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Abstract—A method is developed and tested for extending the
range of low-cost radar chipsets for use in urban air mobility
(UAM) vehicles. The method employs weak-signal correlation
techniques and long measurement intervals to achieve a 1 km
range. Low-cost radar is an enabling technology for vertical
take-off and landing (VTOL) aircraft envisioned for large-scale
deployment in urban areas. These aircraft must be autonomously
piloted to make them economically feasible, but autonomous
systems have yet to match a human pilot’s ability to detect and
avoid (DAA) obstacles. Visible light cameras are useful for this
application, but cameras alone are insufficient, as they are fun-
damentally unable to resolve range. Existing commercial radar
units would suffice for DAA, but their large size weight, power,
and cost (SWaP-C) militates against their application to UAM.
The technique detailed in this paper is a fused camera-radar
solution that exploits the camera’s excellent angular resolution
to guide radar signal processing so that signals arriving from a
camera-detected target are combined constructively. Such guided
processing significantly extends the range of low SWaP-C radar
chipsets, making them useful for DAA. An analysis of the fused
technique’s robustness to target velocity uncertainty is presented,
along with experimental results indicating that a typically-sized
VTOL aircraft would be detectable at a range of 1 km.

I. INTRODUCTION

Urban air mobility (UAM) and urban air logistics (UAL)
are the subject of an intense worldwide research and de-
velopment effort. Existing aerospace companies and start-
ups alike are developing small, vertical take-off and landing
aircraft (VTOLs) with the goal of offering short-distance air
transportation as an alternative to ground transportation for
both people (UAM) and products (UAL). These aircraft will
eventually be autonomously piloted to reduce cost [1], [2].

Detect and avoid (DAA) is an essential capability for achiev-
ing large-scale UAM and UAL [3]. Autonomously-piloted
aircraft must be able to reliably see and avoid airborne objects
such as conventional aircraft, VTOLs, small delivery drones,
and even large birds. This capability is essential when a threat-
ening object is not broadcasting its position (non-cooperative)
or during a malfunction of cooperative collision avoidance
systems. DAA systems must match or exceed a human pilot’s
ability to visually avoid obstacles [4], [5]. Current research is
focused on camera-based systems, attractive for their low size,
weight, power, and cost (SWaP-C). The fundamental limitation
of visual DAA systems is their inability to accurately resolve
range. Thus, cameras alone are not sufficient for reliable DAA.
A capable radar system with low SWaP-C would provide a

fundamental complement to visual sensing for autonomous
DAA, since radar has excellent range discrimination. This
work explores signal processing techniques for achieving 1 km
radar range with low-cost monolithic microwave integrated
circuit (MMIC) based radar.

A. Related Work

A growing literature explores camera-based solutions for
DAA [6]–[10]. However, much of the literature does not
consider the problem of range estimation; it focuses instead
on improving the detection and false alarm probabilities of
the vision algorithms. The solutions for camera-based range
estimation that do exist either perform poorly or impose
unrealistic constraints:

1) Contrast-to-Noise Ratio: In [11], Minwalla and Ellis
propose a DAA solution that leverages an array of narrow-
field-of-view cameras. It uses a time series of contrast-to-
noise ratios to estimate range, but the errors appear to be at
least ±1 km, which is unacceptably large [11]. Additionally,
this method can be expected to be sensitive to atmospheric
conditions such as fog and precipitation.

2) Stereo Camera Triangulation: Accurate depth sensing is
difficult to achieve at long range because camera separation
is limited to the size of the vehicle. This limitation introduces
severe geometric dilution of precision at long range. This
difficulty is compounded by airframe flexibility [12]. Consider,
for example, stereo cameras separated by 10 m with a focal
length of 4 mm and 4K resolution (3840 × 2160). Assume
a target at 500 m. For these conditions, the range error per
degree of camera misalignment is 440 m/◦, not accounting
for noise in the cameras’ bearing estimates. These properties
prompt Mcfayden and Mejias to dismiss stereo cameras as
infeasible for DAA [12].

3) Bearings-Only 3D Location Estimation: Range can be
observed under bearings-only tracking if the ego-aircraft “out-
maneuvers” the target. But the large maneuvers required of
the ego-aircraft, and the long filter convergence time (5-
30s), render bearings-only unacceptable as a primary tracking
method [12].

4) Apparent Size: Estimating range based on an object’s
apparent size in an image requires knowledge of the physical
size of the target object, which is generally not available [11],
[12].
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B. Deficiency in Existing Radar Solutions

Although radar is an obvious means of directly measuring
range, current research in DAA for UAM avoids commercial
radar units due to their poor SWaP-C characteristics [12].
For example, the EchoFlight Airborne Radar from Echodyne
costs $20k per unit, consumes 40 W, and has a mass of 800 g
[13]. Moreover, three or four separate units would be required
to obtain an adequate field of view. Thus, even if volume
pricing reduced the unit price significantly, such products
would impose a prohibitive strain on a VTOL’s SWaP-C
budget. A radar solution with low SWaP-C is highly desirable
for designing a feasible DAA system for UAM.

Radar MMICs have recently become available under $100
in 1000-unit volume pricing. For example, Analog Devices
offers a chipset for the 24 GHz band which costs about $70
in volume [14]. Such chips are targeted to automotive and
industrial applications, but they could be adapted for UAM
and UAL.

C. Adapting Low SWaP-C Radar for UAM and UAL

Due to their low power, radar systems built around these
MMICs typically have ranges only up to 200 meters when
operating in a traditional scanning mode. Their range must
be increased to make them viable for use in UAM and UAL.
It is possible to increase their range sensitivity beyond 1 km
with greater transmit power and application of weak-signal
correlation techniques in which the frequency-modulated con-
tinuous wave (FMCW) radar takes measurements over an
extended interval (e.g., up to two seconds) at a chosen azimuth
and elevation. Such measurement intervals make blind 2D
scanning too slow, but can be effectively used to determine
range to a target whose azimuth and elevation is already
known.

This paper proposes a two-step technique for low SWaP-C
DAA. First, a machine vision algorithm operates on visible
light images to detect a target of interest and determine its
azimuth and elevation relative to the ego-aircraft. Second,
radar returns arriving from the detected direction are construc-
tively combined to obtain a range estimate. The ego-aircraft
then has enough information to infer the relative position
of obstacles in the airspace. In the following sections, this
technique is described in detail and analyzed for robustness to
target velocity uncertainty. Experimental results with a low-
cost radar chipset show that a typically-sized VTOL aircraft
at 1 km range would be detectable.

D. Contributions

This paper makes two primary contributions. First, it de-
velops a signal processing technique for extending the range
of MMIC-based radar to 1 km, and analyzes the technique
for sensitivity to target velocity uncertainty. Second, it reports
experimental results that demonstrate the feasibility and ef-
fectiveness of the proposed technique. In so doing, this paper
lays the foundation for implementing low SWaP-C, long-range
radar for fused camera-radar systems. This is an important

step toward feasible and reliable DAA for UAM, UAL, and
autonomous aviation in general.

II. THEORY

FMCW radar determines range to an object by emitting
and receiving “chirp” signals, which are sinusoidal waveforms
whose frequency increases linearly with time. While trans-
mitting a chirp, the radar simultaneously receives the echo
from that chirp. Because the chirp frequency increases linearly
with time, the difference in frequency of the transmitted and
received signals is proportional to the time-of-flight of the
electromagnetic wave. This difference is therefore proportional
to the distance to the reflecting object. This is illustrated in
Fig. 1.
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Fig. 1: FMCW chirp (solid) with corresponding echo (dashed).
Longer time-of-flight corresponds to a greater frequency dif-
ference between the transmitted and received signals.

To measure this difference in frequency, the transmitted and
received signals are mixed to obtain the so-called intermediate
frequency (IF) signal. The IF contains beat frequencies for
each reflecting target, which are detected in the frequency
domain [15]. The frequency-domain IF signal will be referred
to as the “range spectrum” because the frequency-domain bins
correspond to discrete target ranges.

A. Optimizing FMCW Parameters for Range

The goal of this paper is to maximize the detection range
of the radar by maximizing the signal-to-noise ratio (SNR) in
the range spectrum. There are several ways to accomplish this
SNR increase without increasing transmit power:

1) Chirp Interval: For a fixed sampling rate, SNR increases
linearly with the chirp interval [15]. The size of hardware
buffers can limit the maximum chirp interval. For example, the
Inras RadarLog development kit [16] has a maximum buffer
size of 10,240 samples. If the sampling rate is set at 2.5 Msps,
this buffer size limits the chirp interval to a maximum of
4.096 ms.
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2) Filtering: In addition to the signal of interest, the IF
contains wideband noise. If there are known constraints on
the frequency content of the signal of interest, then SNR can
be increased by filtering out some of the noise. For example, if
the IF is sampled by an ADC, then the signal of interest must
reside below the Nyquist frequency of the ADC sampling rate.
In this case, a lowpass filter can remove all of the noise power
above the Nyquist frequency.

3) Coherent Integration of Multiple Chirps: The range
spectra from multiple chirps can be summed coherently (re-
taining phase information in a complex sum) to increase
SNR if the target signal’s phase is consistent or predictable
across the chirps. This causes the signal to add constructively,
while the noise averages out to its mean. The result is that
SNR increases by a factor of N , where N is the number of
coherently-integrated chirps [17].

4) Noncoherent Integration of Multiple Chirps: When co-
herent integration is not possible (due to phase uncertainty),
noncoherent integration may be performed by summing the
magnitudes of range spectra from multiple chirps. This dis-
cards the phase information, and is therefore less efficient than
coherent integration. Noncoherent integration increases SNR
by a factor of Kα where K is the number of noncoherently-
integrated chirps, and α ∈ (.5, 1) [17].

B. Limitations on Increasing SNR

The DAA application introduces two phenomena which
limit the effectiveness of the SNR-increasing methods de-
scribed above. Both of them are related to relative motion
between the ego-aircraft and the target. Relative target motion
is characterized by changes in range and bearing. Changes
in bearing may be easily detected by the camera system and
compensated for via simple beam steering. However, changes
in range are more problematic.

1) Doppler Effect: If the target range changes over a chirp
interval (non-zero radial speed), then the radar observes a
Doppler shift. This introduces a ranging error because the
radar infers range from the frequency of the received echoes.
The ranging error ed (meters) is approximated by

ed =
Tc
β
f0vr (1)

where
Tc is the chirp time (s)
f0 is the chirp center frequency (Hz)
vr is the radial speed (m/s)

(positive for increasing range)
β is the chirp bandwidth (Hz)

Note that this expression is valid for “up-chirps” where the
frequency vs. time slope is positive. The ranging error would
be negated for down-chirps. This implies that a radar system
could measure radial velocity by associating reflections from
an up-chirp and a down-chirp [15]. Cancelling the Doppler
effect in this way will be necessary in a practical system unless
the target velocity is estimated by other means.

2) Phase Drift: The phase of a target’s peak in the range
spectrum depends on the distance between the transmit an-
tenna and the target. Due to the short wavelength of the system
(millimeters), the phase of this peak is sensitive to changes in
target range [15]. If this target movement renders the phase
inconsistent between chirps, then direct coherent integration
is ineffective. The maximum measurement interval tmax over
which coherent integration between chirps is possible without
phase correction is

tmax =
θtc

2πf0vr
(2)

where
θt ∈ (0, π2 ] is the tolerated phase offset (rad)
c is the speed of light (m/s)

As an example, for θt = 1 rad, f0 = 76 GHz and vr =
50 m/s, the coherent integration interval is about 13 µs. Since
the chirp intervals will be on the order of milliseconds in
the DAA application, it is impossible to employ coherent
integration by simply taking a complex sum over range spectra
from different chirps. However, it is possible to perform
coherent integration with a moving target if the phase drift can
be corrected prior to integration. One such phase correction
solution is presented in the following section.

III. PHASE CORRECTION

Coherent integration of multiple chirps is an efficient way
to increase SNR, but direct coherent integration is not possible
for the DAA application unless vr ≈ 0 m/s. Because vr
is almost always non-zero in practice, a method of phase
correction is necessary to exploit the efficiency of coherent
integration.

A “measurement interval” refers to the time over which
chirps are collected for a single range estimate. For the
purpose of phase correction, vr is assumed to be constant
over the measurement interval. Consider a sequence of N
chirps. The range spectrum for each chirp contains a complex
FFT coefficient in each of its range bins. The phases of these
complex numbers are phase samples of the reflected signal.
Because vr is constant, the reflected signal’s phase changes
linearly with time. Assuming there is no dead time between
the end of a chirp and the start of the next chirp, the phase
drift from chirp to chirp is given (in rad/chirp) by

ω = 2π
vr
λ0
Tc (3)

where
λ0 is the wavelength of the FMCW waveform (m)
Tc is the chirp time (s)

Without loss of generality, assign a phase of 0 rad to the
first chirp in the sequence. Thus, each chirp in the sequence
has a relative phase offset of

φ(n) = ωn (4)

3



where n ∈ {0, 1, . . . , N−1} is the chirp index.
Due to the modulo 2π property of phase offsets, all possible

values of vr can be described by ω ∈ [−π, π). In other words,
the phase drift due to vr is sampled every Tc seconds, which
causes the phase-drift frequency ω to be aliased into the range
[−π, π) rad/chirp.

With this useful bound on ω, one can generate L hypotheses
for the value of ω. To test each hypothesis, phase corrections
(based on the hypothetical values of ω) are applied to the range
spectra of N chirps. The goal is to find a hypothesis that “lines
up” the phase of the signal in each range spectrum. The phase
corrections for each hypothesis are given by

φ̄(n, l) =
2π

L
ln (5)

where l ∈ {0, 1, . . . , L−1} is the hypothesis index.
Thus, the hypotheses are spaced evenly in the interval

[−π, π) radians/chirp. Applying each hypothesis to the data
yields corrected phase offsets of

φ̃(n, l) = φ(n)− φ̄(n, l) =

(
ω − 2π

L
l

)
n (6)

Note that

min
l

∣∣∣∣ω − 2π

L
l

∣∣∣∣ ≤ π

L

Therefore, under the best hypothesis, the phase offset between
consecutive chirps is bounded by π/L. This further implies
that the maximum phase offset between any two chirps in the
group of N chirps is

π

L
(N−1) ≤ θt (7)

where θt ∈ (0, π2 ] is the tolerated phase offset (rad) chosen
by the designer.

Solving for L yields

L ≥ π(N−1)

θt
(8)

Therefore, given N chirps to coherently integrate and a re-
quirement that their relative phases be within θt, the algorithm
can generate L hypotheses with the guarantee that one of
them will succeed in aligning the signal phases for coherent
integration. Although this phase correction technique assumes
that vr is constant, it is still effective when vr deviates slightly.
This is demonstrated in Section IV-A.

In practice, M chirps are collected over a measurement
interval, which may be up to two seconds long. Then, each
hypothesis is applied to correct the phase of the chirp data.
For each hypothesis, coherent integration is performed over
contiguous groups of N chirps. This results in M/N “coherent
groups,” which are then summed noncoherently. The detection
algorithm is applied to each resulting composite range spec-
trum, and the hypothesis yielding the highest SNR is accepted
as the best one.

The parameters M and N are chosen subject to system
constraints such as available computational power, expected

target motion, and required SNR. M should be high enough
to yield adequate SNR, but low enough that the constant vr
assumption remains valid. Similarly, increasing N increases
SNR, but it also increases computational complexity. A larger
N also necessitates larger L, which increases the probability
of false alarm because it increases the likelihood that the
phase of the noise matches one of the hypotheses. Thus, the
optimal choice of M and N strongly depends on the system
characteristics.

A. Angle of Arrival Selection

The FMCW processor operates on signals from a specific
azimuth and elevation determined by cameras. This relaxes
the computational demands of the signal processing, allow-
ing more time for the SNR-increasing techniques mentioned
above. Consider a one-dimensional phased-array radar system
that takes ns samples of each chirp to detect k targets. In
a typical phased array, azimuth is deduced from the phase
offset between multiple receive antennas. Algorithmically, this
is achieved with a fast Fourier transform (FFT) taken over
the receive antennas. The resulting FFT bins correspond to
different bearings. If the targets are assumed sparse, then the
FFT may be zero-padded to achieve super-resolution. Let m
be the length of the azimuth-resolving FFT. Note that m is
lower-bounded by the number of receive antennas. Further,
suppose la one-dimensional arrays are “stacked” to cover a
discrete range of elevations.

Standard Method: If the IF for each receiving antenna
has already been transformed to the frequency domain, an
operation that requires O(ns log(ns)) time, then generating
azimuth data from a single chirp for the entire radar scene
is possible with computational complexity T ′(m, la, ns) ∈
O(m log(m)nsla). Thus, the total computational complexity
of “blind 2D scanning” is

T (m, la, ns) ∈ O(ns log(ns) +m log(m)nsla) (9)

Proposed Method: If, however, the azimuths and elevations
of the k targets are available from cameras, then a particular
azimuth and elevation can be selected in the signal processing.
The azimuth can be selected by simply multiplying each an-
tenna’s IF by an expected phase offset and summing them. Ele-
vation is selected by only accepting input from the appropriate
array. Determining the range of all the targets with this method
implies computational complexity T ′(k, ns) ∈ O(kns), so the
total complexity for a single chirp in this case is

T (k, ns) ∈ O(ns log(ns) + kns) (10)

In addition, the angle-selection method allows the detection
algorithm to operate on k one-dimensional range spectra rather
than a three-dimensional range spectrum, which yields further
computational savings.

IV. EXPERIMENTAL RESULTS

The range-extending approach was implemented and tested
with the Inras RadarLog, a development platform for 77 GHz
radar [16]. Note that the techniques explored in this paper
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are transferrable to the 24 GHz band, which is preferred for
aviation in the United States due to FCC regulations [18]. To
simulate in-flight conditions, the RadarLog was placed face-
up on the ground in an open field. An unmodified DJI Mavic
2 Pro drone [19] was flown directly above the RadarLog
at various altitudes to act as the target. See Fig. 2 for a
photo of the experimental hardware. The radar was tested at
several altitudes up to 120 m. At each altitude, the drone was
commanded to hover. Wind conditions were mild, resulting in
favorable conditions for reducing target velocity uncertainty.
The drone would have been detectable beyond 120 m, but FAA
regulations do not allow remote pilots to operate above that
altitude without a waiver.

Fig. 2: Experimental hardware: the RadarLog unit rests on
a ground pad in the upper right corner of the photo. An
unmodified DJI Mavic 2 was flown up to an altitude of 120 m
to act as a target.

TABLE I: Chirp configurations tested at each altitude. Note
that the number of chirps for each configuration was adjusted
to maintain a constant measurement interval. In other words,
the same amount of data was collected for each chirp configu-
ration. The chirps were summed noncoherently to produce the
results in Fig. 3.

Chirp Interval Buffer Length Number of Total Measurement
(µs) Chirps Interval (s)

4096 10240 256 1.049
2048 5120 512 1.049
1024 2560 1024 1.049
512 1280 2048 1.049
256 640 4096 1.049

Chirp parameters were chosen based on the theoretical
development in Section II. These considerations resulted in
a low sampling rate of 2.5 Msps and a maximum chirp length
of 10240 samples over 4.096 ms. See Table I for a list of all
tested configurations. These configurations were tested on the
target UAV at 20 m increments up to an altitude of 120 m.
The results of this experiment are shown in Fig. 3. Only data
points for which the drone was detectable are plotted.
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Fig. 3: SNR of the radar return at various ranges and chirp
configurations. Noise power was estimated from control data
which was recorded with no target present. This noise estimate
was used to calculate SNR.

Notice that, for the most part, the shorter chirp intervals
yield lower SNR despite the constant measurement interval.
This happens because an FMCW chirp is intrinsically co-
herent, and therefore more efficient at raising SNR than the
noncoherent integration used to combine separate chirps. In
general, a few long chirps will yield higher SNR than many
short chirps over equivalent measurement intervals. In practice,
chirp length is limited by non-constant vr which causes the
reflected signal energy to spread over multiple range bins.

A. Phase Correction Results

The phase correction method described in Section III was
applied to the experimental data. The results for a chirp length
of 1024 µs and a target range of 120 m are shown in Figs. 4 and
5. Fig. 4 shows the raw (uncorrected) phase values taken from
the range spectra of each chirp. Phase corrections from the best
hypothesis are overlaid on the graph. The nonlinearity of the
phase is apparent in Fig. 4, but the phase correction technique
still yields significant SNR gain, as depicted in Fig. 5. The
increase in SNR of 20 dB is substantial, and it demonstrates
the effectiveness of the phase correction technique.

V. EXTRAPOLATION OF RESULTS

The foregoing experimental results can be extrapolated to
infer the performance of a real system designed with the same
techniques. Consider how target radar cross section (RCS) and
transmit power would change upon application of this paper’s
techniques to UAM:

1) Radar Cross Section: Radar cross section is a measure
of a radar target’s reflectivity. The signal power in watts that
a radar receives from a target is given by [15]

PRX =
PTXGTXσARX

(4π)2d4
(11)

where
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Fig. 4: Gray points indicate the raw phase of each range
bin corresponding to the target range (120 m). Each phase
measurement is vertically replicated every 2π radians to reveal
contours in the plot. The thick black line represents the best
phase-correction hypothesis, and the thin lines are adjacent
hypotheses. Note that the chosen hypothesis most closely
matches the phase contours. For this plot, M = 1024, N = 64,
L = 128, and θt = π/2.

PTX is the transmit power (W)
GTX is the transmit antenna gain (dimensionless)
σ is the RCS of the target (m2)
ARX is the effective aperture of the receive antenna (m2)
d is the distance to the target (m)

An object’s RCS is often difficult to calculate because it
depends on many factors, including shape, material, size, and
orientation. For the purpose of this analysis, assume that RCS
scales linearly with geometric cross section. The DJI drone in
this experiment has overall horizontal dimensions of 0.322 m×
0.242 m [19].

Joby Aviation, a leader in VTOL technology, recently un-
veiled their VTOL airframe, which has a wingspan of 10.7 m
[20]. Assume the height is 3 m. Under these assumptions, the
ratio of geometric cross sections (front of Joby’s airframe to
the bottom of the DJI drone) is about

ΣJoby

ΣDJI
≈ 10.7 m× 3 m

0.322 m× 0.242 m
≈ 412

According to (11), this increase in RCS translates to a factor
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Fig. 5: SNR of radar return after phase-corrected coherent
integration. Recall that N denotes the number of chirps
coherently integrated in each group. The groups are added
noncoherently. For this plot, θt = π/2. The values of N were
chosen simply to demonstrate the effectiveness of the phase
correction technique. Larger values may be used depending on
the system characteristics and capabilities.

of
4

√
ΣJoby

ΣDJI
≈ 4.5

range increase.

The RadarLog detected the DJI drone at 120 m using only
noncoherent integration, so it can be expected to detect a
typically-sized VTOL aircraft at 540 m under similar condi-
tions with no modification to the hardware. By (11), doubling
this 540 m range would require an SNR increase of 12 dB.
The results in section IV-A indicate that a 12 dB increase in
SNR is possible with phase correction. Thus, 1 km range is
achievable with the hardware used in this experiment.

2) Transmit Power: The RadarLog currently transmits at
10 dBm. A fully-implemented system could increase transmit
power if allowed by the SWaP-C budget. This would increase
overall performance and allow detection of targets in more
challenging conditions.

VI. CONCLUSIONS

As the aerospace industry races to produce a viable au-
tonomous aircraft for urban environments, the need increases
for an inexpensive and reliable detect and avoid (DAA) system.
Autonomous systems need to match a human pilot’s DAA
performance, but this has not been accomplished yet [4]. Vis-
ible light cameras are useful for DAA, but cameras alone are
insufficient because of their fundamental inability to accurately
resolve range. Low SWaP-C radar is a necessary component
of DAA systems because it provides range measurements to
complement angular measurements provided by cameras.

A low SWaP-C radar solution has been developed and tested
for autonomous DAA systems. The method employs weak-
signal correlation techniques and long measurement intervals
to extend the range of existing low SWaP-C radar chipsets.
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Because blind 2D scanning would be too slow with the
required signal processing, the radar only processes signals
from particular directions identified by cameras. The radar
portion of this system was tested with an Inras RadarLog
development kit, and the results show that a typically-sized
VTOL aircraft at 1 km range would be detectable if a full-
scale system were implemented. This type of low SWaP-C
radar will facilitate the development of a feasible DAA system
and accelerate the widespread adoption of autonomous urban
air mobility.
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