single FMCW chirp’s range spectrum. Standard FMCW
processing assumes that targets remain in the same range bin
over all the chirps in a measurement interval. However, non-
constant slant range may cause a target’s signal to migrate
between range bins over an extended observation interval
and thus invalidate this standard assumption. This so-called
range bin migration (RBM) complicates the process of chirp
combination because it forces the radar processor to determine
not only the initial range to the target, but also account for the
increased or decreased range at each successive chirp.

V. MAXIMUM LIKELIHOOD ESTIMATION

When approaching the problem of target motion estimation,
it is natural to ask whether the maximum likelihood (ML)
estimator is feasible to implement. In the DAA case, a visual
detector has identified a target for which the range function
is unknown. Thus, the object of estimation is the slant range
of the target, which has many continuous degrees of freedom.
To specify an ML algorithm, one must define bounds on each
degree of freedom and determine an appropriate quantization
for each estimated parameter. At low SNR, which is the regime
in which this paper’s algorithms must operate, ML estimation
then becomes a search over the discretized motion parameter
space. Let ρ̄(t,α) approximate the true slant range ρ(t) of
the target as a linear combination of basis functions. Each
basis function is a template pattern that represents an additive
contribution to the target’s slant range.

ρ(t) ≈ ρ(t,α) =

M∑
k=0

αkfk(t) (4)

where
α = [α0, α1, . . . , αM ] is a vector of motion parameters
M + 1 is the number of parameters
The set F = {f0(t), f1(t), . . . , fM (t)} spans the possible

target trajectories
Specific choices of F (motion models) will be introduced in
Section VI. The ML estimator for α will now be derived.

Consider a radar that collects Ns noisy baseband samples
for each of Nc chirps in the presence of a single target. For
simplicity, assume that the SNR is constant at all ranges.
The baseband FMCW signal may be modeled as a complex,
discrete function [20]

s[ns, nc] = s̃[ns, nc] + w[ns, nc] (5)

where
ns ∈ {0, . . ., Ns−1} is the fast time index
nc ∈ {0, . . ., Nc−1} is the slow time index
s̃[·] is the ideal (noiseless) baseband signal
w[·] is zero-mean complex Gaussian noise

Fast and slow indices are used to indicate time relative to
elapsed chirps and elapsed samples within a chirp: If Ts is

the sampling interval, and Th is interval between the start of
consecutive chirps, then the nths sample within the nthc chirp
is taken at time nsTs + ncTh.

Let g[ns, nc,α] be a function that models normalized,
noiseless baseband samples given the motion model param-
eters α. This function is simple to construct based on (3).
Simply substitute for t and td:

g[ns, nt,α] = sbb

(
nsTs ,

2

c
ρ̄(nsTs + ncTh,α)

)
(6)

where c is the speed of light. Assume that

g[ns, nc,α] = s̃[ns, nc] ∀ ns, nc (7)

The ML estimator is derived from the minimization of the
negative log-likelihood function

α̂ML = argmin
α

Ns−1∑
ns=0

Nc−1∑
nc=0

∣∣s[ns, nc]− g[ns, nc,α]
∣∣2 (8)

The summands in (8) can also be written as

s∗[·]s[·]− s∗[·]g[·]− s[·]g∗[·] + g∗[·]g[·] (9)

where (·)∗ denotes complex conjugation.
The sum across s∗[·]s[·] is constant because it is independent

of α. Because g[·] is normalized, the sum across g∗[·]g[·] is
also constant for all α. Therefore, the ML estimator may be
written

α̂ML = argmax
α

Ns−1∑
ns=0

Nc−1∑
nc=0

Re {s[ns, nc]g∗[ns, nc,α]} (10)

At low SNR, optimization techniques such as gradient ascent
cannot be applied to quickly find α̂ML because the landscape
of the objective function is suffused with noise-induced local
maxima. Instead, a search throughout the vector space of α is
required [21]. Such a search presents a serious computational
burden: its complexity grows exponentially with M + 1,
and, because only the real part of the complex product is
summed, the argmax operand is sensitive to small phase
inaccuracies in the model g[·]. Therefore, even though the
search is trivially parallelizable, real-time applications may
require more efficient suboptimal estimators.

A. ML Search Quantization
How coarsely may the parameter space for ML search be

quantized before one runs the risk of “missing” the global
optimum? To formalize the notion of missing the optimum,
suppose a lower bound is placed on coherence, a measure
of alignment between modeled and true motion. Let θk be
the average phase difference over the kth chirp between the
approximate motion model and the true model. The coherence
bound is then given by

Cmin ≤ C = Re

{
1

Nc

Nc−1∑
k=0

exp(j2πθk)

}
(11)

The coherence between ρ̄(t,α) and a particular ρ̄(t,α+ε)
is approximated by

C ≈ Re

{
1

Tm

∫ Tm

0

exp

(
j

M∑
k=0

εkνk(t)

)
dt

}
(12)
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where

νk(t) =
4πf0
c

fk(t) (13)

and εk is the parameter error. Expanding (12) to second order
in εk yields

C ≈ 1− 1

2

M∑
k=0

M∑
`=0

εkε` 〈νk(t)ν`(t)〉 (14)

= 1− 1

2
εTNε (15)

where 〈·〉 denotes the mean over t ∈ [0, Tm], and N is the
Gram matrix with elements 〈νk(t)ν`(t)〉. Now

εTNε . 2(1− Cmin) (16)

When the error is in dimension k, solving for εk gives an
expression for the quantization required to maintain a given
coherence. A coherence of .5 is considered adequate for most
radar applications, in which case the quantization requirement
becomes

|εk| .
√

2(1− Cmin)√
〈νk(t)2〉

(17)

(Note: there is a second definition of coherence that is appro-
priate for detection rather than estimation; it replaces Re with
the absolute value in 11.)

VI. MOTION MODELS

The radar estimator must make assumptions about target
motion to handle the effects of measurement noise, phase
drift, and RBM. These assumptions are manifested in the
motion model introduced in (4). This section presents two
possible motion models, i.e., two possible choices for F : the
polynomial model and the principal component model.

A. Polynomial Model

The polynomial model is convenient because it has an
intuitive physical interpretation: the elements of α relate
directly to position, velocity, acceleration, etc. Let the slant
range to the target aircraft ρ(t) be an infinitely-differentiable
function of time. Chirps are collected over a measurement
interval [0, Tm]. Over this time, ρ(t) may be approximated by
a truncated Taylor series expanded about t = Tm/2. In terms
of (4), this is expressed as

αk =
ρ(k)(Tm

2 )

k!
(18)

fk(t) =

(
t− Tm

2

)k
(19)

M = Mp (20)

where Mp is the order of the Taylor polynomial.

1) Determining Polynomial Order (Mp): The measurement
interval Tm is closely related to the required polynomial order
Mp. Intuitively, a longer Tm demands a Taylor series that is
accurate over a longer interval, resulting in a larger Mp.

Define dl ≥ |ρ(l)(t)| as an a priori upper bound on the
magnitude of the lth derivative of ρ(t) for all t ∈ [0, Tm].

The Lagrange error bound on ∆(t) = |ρ̄(t,α) − ρ(t)|
guarantees that

∆(t) ≤
dMp+1

(Mp + 1)!

∣∣∣∣t− Tm
2

∣∣∣∣Mp+1

(21)

for all t ∈ [0, Tm].
Therefore, the maximum unmodeled distance error is,

∆max = max
t∈[0,Tm]

∆(t) (22)

Under this framework, a designer can determine the required
Mp by specifying dl, Tm, and a maximum allowable ∆max.

2) Design Example: Consider an FMCW radar system
whose range bins are 15 cm wide and whose targets are
guaranteed to not exceed a maximum acceleration of 10 m/s2

and a maximum jerk of 5 m/s3. The designer determines that
Tm = 1 s is required for adequate SNR. The criteria are as
follows:

∆max ≤ 0.15 m
d2 = 10 m/s2

d3 = 5 m/s3

Tm = 1 s

For Mp = 1, (21) and (22) yield ∆max = 1.25 m. This
violates the first criterion, so the designer must move to
Mp = 2. In this case, ∆max = 0.104 m. Thus, it will always
be possible to find a second-order motion model accurate to
within 1 range bin of the actual target position over the entire
measurement interval.

3) Bounding the Search Space: As shown in Supplement A,
bounds for each polynomial coefficient may be derived from a
constraint on the throttle function of the target. This provides
an intuitive means of limiting the parameter search space.

B. Principal Component Model

Under the hypothesis that the range evolves as a Gaussian
process, and under the minimum-mean-square-error criterion,
principal component analysis (PCA) gives a basis of search
directions that minimizes truncation error, i.e., RMS residual
range, for any given dimension of search space. Gaussian
range models include nearly-constant-position, -velocity, and
-acceleration models, as well as Fourier or polynomial models
with jointly Gaussian coefficients.

Chirps are collected over a measurement interval [0, Tm].
In each of Nc chirps, the target reflects the radar signal
with some phase shift. Suppose that the vector of phase
samples is drawn from some normal distribution N (µ, P ).
For any given P , PCA gives a basis of eigenfunctions fk and
corresponding eigenvalues σ2

k such that the greatest part of
the variance of the distribution of phase functions N (µ, P )
is captured by variability along the axes defined by the first
MPCA eigenfunctions.
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As noted in Section V, it is not sufficient to specify the
axes of the ML search grid: one also requires bounds on these
axes and a quantization scale. The quantization argument of
Section V-A applies here without alteration. This section will
therefore focus on the PCA procedure itself, bounds on the
axes, and bounds on the number of axes required to achieve
a given degree of coherence.

1) PCA for Selected SDE Models: An important category
of Gaussian processes are the (Markov) Itô linear stochastic
differential equation (SDE) models. These include nearly-
constant-position, -velocity, and -acceleration models as spe-
cial cases. For these models, PCA works out to the following
procedure: (1) construct the linear covariance operator; (2)
write out the Fredholm integral equation for the eigen-problem
of the covariance operator; (3) convert the integral equation to
an ordinary differential equation (ODE) using the Fundamental
Theorem of Calculus; (4) find the general solution of the ODE
and substitute back into the integral equation; (5) solve for
conditions on the existence of eigenvalues.

For the nearly-constant-position model, the kth-largest
eigenvalue and the corresponding eigenfunction are given by

λk = ω−2k fk(t) =

√
1

2Tm
sin(ωkt), where (23)

ωk =
kπ + π

2

Tm
(24)

Note that the eigenvalues fall off with index k like 1/k2.
This is because the nearly-constant-position model varies less
in ways that correspond to high-frequency motion.

The results for the nearly-constant-velocity model follow
λk = ω−4k with ωk = φk/Tm determined by the positive roots
of

cos(φ) + sech(φ) = 0 (25)

Note that the nearly-constant-velocity eigenvalues drop even
more rapidly than nearly-constant-position because nearly-
constant-velocity is a double-integrator system, and high-
frequency trajectory components are strongly suppressed in
probability. The reader is directed to Supplement B for a
detailed derivation of these expressions.

2) Coefficient Bounds: No finite search grid will include
the entire Gaussian distribution. Let εb be an upper bound
on the probability that the true range function is not in the
search grid. Then, by application of the Gaussian tail bound,
the magnitude of each coefficient in the search grid may be
limited to

|ak| ≤
√
λk Φ−1

(
(1− εb)

1
MPCA

)
(26)

where Φ() is the cumulative distribution function of the normal
distribution.

3) Determining MPCA: The final aspect of the PCA model
is the number of coefficients required to achieve a certain
accuracy. For a minimum absolute-value coherence of .5,
the asymptotic solution (Tm → ∞) for the nearly-constant-
velocity case is given by

M =
1

π
4

√
8 ln

(
1

ε

)
Tm

2σ02Th −
1

2
(27)

with
σ0 = 2πf0νRMS (28)

where
Tm is the measurement interval
Th is the time between the start of consecutive chirps
νRMS is a nearly-constant velocity model parameter

The reader is directed to Supplement B for a detailed deriva-
tion of these expressions.

C. Choosing a Motion Model

Both motion models presented in this section are useful in
different senses. The polynomial model’s intuitiveness makes
it preferable for demonstration, so it is used in the remainder
of this paper where computational complexity is of secondary
importance. The principal component model is optimal in the
sense that it minimizes the dimension of the search space, so
it would be the better choice for practical implementations.

VII. COMPUTATIONAL CONSIDERATIONS

As shown in Section V, the optimal ML estimator may
be computationally intractable for many applications. This is
driven by the high-resolution search over the motion param-
eters. Intuitively, the ML estimator must find an α̂ML that
matches both the RBM and phase drift of the true motion
model over the measurement interval. Suboptimal techniques
will now be examined that decouple RBM and phase drift. In
doing so, the algorithms exploit the relative coarseness of the
range bins to significantly reduce the search space.

These techniques all operate in the range-time space. This
requires a discrete Fourier transform, typically implemented
via the fast Fourier transform (FFT) and referred to hereafter
as such, of the baseband signal s[ns, nc] along the fast-time
dimension to obtain S[rs, nc], where rs ∈ {0, 1, . . . , Ns−1}
is the range bin index.

A. RBM Mitigation

RBM mitigation concentrates the target signal energy into a
single range bin, yielding a considerable increase in effective
SNR. For example, let SNRc be the SNR of a single fast-time
chirp. After the range FFT, the signal is given by S[rs, nc].
In the worst case, the target signal is in a different bin
in each chirp’s range spectrum. In this case, the slow-time
signal in each range bin has an SNR of at most SNRb =
(SNRc)(Ns/Nc). After RBM mitigation, all the signal energy
resides in a single range bin. The SNR of the corresponding
slow-time signal is given by (SNRc)(Ns).

Several algorithms exist for RBM mitigation in pulsed-
Doppler radar applications [22], [23]. The narrow sampling
bandwidth and dechirp-on-receive architecture of low SWaP-
C FMCW systems prevent the direct application of these
pulsed-radar techniques. Motion compensation algorithms for
FMCW synthetic-aperture radar offer promising insight, but
they assume that the platform motion is known relative to the
target scene [24], [25]. Reference [26] offers two methods for
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linear (Mp = 1) RBM compensation. These involve changing
each chirp’s bandwidth β or duration Tc such that linear RBM
is naturally cancelled. These techniques are not considered in
this paper due to the constraints they impose on the radar
hardware.

The most straightforward way to accomplish RBM mit-
igation for FMCW radar is to search over target motion
hypotheses. This search over target trajectories is much coarser
than the ML search because it only needs to match the true
trajectory to within a range bin, whereas the ML search
requires phase-level accuracy. Let S̄i[rs, nc] denote the range-
time baseband signal where each range spectrum has been
shifted according to the ith RBM hypothesis. Under the best
RBM hypothesis index i∗, all the signal energy will reside
in a single range bin of S̄i∗ [rs, nc]. The best hypothesis will
be chosen as that which maximizes the detection statistic of
a signal detector applied to each S̄i[·]. Signal detectors are
examined below.

B. Signal Detection for Mp = 1

For a given range bin index r, S̄i[r, nc] is a sequence of
complex values along the slow-time dimension. The radar
processor simply needs to find the range bin index r∗ con-
taining the target’s signal. An ML search over velocity would
accomplish this. Because the phase progression of S̄i∗ [r∗, nc]
is linear for Mp = 1, the ML search may be efficiently
implemented as an FFT along the slow-time dimension. This
runs in O(NsNclog(Nc)) time. Conveniently, the highest peak
in the resulting range-Doppler space indicates ML estimates
for range and Doppler [17], [27].

C. Signal Detection for Mp > 1

For Mp > 1, the phase progression of S̄i∗ [r∗, nc] is a
polynomial of order Mp. Again, the optimal solution for
parameter estimation is an ML search [21]. Because this
requires an (Mp+1)-dimensional search in each range bin,
it quickly becomes infeasible to do in real time.

Many techniques exist for estimating the parameters of
polynomial-phase signals. For second-order polynomial-phase
signals, [28] and [29] offer search-based algorithms that
approach optimal performance at high SNR. Reference [30]
presents a fast solution for third-order polynomial-phase sig-
nals. All of these algorithms would require adaptation to
be useful in the present scenario because the radar proces-
sor is not really interested in estimating the parameters of
the polynomial-phase signal. Rather, it need only distinguish
between range bins that contain signal and range bins that
don’t. Therefore, this paper considers the following three
detectors for Mp > 1: the discrete polynomial transform
(DPT), noncoherent integration, and spectral entropy. Each of
these is examined below and simulated in Section VIII-A.

D. Discrete Polynomial Transform (DPT)

The DPT is a parameter-estimation algorithm suitable for
any polynomial order that is also useful for detection [21].
It is computationally efficient with O(NsNclog(Nc)) runtime,
but requires relatively high SNR to be effective for detection.

E. Noncoherent Integration

Described in Section III-D, this technique is attractive
for its simplicity and O(NsNc) runtime, though it sacrifices
performance by discarding phase information.

F. Spectral Entropy

The signal-bearing bin contains a slow-time complex signal
whose phase and amplitude correspond to the target motion.
Bins without signal simply contain Gaussian noise. Spectral
entropy offers an efficiently-calculated quantity that measures
the “randomness” of the slow-time signals in each bin [31].
Signal-bearing bins exhibit lower spectral entropy than those
that contain only noise. Like the DPT, this method requires
O(NsNclog(Nc)) time. The spectral entropy of a complex
signal z[n] is most easily computed as follows:

1) Compute the power spectrum Pz[f ] = |F{z[n]}|2.
2) Normalize Pz[f ] so it can be treated as a probability mass

function (PMF).
3) Compute the Shannon entropy of this PMF, which is the

spectral entropy.
The algorithm used in this paper is similar to the more
advanced technique used in [31], which involves a windowed
short-time Fourier transform to compute the power spectrum.

VIII. SIMULATION RESULTS

A. Signal Detection Comparison

The FFT, DPT, noncoherent integration, and spectral en-
tropy signal detectors were tested against each other in simu-
lation. To permit a focus on the detection problem unencum-
bered with RBM mitigation, the simulation’s motion model
was such that the target remained in a single range bin over
the measurement interval. Results are presented in Fig. 2.

B. Full Simulation for Mp = 1

This simulation applied a nearly-constant velocity model
that gave rise to significant RBM which had to be compen-
sated. Results are presented in Fig. 3.

C. Full Simulation for Mp = 2

This simulation applied a nearly-constant acceleration
model that gave rise to significant and rate-increasing RBM
which had to be compensated. Results are presented in Fig. 4.

IX. EXPERIMENTAL RESULTS

This paper’s range-extending technique was implemented
and tested with the Inras RadarLog, a development platform
for 77 GHz radar [18]. Note that the techniques explored in
this paper are transferrable to the 24 GHz band, which is pre-
ferred for aviation in the United States due to FCC regulations
[33]. To simulate in-flight conditions, the RadarLog was placed
face-up on the ground in an open field. An unmodified DJI
Mavic 2 Pro drone [34] was flown at various discrete altitudes
up to 120 m directly above the RadarLog to act as the target.
See Fig. 5 for a photo of the experimental hardware. At each
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Fig. 2: Simulation results for four detectors: DPT, FFT,
noncoherent integration, and spectral entropy. The simulator
randomly generated 256 target trajectories for the Mp = 1,
Mp = 2, and Mp = 3 cases. The vertical axes reflect the
percentage of these 256 trajectories whose range was estimated
to within 1 m of the true range. Each trajectory was generated
such that the target remained in a single range bin over the
entire measurement interval. 1024 chirps were simulated for
each trajectory, and each method was tested on the simulated
baseband signals.
The FFT and DPT are optimal and equivalent for Mp = 1
[21], [27]. The DPT uses an internal zero-padded FFT for
greater resolution, which accounts for the slight difference in
the plots. For Mp > 1, the DPT requires relatively high SNR,
and the FFT performs poorly because it implicitly assumes
that the slow-time signals have linear phase. The FFT was
included in the Mp > 1 simulations as a point of interest,
though it is only appropriate for Mp = 1.
Spectral entropy and noncoherent integration are invariant to
Mp because neither method makes any assumptions about the
order of the slow-time phase. Spectral entropy consistently
outperforms noncoherent integration at the cost of greater
computational complexity.
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Fig. 3: Simulation results for Mp = 1. The simulator randomly
generated 256 target trajectories using the nearly-constant-
velocity model presented in [32]. The vertical axis reflects the
percentage of these 256 trajectories whose initial range was
estimated to within 1 m of the true initial range. The target
velocities ranged from −5.8 m/s to 5.8 m/s, and the velocity
hypotheses for RBM mitigation covered the same range. 1024
baseband chirp signals were simulated for each trajectory, and
these were processed using range bin shifting and a slow-time
FFT as described in Sections VII-A and VII-B.
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Fig. 4: Simulation results for Mp = 2. The simulator randomly
generated 256 target trajectories using the the nearly-constant-
acceleration model presented in [32]. The vertical axis reflects
the percentage of these 256 trajectories whose initial range was
estimated to within 1 m of the true initial range. The target
velocities ranged from −2.9 m/s to 2.9 m/s, and the target
accelerations ranged from −2.8 m/s2 to 2.8 m/s2. Hypotheses
for RBM mitigation covered the same ranges. 1024 baseband
chirp signals were simulated for each trajectory, and these were
processed using range bin shifting and noncoherent integration
as described in Sections VII-A and VII-E. Noncoherent inte-
gration was applied for detection instead of spectral entropy,
which as shown in Fig. 2 is superior for the Mp = 2 case, to
reduce the computation demands of the simulation.

altitude, the drone was commanded to hover. The drone would
have been detectable beyond 120 m, but FAA regulations do
not allow remote pilots to operate above that altitude without
a waiver.

Chirp parameters were chosen based on the theory in
Section III. A low sampling rate of 2.5 Msps and long
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Fig. 5: Experimental hardware: the RadarLog unit rests on
a ground pad in the upper right corner of the photo. An
unmodified DJI Mavic 2 was flown up to an altitude of 120 m
to act as a target.

chirp durations up to 4.096 ms were chosen to maximize the
effective SNR. See Table I for a list of all configurations.
These configurations were tested on the target UAV at 20 m
increments up to an altitude of 120 m. The transmit power was
held constant at 10 dBm for the entire experiment. The results
of this experiment are summarized in Fig. 6. Only data points
for which the drone was detectable are plotted.

TABLE I: Chirp configurations tested at each altitude. Note
that the number of chirps for each configuration was adjusted
to maintain a constant measurement interval. In other words,
the same amount of data was collected for each chirp configu-
ration. The chirps were summed noncoherently to produce the
results in Fig. 6.

Chirp Interval Buffer Length Number of Total Measurement
(µs) Chirps Interval (s)

4096 10240 256 1.049
2048 5120 512 1.049
1024 2560 1024 1.049
512 1280 2048 1.049
256 640 4096 1.049

Notice that, for the most part, the shorter chirp intervals
yield lower SNR despite the constant measurement interval.
This happens because an FMCW chirp is intrinsically co-
herent, and therefore more efficient at raising SNR than the
noncoherent integration used to combine separate chirps. In
general, a few long chirps will yield higher SNR than many
short chirps over equivalent measurement intervals. In practice,
chirp length is limited by RBM.

A. RBM and Phase Drift
Although the target drone was commanded to hover at

each altitude, the experimental data exhibits mild RBM and
significant phase drift which are depicted in Figs. 7 and 8,
respectively. These figures are representative of the RBM and
phase drift for all configurations listed in Table I. Linear range
bin shifting and noncoherent integration were used to mitigate
these effects.
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Fig. 6: Effective SNR of the radar return after range bin
shifting (assuming Mp = 1) and noncoherent integration.
Noise power was estimated from control data which was
recorded with no target present. This noise estimate was used
to calculate SNR.
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Fig. 7: RBM in experimental data. The magnitudes of the
signal-containing range bins are shown for each chirp in the
measurement interval. These data were collected at 20 m range
with Nc = 1024 and Ns = 2560. The bright horizontal band
indicates that the target dwelled in at most four range bins
over the measurement interval. Note that at longer ranges, the
signal’s bright band would not be visible in such magnitude
plots.

X. EXTRAPOLATION OF RESULTS

The foregoing experimental results can be extrapolated to
infer the performance of a real system designed with the same
techniques. Consider how target radar cross section (RCS) and
transmit power would change upon application of this paper’s
techniques to UAM:

1) Radar Cross Section: Radar cross section is a measure
of a radar target’s reflectivity. The signal power in watts that
a radar receives from a target is given by [17]

PRX =
PTXGTXσARX

(4π)2d4
(29)

where
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Fig. 8: Phase drift in experimental data. Gray points indicate
the raw phase of the slow-time signal in the target’s range
bin (120 m). Each phase measurement is vertically replicated
every 2π radians to reveal contours in the plot. These data
were collected with Nc = 1024 and Ns = 2560.

PTX is the transmit power (W)
GTX is the transmit antenna gain (dimensionless)
σ is the RCS of the target (m2)
ARX is the effective aperture of the receive antenna (m2)
d is the distance to the target (m)

An object’s RCS is often difficult to calculate because it
depends on many factors, including shape, material, size, and
orientation. For the purpose of this analysis, assume that RCS
scales linearly with geometric cross section. The DJI drone in
this experiment has overall horizontal dimensions of 0.322 m×
0.242 m [34].

Joby Aviation, a leader in UAM technology, recently un-
veiled their VTOL airframe, which has a wingspan of 10.7 m
[35]. Assume the height is 3 m. Under these assumptions, the
ratio of geometric cross sections (front of Joby’s airframe to
the bottom of the DJI drone) is about

ΣJoby

ΣDJI
≈ 10.7 m× 3 m

0.322 m× 0.242 m
≈ 412

According to (29), this increase in RCS translates to a range
increase by a factor of

4

√
ΣJoby

ΣDJI
≈ 4.5

The RadarLog detected the DJI drone at 120 m using only
linear range bin shifting and noncoherent integration, so it can
be expected to detect a typically-sized VTOL aircraft at 540 m
under similar conditions with no modification to the hardware.

2) Transmit Power: The RadarLog currently transmits at
10 dBm. With a more robust transmit amplifier, the power
could be increased by 10 dB with little change to SWaP-C.
This would increase overall performance and allow detection
of targets in more challenging conditions.

XI. CONCLUSIONS

Recently-developed low-cost radar chipsets are enjoying
widespread use in the automotive industry, but their appli-
cation to other industry segments is limited by their relatively
short range. If their range could be extended, these emergent
chipsets would be readily adopted for use in long-range
applications. They would be particularly useful in detect-and-
avoid systems for urban air mobility (UAM), where they would
provide a fundamental complement to existing camera-based
systems.

A range-extending solution for low-cost radar was de-
veloped, analyzed, and tested. The solution employs SNR-
maximizing parameters, extended measurement intervals, and
additional signal processing to maximize range. Using the
maximum likelihood estimator as a starting point, this paper
developed more efficient techniques for target range estimation
that are robust to target motion. The performance of these
techniques was quantified in simulation and demonstrated
via experiment. The results show that low-cost radar can
be adapted for range-extended applications with the method
presented in this paper. These techniques will enable UAM
and other robotics applications to enjoy the benefits of the
latest low-cost radar hardware.
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