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Modeling the effects of ionospheric scintillation on
GPS carrier phase tracking

Todd E. Humphreys, Mark L. Psiaki, and Paul M. Kintner, Jr.

Abstract—A characterization is given for the behavior of
Global Positioning System phase tracking loops in the presence
of severe equatorial ionospheric scintillation. The purpose of this
work is to develop a simple, general, and realistic scintillation
effects model that can be used to improve the scintillation
performance of phase tracking loops. The new characterization
of scintillation effects proposed herein employs a differentially-
detected bit error model to predict cycle slipping rates that
approximately agree with data-driven simulation tests.

I. INTRODUCTION

There is interest in developing Global Positioning System
(GPS) receivers whose carrier phase tracking loops are spe-
cially designed to maintain lock in the presence of severe
equatorial scintillation [1]. Design and testing of such receivers
depends crucially on accurate models of scintillation and its
effects on receivers. Several researchers have responded to
this need by developing models for scintillation effects on
phaselock loops (PLLs) [2]–[7], but these models tend to
underestimate the effects of severe equatorial scintillation by
failing to capture its essential feature: deep power fades (> 15
dB) accompanied by abrupt, approximately half-cycle phase
transitions, so-called canonical fades [1].

In [1], the current authors develop a data-driven scintillation
testbed and with it show that canonical fades are the principal
cause of carrier unlock for squaring-type PLLs attempting
to track through severe equatorial ionospheric scintillation.
The current paper extends the work in [1] by employing the
scintillation testbed to carry out an extensive characterization
of squaring-type PLL behavior in the presence of severe
equatorial scintillation. Insight gained from this characteriza-
tion will lead to a simple model linking certain scintillation
statistics to mean time between PLL cycle slips.

To set the stage for interpreting the behavior of PLLs
under test, Section II addresses some general effects of scin-
tillation on phase tracking. The testbed is briefly reviewed
in Section III. Section IV describes the example PLLs that
will be evaluated in the testbed and Section V presents their
performance results. The results will demonstrate a close
connection between cycle slips and errors in differentially-
detected navigation data bits. This connection will suggest
a model, developed in Section VI, of scintillation effects on
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GPS receiver phase tracking loops. The conclusions follow in
Section VII.

II. OVERVIEW OF SCINTILLATION EFFECTS ON PHASE
TRACKING LOOPS

Phase tracking loops are affected by scintillation in three
related ways: (1) increased phase error variance, (2) cycle
slipping, and (3) frequency unlock. This section gives an
overview of these effects to set terms and develop intuition
before the scintillation testbed is introduced. To preserve
a focus on scintillation effects, receiver oscillator noise is
neglected here and in the rest of this paper. For a general
treatment of phase tracking loops, the reader is referred to
[8]–[11].

A. Phase Error Variance

Consider a standard (non-squaring) PLL with true phase
input θ(t) and phase estimate θ̂(t). When the phase error
ϕ(t) = θ(t) − θ̂(t) is small enough that the PLL’s phase
detector can be regarded as linear, then, for zero-mean white
driving noise, the PLL’s phase error variance σ2

ϕ = E[ϕ2(t)]
(in rad2) is accurately approximated by [10]

σ2
ϕ =

BnN0

C
≡ 1

ρL
(1)

where C/N0 is the carrier power to noise density ratio, Bn

is the PLL’s single-sided noise bandwidth, and ρL is the
loop SNR. Under normal circumstances, GPS carrier phase
tracking requires a squaring (e.g., Costas) PLL, which is
insensitive to the half-cycle phase changes induced by the
data bit modulation. In a squaring PLL, the actual phase error
tracked is 2ϕ, with the corresponding variance denoted by
σ2

2ϕ. Furthermore, ρL is reduced by a squaring loss factor
approximately equal to [7]

SL =
(

1 +
N0

2TaC

)−1

(2)

where 1/Ta is the pre-detection bandwidth. [Equation (2) is
exact for a Costas loop with a multiplicative phase detector.]
Thus, for the squaring loop,

σ2
ϕ =

σ2
2ϕ

4
=

1
ρLSL

(3)

is a useful approximation for σ2
ϕ in the linear regime. For

analysis of the squaring loop, an equivalent loop SNR is
defined as [12, p. 206]

ρeq ≡ ρLSL

4
(4)
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which leads to ρeq = 1/σ2
2ϕ for small 2ϕ.

At large values of ϕ, the assumption of PLL linearity breaks
down and analysis becomes much more difficult. An exact
expression for σ2

ϕ for a 1st-order non-squaring PLL driven by
white Gaussian noise is found in [8, Ch. 4]. Precise phase error
statistics for all but this standard 1st-order loop are typically
obtained via simulation. Fortunately, one can show that the
exact phase error variance for the standard 1st-order loop is a
reasonable proxy for that of higher order loops. Thus one can
identify the region of approximate linear PLL operation by
noting that, for the standard 1st-order loop, the linear model
[Eq. (1)] is reasonably accurate (within 20%) for ρL > 4, or
σϕ < 28.6◦ [8, Ch. 4]. Likewise, a squaring loop behaves
approximately linearly for ρeq > 4, or σϕ < 14.3◦.

Note that the above results assume that all phase errors
are due to constant-intensity white measurement noise. Fur-
thermore, as just mentioned, Eqs. (1) – (4) assume PLL
linearity. All of these assumptions are violated during severe
scintillation: Amplitude fading causes variations in the loop
SNR, phase changes are time-correlated, and, when attempting
to track through the large, rapid phase changes associated
with canonical fading, the PLL cannot be expected to operate
in its linear regime. For these reasons, calculating σ2

ϕ for
a PLL tracking through strong scintillation does not appear
straightforward. The approach taken in [2] and [5] breaks
σ2

ϕ down into three components: (1) a measurement noise
component that takes amplitude fading into account, (2) a
component due to dynamics in θ(t), and (3) a component
due to oscillator noise. But to calculate these components,
the approach in [5] invokes PLL linearity, which is violated
during severe scintillation.

B. Cycle Slipping
A PLL’s phase detector is periodic, meaning that it cannot

distinguish between the phase errors ϕ and ϕ + 2nπ (non-
squaring loop) or ϕ and ϕ + nπ (squaring loop), where n is
an integer. As a result, an infinite set of stable attractors exists
for the nonlinear difference equations that describe the PLL
error dynamics. At low loop SNR, or during vigorous phase
scintillation, the phase error can slip from one stable attractor
to another, leading to infinite σ2

ϕ in the steady-state. This is
the familiar cycle slip phenomenon associated with PLLs [11],
[13], [10, Ch. 6].

The mean time to first cycle slip Ts is defined as the average
time required for the loop phase error to reach ±2π (±π for
the squaring loop) for the first time, starting from an initial
condition of zero phase error. For first order loops, and in
other cases where cycle slips occur as isolated events, Ts is
the same as the mean time between cycle slips; if cycle slips
occur in bursts—as may happen for ρL, ρeq < 5 in 2nd- or
higher-order loops—then Ts and the mean time between cycle
slips are not related simply [13].

As with the calculation of σ2
ϕ, an analytical solution for

Ts has only been possible for the simple case of a 1st-
order unstressed (zero static phase error) PLL driven by white
Gaussian noise, in which case [8, p. 101]

Ts =
π2ρLI2

0 (ρL)
2Bn

(5)

is the time to first slip/mean time between slips for a non-
squaring loop; I0(·) is a modified Bessel function of the
first kind. An approximate Ts for 1st-order squaring loops
obtains by substituting ρeq for ρL. Unstressed 2nd- and higher-
order loops have lower Ts than unstressed 1st-order loops, and
stressed loops are more prone to cycle slipping than unstressed
loops; nonetheless, Eq. (5) remains a useful upper bound.
For GPS applications, a 2nd- or 3rd-order loop is required
to accurately track carrier phase in the presence of Doppler-
induced quadratic phase growth. In fact, even the 2nd-order
loop experiences significant loop stress (∼ 1◦ static phase
error) during the largest GPS line-of-sight accelerations. Only
the 3rd-order loop maintains near-zero static phase error for
all GPS geometries. Accordingly, scintillation testbed experi-
ments will focus on 3rd-order loops.

Phase and amplitude scintillation cause cycle slipping via
two different mechanisms. The first of these—and the most
common—was discussed briefly in the previous section: a
squaring-loop PLL is often unable to track through the abrupt
phase change associated with a canonical fade. This makes
sense: in the limit as the fade depth increases, the abrupt,
nearly π-rad phase transition looks like bi-phase data modula-
tion, to which the squaring-loop PLL is insensitive by design.
Hence, the PLL detects no phase shift and a half-cycle slip
occurs. In marginal cases, where the PLL might be capable of
distinguishing a scintillation-induced phase transition from a
data-bit-induced phase transition, the sudden drop in loop SNR
increases the likelihood of a cycle slip. One can demonstrate
this by shifting the phase and amplitude time histories relative
to one another so that the signal power fades and the rapid
phase changes are no longer aligned. Experiments show that
such shifting leads to an approximate 20% decrease in cycle
slips—evidence that simultaneous power fades and abrupt
phase changes are a particularly challenging combination.
Scintillation testbed results will show that canonical fading
accounts for over 90% of equatorial-scintillation-induced cycle
slips.

Prolonged amplitude fading is the second mechanism by
which scintillation causes cycle slipping. This phenomenon
may be considered a special case of canonical fading in which
the fading time scale is elongated so that the amplitude fade
is accompanied by phase dynamics that are slow compared to
a typical 10-Hz PLL noise bandwidth. In this case, broadband
measurement noise dominates and Eq. (5) applies. Cycle slips
occur rarely by this mechanism. To see why, consider that the
overwhelming majority of deep fades (> 15 dB) in the scin-
tillation library’s GPS data last less than 2 seconds. Assume
that, during a rare 2-second fade, the received C/N0 drops
to 23 dB-Hz. For a pre-detection bandwidth of 1/Ta = 100
Hz and a PLL noise bandwidth equal to Bn = 10 Hz, the
resulting equivalent loop SNR is ρeq = 4. Substituting ρeq

into Eq. (5) yields Ts ≈ 22.3 seconds for a 1st-order loop,
which implies a slip probability of less than 1/10 over the
2-second fade. Consistent with this analysis, cycle slips due
to prolonged amplitude fading are rare, amounting to less than
10% of the cycle slips in the scintillation testbed results.
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C. Frequency Unlock

The general term “phase unlock” refers to single or suc-
cessive cycle slips. At very low loop SNR or in extreme
scintillation a PLL may never recover phase lock after a long
succession of cycle slips. This phenomenon, called “drop lock”
in the PLL literature, is related to the PLL’s frequency pull-in
range. For reasons that will become clear, the term “frequency
unlock” is a more precise descriptor than drop lock for the
phenomenon as it relates to the discrete-time PLLs used in
modern GPS receivers.

A PLL’s frequency pull-in range is the maximum frequency
step input that a PLL is able to “pull in” and eventually
achieve phase lock. For example, a continuous-time 1st-order
non-squaring PLL has a pull-in range equal to the loop
gain K [11]. For higher-order PLLs, the frequency pull-in
range can be thought of as the maximum tolerable mismatch
∆ω = |ωc−v| between the carrier frequency ωc and the PLL’s
internal estimate of carrier frequency v, assuming that higher
order loop filter states (e.g., the estimate of carrier frequency
rate) are relaxed, where applicable.

Continuous-time PLLs whose loop filters contain one or
more perfect integrators have an infinite frequency pull-in
range [10, Ch. 8]. On the other hand, the frequency pull-in
range of 2nd- and higher-order discrete-time PLLs is limited
by the loop update (accumulation) interval Ta. When the fre-
quency mismatch ∆ω exceeds a certain threshold ∆ωm, then
v is attracted toward a stable equilibrium value that satisfies
Ta∆ω = nπ (non-squaring loop) or Ta∆ω = nπ/2 (squaring
loop), n = 1, 2, 3, ... . Intuitively, these equilibrium values
exist because the loop cannot detect a phase error change of
2nπ (non-squaring loop) or nπ (squaring loop) between loop
updates. The value of ∆ωm is a function of the particular loop
configuration. It can be surprisingly small for PLLs common
in GPS receivers: for a 3rd-order Costas loop with Ta = 10
ms and Bn = 10 Hz, ∆ωm = 81 rad/s ≈ 13 Hz. At
very low loop SNR or during vigorous scintillation, cycle
slips can occur in bursts as noise and phase dynamics force
v momentarily away from ωc [13]. If, due to such forcing,
∆ω exceeds ∆ωm, then there is a high probability that v
will become trapped at one of the incorrect stable equilibrium
values. Thus the PLL experiences frequency unlock.

Frequency unlock and momentary phase unlock have rather
different practical consequences. Unlike momentary phase
unlock (i.e., cycle slipping), frequency unlock often leads
to complete loss of the GPS signal link—a result of signal
attenuation due to frequency detuning. If v settles on an
equilibrium value such that n ≥ 2 (non-squaring loop) or
n ≥ 4 (squaring loop), then the baseband signal power drops
by more than 13 dB, making it likely that the PLL will
experience further frequency detuning and eventually lose the
signal entirely. Worse yet, re-acquisition may not be possible
at low SNR or during scintillation. Such complete signal
loss can occur even in high-quality GPS receivers during
severe scintillation [14], with sobering implications for GPS-
dependent systems.
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Fig. 1. Block diagram of the scintillation testbed. Thick lines denote complex
signal routing.

III. THE SCINTILLATION TESTBED

The scintillation testbed is a collection of software routines
used to test various phase tracking strategies under realistic
equatorial scintillation conditions. The testbed derives input
phase and amplitude time histories from a library of empirical
scintillation data (referred to hereafter as the scintillation li-
brary), feeds these to a PLL under test, and observes the PLL’s
phase error variance and phase lock behavior. A complete
description of the testbed is given in [1]. This section gives
a brief overview and describes an additional feature beyond
those detailed in [1].

The scintillation testbed is illustrated in block diagram
form in Fig. 1. Within the gray box in Fig. 1 are simulated
the mixing and accumulation operations typical in a GPS
receiver. The simulation is based on the following model for
the complex baseband signal rk:

rk =
1
Ta

∫ tk

tk−1

[z(t)sk + n(t)] e−jθ̂(t)dt (6)

In this model, z(t) = α(t) exp[jθ(t)] is the complex
channel response function, with α(t) and θ(t) representing
scintillation-induced amplitude and phase variations; it is
assumed that z(t) is normalized so that E[|z(t)|2] = 1. The
quantity θ̂(t) is the PLL’s phase estimate; Ta = tk − tk−1

is the accumulation interval; n(t) is receiver noise repre-
sented as complex zero-mean additive white Gaussian noise;
sk =

√
Ea exp[j(θ̃k + θc)], with θ̃k ∈ {0, π}, is the value

over the kth accumulation interval of the 50-Hz binary data
that commonly modulates GPS signals; θc is the carrier
phase, which is assumed constant; and Ea is the energy per
accumulation. The quantities zk, θ̄k = [θ̂(tk)+θ̂(tk−1)]/2, and
nk in Fig. 1 are the respective averages of z(t), θ̂(t), and n(t)
over the accumulation interval; nk is modeled as an element of
a zero-mean complex Gaussian noise sequence with variance
E[n∗knj ] = N0δkj .

The three blocks to the right of the gray box in Fig. 1 are
particular to the PLL under test and will be treated in the next
section. In addition to the functions depicted in Fig. 1 and
detailed in [1], the scintillation testbed has been augmented to
evaluate the bit error probability of binary differential phase
shift keying (binary DPSK) bit detection. Binary DPSK makes
a decision about the sign of a data bit based on the phase
change between two adjacent data bit intervals. It is useful for
the testbed to produce binary DPSK bit error rate statistics
because, as will be shown, there exists a close connection
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between binary DPSK bit errors and cycle slips for GPS signal
tracking during severe equatorial scintillation. A “Fast DPSK”
scheme (proposed in [15]) that does differential detection using
only one sub-bit-length accumulation interval on each side of a
data bit edge is also evaluated. Both DPSK techniques operate
on the baseband signal rk, which implies knowledge of the
carrier frequency ωc. In practice, ωc can be estimated using a
low-bandwidth frequency tracking loop.

For the case of an additive white Gaussian noise channel,
the testbed’s binary DPSK bit error probability estimates have
been validated against theoretical values (given, for example,
in [16, Ch. 7]).

IV. EXAMPLE PLLS

The scintillation testbed is a generalized tool for evaluating
the performance of carrier tracking strategies in the presence
of scintillation. Any carrier tracking loop that operates on
the baseband signal rk can be tested for robustness and
evaluated—under controlled scintillation conditions—against
an array of alternative strategies. To illustrate its usefulness and
to gain insight into the effects of scintillation on typical PLLs
used in GPS receivers, a set of example PLLs was tested. Each
PLL in the set has a different combination of phase detector
and loop filter.

The phase detectors considered in the set of example PLLs
are given in Table I. All detectors are squaring-type detectors
that make use of the in-phase Ik = Re(rk) and quadrature
Qk = Im(rk) components of rk, which are simulations of
the usual accumulations produced by the baseband mixer and
integrate-and-dump accumulators of a digital GPS receiver.
The two-quadrant arctangent (AT), decision directed (DD),
and conventional Costas (CC) detectors are standard phase
detectors used in GPS receivers [17], [18]. The AT and CC
detector make direct use of the Ik and Qk components whereas
the DD detector attempts to wipe off data bit modulation by
estimating the current data bit value as sign(Im,k), where Im,k

is the sum of the in-phase components of all accumulations
up to time tk within the current (mth) data bit interval. The
decision-directed four-quadrant arctangent (DD-AT) detector
is a hybrid of the DD and AT detectors in which data
bit wipeoff via sign(Im,k) enables full four-quadrant phase
detection. If the accumulation interval Ta equals the GPS data
bit interval Tb = 20 ms, then the AT and DD-AT detectors are
equivalent.

TABLE I
PHASE DETECTORS FOR THE SET OF EXAMPLE PLLS

Phase Detector Abbr. Definition

Two-quadrant arctangent AT ek = atan(Qk/Ik)
Decision-directed DD-AT ek = atan2[Qk · sign(Im,k),
four-quadrant arctangent Ik · sign(Im,k)]
Conventional Costas CC ek = Ik ·Qk

Decision directed DD ek = Qk · sign(Im,k)
Dot-product DP-AT ek = atan2(Qkdm,k, Ikdm,k)four-quadrant arctangent

The dot-product four-quadrant arctangent (DP-AT) detector
is identical to the DD-AT detector except that data bit wipeoff

is based on differential bit detection. Like binary DPSK bit
detection, the DP-AT phase detector makes a decision about
the sign of the current data bit by measuring—via a dot
product—the phase change between the previous and the
current data bit interval. Suppose it is known that d̃m−1 is
the transmitted data bit over the (m − 1)th data bit interval.
Then the DP-AT phase detector’s estimate dm,k of the value of
the data bit during the accumulation ending at time tk within
the mth data bit interval is

dm,k =

{
−d̃m−1, Re(r∗m,k r̃m−1) < 0

d̃m−1, Re(r∗m,k r̃m−1) ≥ 0
(7)

where rm,k = Im,k + jQm,k is the sum of all rk up to time
tk within the mth data bit interval and r̃m−1 is the sum of all
rk within the (m − 1)th data bit interval. The value dm,k is
used to wipe off data bit modulation from each rk during the
mth data bit interval, as indicated in Table I. At the end of the
mth data bit interval, dm,k becomes d̃m and rm,k becomes r̃m.
For added stability, the DP-AT detector is designed to revert
to the DD-AT detector when Re(r∗m,kr̃m−1) ≈ 0. It will be
shown that the DP-AT detector is well suited for making phase
measurements during severe equatorial scintillation.

The digital loop filter D[z] takes the phase detector outputs
ek and estimates the phase rate vk+1 for the (k + 1)th
accumulation interval according to

vk+1Ta = K1ek + K2

k∑

i=1

ei + K3

k∑

i=1

i∑

j=1

ej + ... (8)

where the sequence extends to the KN term for an N th-
order loop filter, which yields N th-order closed-loop PLL
dynamics. The loop constants Kn are determined according
to the controlled-root formulation for digital PLL design
introduced in [19]. Loops of order 1 through 3 can be selected,
with the design parameter TaBn ranging from 0.01 to 0.4. The
loop filter’s output vk passes through the integration block
[Ta/(z − 1)] to generate the phase estimate θ̂k.

All PLLs in the example set are designed to have a constant
bandwidth, meaning that their noise bandwidth Bn remains
constant for small phase errors despite changes in the fading
amplitude αk = |zk|. When connected to a loop filter D[z]
with fixed coefficients, the AT-type phase detectors (AT, DD-
AT, DP-AT) automatically deliver a constant Bn because, in
the absence of noise, the arctangent function is insensitive
to changes in αk. The outputs ek of the DD and CC phase
detectors, on the other hand, are sensitive to changes in αk.
They must be normalized by αk (DD) or α2

k (CC) to yield
a Bn that, for small phase errors, is equal to the constant
Bn of the AT-type detectors. In the scintillation testbed, such
normalization is accomplished by estimating α2

k as

α̂2
k = 〈r∗krk〉 −N0 (9)

where the time average 〈r∗krk〉 is mechanized using a first-
order low-pass filter with a time constant of 0.1 seconds.

V. TESTBED RESULTS AND DISCUSSION

The scintillation testbed has been used to carry out an
extensive set of tests to characterize squaring-type PLL be-
havior in the absence of scintillation (measurement noise only)
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and in the presence of scintillation (both measurement noise
and scintillation-induced phase and amplitude variations). The
latter results will indicate a connection between cycle slips and
DPSK-detected bit errors. This connection will be exploited
in subsequent sections to develop a model that can be used to
approximately predict cycle slips for the broad class of typical
GPS PLLs represented by the set of example PLLs.

Performance tests of two elaborate variable-bandwidth
phase tracking strategies have also been conducted using the
scintillation testbed. The results of these tests, given in Section
V-C, will suggest a limit on the cycle slip performance of any
unaided PLL in severe equatorial scintillation.

The following tests assume the standard PLL architecture
shown in the three blocks on the right-hand side of Fig. 1.
In view of the parameter comparison tests conducted in [1],
a baseline PLL configuration with loop order 3, Ta = 10 ms,
and Bn = 10 Hz is assumed.

A. PLL Behavior in the Absence of Scintillation

It is instructive to contrast the behavior of the example PLLs
in the absence of scintillation (white measurement noise only)
with their behavior during scintillation. It will be shown that
scintillation-free and scintillation tests that produce equivalent
phase error variance σ2

ϕ are not equally challenging for the
PLL under test.

To test PLL behavior in the absence of scintillation, the
scintillation library’s complex outputs zk are set to unity for
all k; the white measurement noise simulated by nk remains
as described in [1]. Runs of 100-second length have been
iterated 3000 times with C/N0 ranging from 21 to 30 dB-
Hz. Cycle slip results are presented in Fig. 2, which plots
the normalized mean time between cycle slips TsBn vs. the
equivalent loop SNR ρeq (recall that ρeq is the loop SNR for
squaring-type PLLs such as those found in the example set).
For convenience, the horizontal axis is also expressed in terms
of C/N0, which is related to ρeq via Eqs. (1), (2), and (4), and
in terms of empirical values of σϕ for the DD-AT PLL. Note
that large phase errors at these low values of ρeq cause the
empirical σϕ values to be larger than predicted by the linear
approximations expressed in Eqs. (3) and (4). Also note that
to obtain sensible values of σϕ in the presence of cycle slips,
the phase errors ϕk are taken modulo π. The same is true for
all values of σϕ presented hereafter.

The results in Fig. 2 assume the baseline loop order and
update interval (3rd order and Ta = 10 ms), but apply
generally to Bn . 20 Hz. Second-order loops and loops with
Ta = Tb = 20 ms have also been tested (recall that Tb is
the GPS data bit interval). All loops demonstrated a marginal
reduction in cycle slips with a change in Ta from 10 to 20 ms.
No significant reduction was noted, over the range of C/N0

values tested, due to a change from 3rd-order to 2nd-order
loops.

Theoretical values of TsBn vs. ρeq for a continuous-time
1st-order PLL (dashed line in Fig. 2) agree closely with the
values for the DD-AT and AT PLLs, which demonstrates that
Eq. (5) (with ρeq substituted for ρL) is a useful approximation
for these PLLs over the range of ρeq shown. In terms of cycle
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Fig. 2. Experimental normalized mean time between cycle slips as a function
of ρeq (linear scale) for several 3rd-order PLLs with Ta = 10 ms operating
in the presence of complex white Gaussian noise. The horizontal axis scale
is also expressed in terms of the standard deviation σϕ of the phase error
ϕk modulo π, and in terms of the carrier-to-noise ratio C/N0, assuming
Bn = 10 Hz. The values of σϕ correspond to the DD-AT phase detector
but also hold approximately for the CC and AT detectors. The dashed line
shows the theoretical TsBn for a continuous-time 1st-order PLL [Eq. (5)].
Error bars indicate two standard deviations about the estimated values.

slips, the DD and CC phase detectors have a decided advantage
for the measurement-noise-only case. This result can be un-
derstood by noting that large phase errors cause the nonlinear
(sinusoidal) phase detector characteristic of the DD and CC
detectors effectively to reduce the associated PLL’s noise
bandwidth relative to PLLs based on the AT-type detectors,
which have a linear characteristic over −π/2 ≤ ϕk < π/2,
with sharp nonlinear breaks at −π/2 and π/2. In the absence
of actual variations in the received phase, PLLs with a lower
effective Bn experience fewer cycle slips.

Among the phase detectors tested, the DP-AT detector
suffered the most cycle slips at each value of ρeq . This result is
intuitive: it can be shown that for the additive white Gaussian
noise case the differentially-detected bit estimates dm,k that
are used to do data bit wipeoff in the DP-AT phase detector are
more prone to errors than the coherently-detected bit estimates
sign(Im,k) used in the DD and DD-AT detectors.

B. PLL Behavior in the Presence of Scintillation

Tests of PLL behavior in the presence of scintillation are
conducted using the standard scintillation library outputs zk.
Scintillation data are divided into 30-second records so that
the signal statistics over each record are reasonably stationary.
Measurement noise nk is added to simulate nominal C/N0

values ranging from 35 to 55 dB-Hz. Each 30-second record
at each value of C/N0 is iterated 30 times with different
measurement noise realizations to accumulate enough data for
a statistical analysis of the results. Note, however, that the GPS
L1 results have measurement noise realizations that change
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only in part between different runs because the data’s intrinsic
noise component is invariant.

In all, tests have been conducted on 885 30-second scintil-
lation records with S4 values ranging from 0.02 to 1.3, where
S4 is the standard scintillation index defined by

S2
4 =

〈I2〉 − 〈I〉2
〈I〉2 (10)

in which I is signal intensity (squared amplitude) and 〈·〉
denotes time average. Wideband and GPS L1 results are
presented separately to avoid conflating results from inputs
with different noise properties. On the other hand, Wideband
UHF and L-band results have been lumped together despite
the inputs’ different scintillation properties. This was done
because there are not enough intervals of severe scintillation
in the Wideband L-band data for clear trends to emerge,
and because, for the relationships to be presented in this
section, the L-band data generally fit trends established by
the UHF data. The results given here apply to the baseline
loop configuration (3rd-order loop, Ta = 10 ms, and Bn = 10
Hz).

The relationships between S4 and the primary PLL perfor-
mance metrics, namely, cycle slips and σ2

ϕ, are shown in Figs.
3 and 4. These results are for the DD-AT phase detector but
are approximately representative of the other phase detectors
tested. Each point in Figs. 3 and 4 corresponds to a different
30-second record from the scintillation library and represents
an average over 30 test iterations. Fig. 3 presents results in
terms of cycle slip rate on the left vertical axis, and, for
convenience, in terms of Ts on the right vertical axis. As
would be expected, a general increase in the rate of cycle
slips accompanies increasing S4. The lack of cycle slips below
S4 ≈ 0.4 suggests that, whatever its other characteristics
(e.g., fading time scales), scintillation with S4 . 0.4 can
be considered benign. Also, for convenience in the following,
severe scintillation will be roughly identified with S4 > 0.6.
The wide spread in cycle slip rate for S4 > 0.6 indicates
that records with equivalent measured S4 are not necessarily
equally challenging to track. This is true within the GPS L1

records but is especially striking in the comparison between
GPS and Wideband data. The implications of this spreading
for scintillation effects modeling will be discussed in Section
VI.

It was found in initial processing that GPS data bit parity
failures—which can be considered a rough proxy for cycle
slips—were predominantly associated with canonical fades.
Experiments with the scintillation testbed confirmed this re-
sult: over 90% of the slips underlying the data in Fig. 3 were
induced by canonical fades.

Fig. 4 shows how σϕ, the standard deviation of the phase
measurement error modulo π, increases with increasing S4, a
dependence that is due both to the fade-induced reductions in
loop SNR and to phase scintillation with frequency compo-
nents that exceed the PLL’s Bn. The difference in σϕ at low
S4 between the Wideband and GPS data reflects the latter’s
irreducible noise component, which the analysis treats as a
dynamically-varying true phase that the PLL does not exactly
track. The large values of σϕ at high S4—in some cases

exceeding 30 deg for Wideband data and 13 deg for GPS L1

data—contribute to the degradation of carrier-phase-dependent
GPS systems during strong scintillation.
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Fig. 3. Average DD-AT PLL cycle slip rate over each 30-second test record
vs. S4 for the Wideband data at C/N0 = 43 dB-Hz (open circles) and for
the GPS L1 data within 40 < C/N0 < 44 dB-Hz with mean C/N0 = 43
dB-Hz (filled circles). The right vertical axis expresses the cycle slip rate in
terms of Ts.
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Fig. 4. Standard deviation of DD-AT PLL phase error modulo π over each
30-second test record vs. S4 for the Wideband data at C/N0 = 43 dB-Hz
(open circles) and for the GPS L1 data within 40 < C/N0 < 44 dB-Hz with
mean C/N0 = 43 dB-Hz (filled circles).

Fig. 5 plots Ts (solid lines) and the mean time between bit
errors Te (dashed lines) as functions of nominal C/N0 for
Wideband data in the severe scintillation regime (S4 > 0.6).
For clarity of presentation, error bars are not shown. Standard
deviations for all curves are less than 0.4 seconds at C/N0 =
35 dB-Hz and 1 second at C/N0 = 55 dB-Hz. The range of
nominal C/N0 values considered in Fig. 5 is meant to span the
worst to best case C/N0 values that a terrestrial receiver would
see in open-sky conditions. Empirical σϕ values for the DD-
AT PLL are given along the upper horizontal axis. One might
think that these values appear too small to be associated with
such high cycle slipping rates, but one must bear in mind that
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it is the intermittent abrupt phase changes, not just an overall
high σϕ, that drive the slipping. This also helps explain another
counterintuitive feature of Fig. 5, namely, the flattening of
the Ts (solid) curves with increasing C/N0. Such flattening
indicates that increasing the nominal tracking loop SNR has
little effect because over this range of C/N0 the cycle slipping
rate is dominated not by uncorrelated thermal noise but by the
intermittent abrupt phase changes associated with canonical
fades.
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Ts – mean time between cycle slips
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Fig. 5. Experimental mean time between cycle slips Ts as a function of
nominal C/N0 (dB-Hz) for several PLLs operating in severe scintillation
(S4 > 0.6). Input scintillation data are Wideband UHF and L-band records
from the empirical scintillation library. The horizontal axis scale is also
expressed in terms of the standard deviation σϕ (deg) of the phase error
ϕk modulo π (upper axis). The values of σϕ correspond to the DD-AT phase
detector but also hold approximately for the AT and DP-AT detectors. The
dashed lines give the mean time between bit errors Te for binary DPSK and
Fast DPSK bit detection.

Compared with the measurement-noise-only case (Fig. 2),
the phase detector performance ordering in Fig. 5 is nearly
inverted, with the DP-AT phase detector now experiencing
fewer cycle slips than the other detectors. Such a reversal in
performance is best understood in terms of the PLL’s effort to
drive the quadrature component Qk of rk to zero. During an
extreme canonical fade, the phase of the complex scintillation
zk can change by nearly π rad from one data bit interval
to the next. In this case, none of the phase detectors can
distinguish between a scintillation-induced phase change and
a data-bit-induced phase change: a cycle slip results. In less
extreme (slower and shallower) canonical fades, however, the
DP-AT detector has an advantage. During this kind of fade,
the baseband phasor rk is dislodged from its nominal tracking
orientation (aligned with the real axis in the complex plane)
and rotates toward the imaginary axis; but as long as phase
scintillation and noise do not cause rk to rotate more than π/2
rad in one data bit interval, then the DP-AT detector decides
the current bit sign correctly and thus avoids a cycle slip. In
contrast, the non-differential phase detectors (DD-AT, AT, DD,
and CC) almost always slip a cycle if, due to phase scintillation
and noise, rk rotates across the imaginary axis—no matter

how slowly the rotation occurs. Hence, the non-differential
phase detectors rely on a wide noise bandwidth Bn to drive
rk safely to its nominal tracking orientation, whereas the DP-
AT detector allows rk to rotate up to π rad away from the real
axis, so long as it rotates no more than π/2 rad per bit interval.
In short, the DP-AT phase detector experiences fewer cycle
slips because it is better able to tolerate large instantaneous
phase errors.

The testbed’s demonstration that the DP-AT PLL performs
well during severe scintillation is consistent with the claim
advanced in [15] that differential bit detection techniques are
expected to outperform coherent detection techniques during
scintillation. The claim is based on the hypothesis that scintil-
lation can be classified as fast fading relative to the GPS data
bit interval Tb = 20 ms. The flattening of the Te curves in
Fig. 5 at high nominal C/N0 indicates an irreducible bit error
probability. Such limiting behavior is indeed consistent with
fast fading [20], [12, Ch. 8].

Besides its role as a relatively robust phase tracking strategy,
the DP-AT PLL offers an important insight into cycle slipping:
Errors in the differentially-detected bit estimates dm,k tend to
cause the DP-AT PLL to slip cycles. Conversely, if the dm,k

are error-free, then the DP-AT PLL tends to avoid cycle slips.
This connection is evident in Fig. 5 where, as an accessible
proxy for errors in dm,k, errors in DPSK-detected data bits
are used. The dashed DPSK curve indicates that the mean
time between bit errors Te for DPSK detection serves as a
useful lower bound for the DP-AT PLL’s Ts. Likewise, the Fast
DPSK curve suggests that further cycle slip immunity at high
nominal C/N0 can be attained by reducing the interval over
which phase changes are detected. The connection between
DPSK-detected bit errors and cycle slips will be developed
into a scintillation effects model in later sections.

Only Wideband data were used to generate the curves in
Fig. 5 because of the difficulty in setting precise C/N0 values
for tests with the GPS data. Nonetheless, useful results for
Ts and Te are obtained from the GPS data by averaging over
all 30-second records of severely scintillating GPS L1 data
(S4 > 0.6) whose nominal C/N0 values fall within the range
40 < C/N0 < 44 dB-Hz. The mean value of C/N0 for records
within this range is C/N0 = 43 dB-Hz. As summarized in
Table II, such averaging of the GPS data yields the same phase
detector performance ordering as was noted with the Wideband
data, albeit with an approximately 4-fold improvement in Ts

and Te. Also, the mean time between DPSK bit errors (36.8
seconds) is consistent with its previously noted role as lower
bound to the DP-AT PLL’s Ts (43.3 seconds).

TABLE II
AVERAGE Ts AND Te FOR SEVERELY SCINTILLATING GPS L1 DATA

Phase Detection Bit Detection

Detector Ts (s) Detector Te (s)

DP-AT 43.3 Fast DPSK 106.3
DD-AT 37.0 DPSK 36.8
AT 33.6
DD 22.1
CC 15.7
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Frequency unlock statistics have also been collected over
all 30-second records with S4 > 0.6. At a nominal C/N0 ∼
43 dB-Hz, the DP-AT PLL’s mean time between frequency
unlock was 1.6 and 2.2 hours for the Wideband and GPS data,
respectively. The AT and CC phase detectors fared slightly
worse than this, whereas the DD and DD-AT phase detectors
never experienced frequency unlock in 55 hours of iterated
runs. The DD-AT PLL appears to be a good alternative to the
DP-AT PLL if one is willing to trade a slight decrease in Ts

for a much higher resistance to frequency unlock.

C. Variable-bandwidth PLLs and Apparent PLL Performance
Limitations

Other phase tracking strategies more exotic than the ex-
ample PLLs were also evaluated in the scintillation testbed.
The first of these is the Kalman-Filter based PLL (KFPLL)
developed in [21] and tested in [7]. The KFPLL’s functionality
encompasses the phase detector and loop filter blocks of Fig.
1. It achieves good performance at low C/N0 by optimally
adapting its loop bandwidth to C/N0 and by using a hy-
pothesis testing approach for resolving the data-bit-induced
phase ambiguity. As demonstrated in [7], the KFPLL’s adap-
tive bandwidth scheme makes it good at avoiding frequency
unlock. On the other hand, the scintillation testbed showed
that the KFPLL’s cycle slip performance is generally worse
than that of standard constant-bandwidth PLLs (like those in
the example set) because, by reducing Bn during a canonical
fade, the KFPLL is less able to track the rapid phase change.

A modified KFPLL was also considered, in which a simple
scintillation model expressed in terms of interfering phasors
is incorporated into the filter dynamics. When the modified
KFPLL detects the onset of a canonical fade, it switches from a
quiescent to a fading signal model. After the fade, it employs a
hypothesis test to decide whether the phase change was up- or
down-going. This method showed only marginal improvement
in Ts compared to the much simpler DP-AT PLL from the
example set. Here again, canonical fading is the problem: in
deep canonical fades, the costs associated with the up- and
down-going hypotheses are nearly equal, making a decision
based on hypothesis testing only slightly better than random.

To date, it appears that unless a PLL is supplied with
additional information, it cannot be expected to perform much
better during scintillation than the example set’s DP-AT PLL
for typical nominal values of C/N0. One obvious approach
to improving cycle slip performance is navigation data bit
aiding. In this approach, the true navigation data bit sequence
is obtained by some means and used to flawlessly wipe off the
data modulation, just as was done in after-the-fact processing
to generate the GPS L1 records in the scintillation library.
Slips can now occur only in full-cycle increments, meaning
that the half-cycle canonical-fade phase shifts can be tracked.
Moreover, the PLL now operates as a non-squaring loop;
hence, its loop SNR increases by approximately 6 dB [cf. Eq.
(4)], leading to a decrease in cycle slips due to measurement
noise [cf. Eq. (5)]. Testbed results indicate that in severe
scintillation (S4 > 0.6) and at a nominal C/N0 ≈ 43 dB-
Hz, perfect data bit wipeoff extends Ts by a rough factor 20.

VI. SCINTILLATION EFFECTS MODELING

The measure of a good model for scintillation effects on
phase tracking is its ability to predict PLL behavior; specifi-
cally, to predict σ2

ϕ and Ts. Emphasis will be focused here on
predicting Ts because, whereas an increase in σ2

ϕ gradually
degrades performance, a cycle slip represents a sudden—and
likely more consequential—upset to a carrier-phase-dependent
GPS system. The scintillation effects modeling challenge can
be posed as follows: Given a time history z(t) of complex
signal scintillation, extract the simplest statistical description
sufficient to predict the expected cycle slip performance within
a class of standard PLLs.

A. Various Approaches to Scintillation Effects Modeling
As a first solution to the modeling challenge, one might

consider developing a cycle slip prediction model based solely
on the most common scintillation statistic, namely, S4. A
glance at Fig. 3 reveals the problem with this approach: the
wide spread in cycle slips for S4 > 0.6 implies that, by
itself, S4 cannot be made to explain nor accurately predict
cycle slipping. Large differences in the measured slip rate at
equivalent measured S4 levels imply that there exist time series
statistics relevant to phase tracking that are not captured by
S4. In other words, the S4 index doesn’t capture the fact that
the Wideband records—and some GPS L1 records—have fast
fading time scales (low decorrelation time τ0) that make the
data hard to track.

Another strategy would be to augment S4 with a bulk phase
scintillation statistic such as the variance of the true phase
time history σ2

θ or—even more descriptive—with the spectral
strength and slope parameters T and p. References [2] and
[5] adopt this approach: values for S4, T and p are used to
estimate the phase error variance σ2

ϕ of a PLL with a certain
order and Bn; σ2

ϕ, in turn, is used to predict Ts.
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Fig. 6. Average DD-AT PLL cycle slip rate over each 30-second test interval
vs. σϕ for the Wideband data at C/N0 = 43 dB-Hz (open circles) and for
the GPS L1 data within 40 ≤ C/N0 ≤ 44 dB-Hz with mean C/N0 = 43
dB-Hz (filled circles). The right axis expresses the cycle slip rate in terms of
Ts.

This approach seems sensible. Consider Fig. 6, which
plots the average cycle slip rate vs. σϕ over each 30-second
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record in the scintillation library. Clearly, there exists a strong
correlation between σϕ and cycle slips for σϕ > 5 deg. What
is more, the Wideband data and the GPS data appear to follow
the same trend, meaning that, unlike the S4 index, σϕ captures
the time series statistics that make a particular record hard to
track. Unfortunately, it is difficult to model σ2

ϕ as a function of
S4, T , and p without invoking the PLL linearity assumption,
which, as mentioned in Section II-A, is likely invalid for strong
scintillation. Moreover, even if a good estimate of σ2

ϕ could be
obtained, it is not clear how to connect σ2

ϕ and cycle slips in
a way that explains the empirical relationship apparent in Fig.
6. The method adopted in [5], whereby σ2

ϕ is related to Ts

on the basis of simulation results that assume Gaussian white
measurement noise, leads to unreasonable predictions for Ts—
especially for low values of σ2

ϕ. Using the data underlying
Fig. 6, one can show that, for the DD-AT PLL, Wideband and
GPS data records that lead to 8 < σϕ < 10 deg yield mean Ts

values of 29 and 27 seconds, respectively. By comparison, the
DD-AT line in Fig. 2 (the non-scintillating case) indicates that
for σϕ < 10.2 deg, Ts > 5 hours. Hence, within this range of
σϕ, the method adopted in [5] overestimates Ts by over 600
times.

A more satisfactory modeling approach can be developed
around the close connection between differentially-detected
data bit errors and cycle slips. Recall from the discussion of
Fig. 5. and Table II that, for both the Wideband and GPS
data, the mean time Te between DPSK-detected bit errors
acts as a lower bound on the best-performing (DP-AT) PLL’s
value of Ts. Fig. 7, which plots the DP-AT PLL’s average
cycle slip rate for all 30-second scintillation library records
vs. the DPSK-detected bit error rate over each record, shows
that the relationship between slip rates and bit error rates is
strongly correlated, and that both Wideband and GPS data
obey the same trend. A straight-line fit to the data falls below
the Ts = Te dashed line, indicating that Te underbounds Ts.
Thus, if one can predict Te for a given time history of complex
signal scintillation, then one has a useful lower bound for the
DP-AT PLL’s Ts.

The connection between Te and Ts that is apparent in Fig. 7
was explained previously in terms of the differentially-detected
bit estimates dm,k. It can now be restated more generally as
follows: the signal properties that tend to cause DPSK bit
errors also tend to induce cycle slips in many PLL designs.
By tying DPSK-detected bit errors to PLL cycle slips, one
trades the difficult problem of cycle slip prediction for the
more tractable problem of bit error prediction.

B. Binary DPSK Bit Error Probability in the Presence of
Scintillation

The goal of this subsection is to derive an expression
for the binary DPSK bit error probability for a scintillating
communications channel. This expression will enable DPSK
Te to be estimated for a given time history z(t) of complex
signal scintillation. The formulation proposed here extends the
closed-form solution for fast Ricean fading given in [12, Sec.
8.2.5.2] to the specific case of complex signal scintillation with
a 2nd-order Butterworth-type power spectrum.
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Fig. 7. Average DP-AT PLL cycle slip rate vs. the average DPSK-detected bit
error rate over each 30-second test interval for the Wideband data at C/N0 =
43 dB-Hz (open circles) and for the GPS L1 data within 40 ≤ C/N0 ≤ 44
dB-Hz with mean C/N0 = 43 dB-Hz (filled circles). The right and top
axes express the cycle slip rate and bit error rate in terms of Ts and Te,
respectively. The dashed 45◦ line indicates the condition Ts = Te.

Consider again the model for the complex baseband signal
rk given in Eq. (6). Assume that Ta = Tb and that the
phase estimate θ̂(t) is generated by a low-bandwidth frequency
tracking loop so that, like the carrier phase θc, it can be con-
sidered constant over adjacent bit intervals. For convenience,
and without loss of generality, set θc = θ̂(t) = 0 over the
interval [tk−2, tk). Then rk = zk

√
Eb exp(jθ̃k) + nk is the

complex baseband signal, where zk now represents the average
of z(t) over the kth bit interval and Eb is the energy per
bit. As before, the noise element nk is zero-mean Gaussian
with E[n∗knj ] = N0δk,j . Let the channel response function
z(t) be defined as z(t) = z̄ + ξ(t), where z̄ is the direct
component, modeled as a complex constant, and ξ(t) is the
multipath component, modeled as a complex stationary zero-
mean Gaussian random process with autocorrelation function
Rξ(τ) = 1

2E[ξ∗(t)ξ(t + τ)]. The channel decorrelation time
τ0 > 0 is defined as the value of τ for which Rξ(τ)/Rξ(0) =
e−1. A narrow Rξ(τ) (small τ0) implies a scintillation channel
that changes rapidly with time.

The binary DPSK decision variable is uk = Re(r∗krk−1).
In the absence of scintillation and noise, uk = 1 when θ̃k =
θ̃k−1, and uk = −1 when θ̃k = θ̃k−1 + π. Without loss of
generality, suppose that θ̃k = θ̃k−1. Then Pe = P (uk < 0)
is the binary DPSK bit error probability. Calculation of Pe

requires the following statistics of zk:

σ2 ≡ 1
2E[|zk − z̄|2] =

1
T 2

b

∫ Tb

0

∫ t

t−Tb

Rξ(τ)dτdt

(11)

ρσ2 ≡ 1
2E[(zk−1 − z̄)∗(zk − z̄)] =

1
T 2

b

∫ Tb

0

∫ t−Tb

t−2Tb

Rξ(τ)dτdt

(12)

Assume that the channel response function z(t) is normal-
ized so that E[|z(t)|2] = 1. Then for saturated (Rayleigh)
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fading where z̄ = 0, the quantity 2σ2 ≤ 1 can be interpreted
as the loss in signal power due to fluctuations in z(t) over the
integration interval. Likewise, ρ ≤ 1 represents the degrading
effect of bit-to-bit fluctuations in z(t) on the DPSK decision
variable uk.

Under the assumption of Ricean fading, the magnitude of
zk, namely αk = |zk|, has a Ricean probability distribution
with mean-square value Ω ≡ E[α2

k] = 2σ2(1 + K), where
K is the Ricean K-parameter. Defining the average SNR per
bit as γ̄ ≡ ΩEb/N0 = ΩTbC/N0, one has, together with ρ
and K, all the quantities necessary to evaluate the closed-form
expression for Pe given in [12, Sec. 8.2.5.2]:

Pe =
1
2

[
1 + K + γ̄(1− ρ)

1 + K + γ̄

]
exp

( −Kγ̄

1 + K + γ̄

)
(13)

In practice, estimation of Pe can be approached in two
different ways. The first approach assumes that the averages
zk are available. In this case, ρ can be estimated directly
by evaluating the expectation operations in Eqs. (11) and
(12) as time averages, then dividing Eq. (12) by Eq. (11).
Likewise, Ω is estimated by evaluating 〈|zk|2〉. Assuming that
the underlying z(t) is normalized (E[|z(t)|2] = 1), then Ω < 1
for any S4 > 0. Next, the Ricean K parameter is estimated.
Under the Ricean model, K is defined as the ratio of the direct
component power to the multipath component power, i.e.,
K ≡ |z̄|2/2σ2. In practice, invoking this definition to estimate
K is problematic because low-frequency phase scintillation
causes the instantaneous z̄ to wander. Instead, it is best to
estimate K based on its relationship with S4, given by

K =

√
1− S2

4

1−
√

1− S2
4

, S4 ≤ 1 (14)

where S4 is evaluated according to Eq. (10) with I = α2
k. If

the measured S4 exceeds unity, K is set to 0. Substituting K,
ρ, and γ̄ = ΩEb/N0 into Eq. (13) yields the desired Pe. Tests
have shown that the values of Pe calculated according to this
approach agree closely with the bit error probability averages
observed in the scintillation testbed for a given interval of
scintillation.

The second approach, which is more appropriate for the-
oretical work, calculates Pe based on the τ0 and S4 of a
hypothetical scintillation time history z(t). In this case, σ2 and
ρ are estimated indirectly via a model of Rξ(τ). The model,
which closely fits the autocorrelation functions of records in
the scintillation library over a broad range of scintillation
strength, corresponds to the power spectrum of a 2nd-order
Butterworth filter [22]:

Rξ(τ) = σ2
ξe(−β|τ |/τ0)[cos(βτ/τ0) + sin(β|τ |/τ0)] (15)

where the factor β = 1.2396464 ensures that Rξ(τ0)/Rξ(0) =
e−1. Substituting this expression for Rξ(τ) into Eqs. (11) and
(12) leads to

σ2 =
(
σ2

ξ/q2
)
[2q + f(q)− 1] (16)

ρσ2 =
(
σ2

ξ/2q2
)
[f(2q)− 2f(q) + 1] (17)

where f(q) = exp(−q)(cos q − sin q) and q = βTb/τ0.

The approach for a hypothetical z(t) proceeds as follows.
As before, a K value corresponding to z(t) is derived from S4.
Call this value K ′ to distinguish it from the K value associated
with the averages zk; the two are in general slightly different.
Again assuming E[|z(t)|2] = 1, K ′ is related to σ2

ξ and z̄ by
2σ2

ξ (1+K ′) = 1 and z̄2 = 2K ′σ2
ξ (without loss of generality,

z̄ can be assumed to be real). Solving for σ2
ξ and substituting

σ2
ξ and τ0 into Eqs. (16) and (17) yields values for σ2 and

ρσ2. These, in turn, are used to estimate the K and Ω for the
hypothetical averages zk via K = z̄2/2σ2 and Ω = z̄2 + 2σ2.
Finally, the K, ρ, and γ̄ = ΩEb/N0 corresponding to the zk

are used in Eq. (13) to solve for Pe.
This approach to estimating Pe has been validated using

estimates of τ0 obtained from the scintillation library’s empir-
ical z(t) intervals. Table III summarizes the results of four test
cases in which the predicted and actual number of bit errors
Ne for four different testbed experiments are compared. For
each case, an approximately statistically stationary interval of
scintillation data was chosen from the scintillation library. The
nominal C/N0 for each test case was 43 dB-Hz. The length of
the interval T , the S4 index, the value of τ0, and the predicted
and actual number of bit errors Ne are given for each case. The
error range on the actual Ne values represents two standard
deviations based on 10 runs with the same scintillation record
but with independent simulated receiver noise. In general, the
agreement between the predicted and actual Ne values is good,
meaning that the model described in this section accurately
predicts binary DPSK Pe during severe scintillation.

TABLE III
COMPARISON OF PREDICTED AND ACTUAL DPSK BIT ERRORS

Parameters

Case T (s) S4 τ0 (s) Ne (pred.) Ne (actual)

1 100 0.41 1.30 0.002 0± 0
2 114 0.97 0.25 31.4 30.4± 2.3
3 108 0.88 0.21 16.2 20.6± 3.3
4 127 0.97 0.36 18.4 20.7± 3.1

Once Pe is obtained by whatever means, one calculates
a useful lower bound for the achievable mean time between
cycle slips Ts over the interval of scintillation considered by
computing the mean time between DPSK-detected bit errors
Te = Tb/Pe. Thus, in response to the scintillation effects
modeling challenge posed in the introduction to Section VI,
one can offer the triple {S4, τ0, C/N0} (or {K, ρ, γ̄}, which
contains equivalent information) as a scintillation channel
characterization sufficient to approximately predict the cycle
slip performance of a class of standard GPS PLLs. In this char-
acterization, S4 gives a measure of the scintillation intensity,
τ0 describes the speed of the fluctuations, and C/N0 defines
the channel’s nominal carrier-to-noise ratio.

C. Applicable Domain of the Scintillation Effects Model

It is necessary to outline the range of parameter values over
which the proposed scintillation effects model is applicable.
First note that the method presented above for estimating Te

imposes no restrictions on the range of τ0 or C/N0, and that
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the condition S4 ≤ 1 implied by K ≥ 0 is not significantly
restrictive because, aside from rare “focusing” behavior, S4

takes on values near or below unity [23]. Thus, Te can be
estimated as described above for nearly all possible S4, τ0,
and C/N0 values.

On the other hand, the model of Te as a useful ap-
proximation for Ts is only valid within a limited range of
τ0, C/N0, Ta, and Bn values. For example, in the limit
as nominal C/N0 → ∞, one can always reduce cycle slips
by shortening Ta and widening Bn. In this extreme case,
Te and Ts are no longer usefully related. Of course, not all
parameter values are of practical interest. For a terrestrial GPS
receiver, values of nominal C/N0 range from 38 to 55 dB-Hz.
Within this range and in the presence of severe scintillation,
widening Bn much beyond 10 Hz results in a steep increase
in frequency unlock. Likewise, there exist practical limitations
on the accumulation interval Ta: short Ta lead to increased
squaring loss [cf. Eq. (2)], and long Ta tend to destabilize the
tracking loop. Finally, realistic decorrelation times of L-band
scintillation for a stationary receiver can be generally limited
to 1 > τ0 > 0.2 seconds. The following list summarizes
practical ranges of τ0, C/N0, Ta, and Bn for GPS carrier
phase tracking in the presence of scintillation:

1 > τ0 > 0.2 sec 38 ≤ C/N0 ≤ 55 dB−Hz
10 ≤ Ta ≤ 20 ms 5 ≤ Bn ≤ 20 Hz

Simulation tests have shown that the proposed model is
applicable over this domain in the sense that on average
Ts/2 < Te ≤ Ts.

VII. CONCLUSIONS

A scintillation effects testbed that derives inputs from an
empirical scintillation library has been used to test several
standard—and some exotic—GPS phase tracking loop designs.
Testbed results demonstrate that deep power fades (> 15
dB) accompanied by abrupt, approximately half-cycle phase
transitions—jointly termed canonical fades—cause the loops
to skip cycles at a rate that is significantly faster than is
predicted by existing scintillation effects models.

Testbed results also show that the mean time between binary
DPSK bit errors serves as a useful lower bound for the mean
time between cycle slips experienced by a prototype PLL
that uses differentially-detected data bit wipeoff. It has been
argued that the prototype PLL is broadly representative of all
PLLs that track bi-phase modulated signals in the sense that,
without additional information (e.g., data bit aiding), other
phase tracking schemes are unlikely to perform significantly
better in severe scintillation than does the prototype PLL.

Inspired by the strong correlation between binary DPSK
bit errors and cycle slips, a simple model for cycle slip
prediction has been developed. The model, which reasonably
approximates the rate of cycle slipping observed in the testbed
results, is based on the scintillation index S4, the complex
scintillation signal decorrelation time τ0, and the nominal
carrier-to-noise ratio C/N0.
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