
Intercepting Unmanned Aerial Vehicle Swarms
with Neural-Network-Aided Game-Theoretic

Target Assignment
Nicholas G. Montalbano and Todd E. Humphreys

Aerospace Engineering & Engineering Mechanics
The University of Texas at Austin

Austin, TX, USA
nick30075@utexas.edu

todd.humphreys@utexas.edu

Abstract—This paper examines the use of neural networks
to perform low-level control calculations within a larger game-
theoretic framework for drone swarm interception. As unmanned
aerial vehicles (UAVs) become more capable and less expensive,
their malicious use becomes a greater public threat. This paper
examines the problem of intercepting rogue UAV swarms by
exploiting the underlying game-theoretic nature of large-scale
pursuit-evasion games to develop locally optimal profiles for tar-
get assignment. It paper also examines computationally efficient
means to streamline this process.

Index Terms—pursuit-evasion game; neural network; UAV
swarm control.

I. INTRODUCTION

In January, 2015, the U.S. White House was briefly locked
down when a stray unmanned aerial vehicle (UAV) entered its
grounds [1]. In December 2018, London’s Gatwick airport was
shut down for nearly three days by deliberate drone incursions
[2]. In an age of highly capable and increasingly autonomous
UAVs purchasable for a few hundred dollars, future such in-
trusions can be expected to occur in various forms at sensitive
sites across the globe. Electronic countermeasures, an obvious
first response to such incursions, may not be effective against
deliberate attacks [3], and directed energy defenses may be
overwhelmed by a swarm attack. This paper contemplates a
scenario in which a hostile UAV swarm is parried by a swarm
of intercepting UAVs.

Interception of hostile UAV swarms has been studied from
a variety of perspectives. Playbook-based approaches in which
a human operator chooses from a set of predefined strategies
for a swarm to autonomously execute have been examined
both for effectiveness and for burden on the human operator
[4], [5]. Such a system, while adequate for simple interception
tasks, scales poorly to larger swarms or complex environments
in which an operator has difficulty comprehending the full
state space of the interception. Furthermore, while the human
involvement necessary is limited, the system is not fully
autonomous and thus not provably optimal.

Some approaches seeking full autonomy have treated the
motion of members of the target swarm as a Markov decision

process in a discretized space, distributing interceptors as nec-
essary to guarantee successful interception [6]. This approach
fails to consider which behaviors the attacker deems optimal;
for example, an attacker known to have a target destination
can be more easily intercepted by a defending interceptor who
cuts off the attacker’s intended path. Other work has examined
the case in which interceptors seek to herd a target rather
than destroy it [7], [8]. These techniques present guarantees
of eventual success but either decline to include optimality
criteria for interceptors (such as minimizing time or fuel usage)
or only consider optimality in cases with tightly-constrained
action sets.

Other solutions treat interception as a game of surveillance,
with interceptors searching a space (discretized or continuous)
for a target (or swarm of targets). Some treat the problem
as a surveillance game adapted from the traveling salesman
problem with the assumption that all targets or defended areas
are of equal importance [9]. In this school of thought, the
interception is considered complete when the pursuer is either
well-localized or herded to some final area. This approach,
again, ignores attacker priorities.

Decentralized swarm control with regret monitoring has
emerged as a popular control scheme for directing UAV
swarms [10], [11]. In regret monitoring, instead of directly
cooperating on a strategy, interceptors communicate to their
neighbors which strategies they wish that had played at the
previous time step. This scheme has been shown to converge
to the Nash equilibrium of all interceptor costs, given sufficient
time. Though this family of techniques can be generalized to
consider the likelihood of successfully defending targets, the
attacker’s priorities are again neglected. Speed of convergence
can also be a concern for fast-paced applications [11].

A solution that does not plan around the attacker’s goals
may not be optimal in a Nash sense for real-world appli-
cations. The problem that this work will consider consists
of two swarms of UAVs with known high-level objectives
and costs. The attacking (defending) swarm desires to evade
(hasten) capture and move towards (herd the other swarm away
from) a set of predefined objectives with costs known to all

Copyright c© 2020 by Nicholas Montalbano
and Todd E. Humphreys

May 2020 preprint of paper submitted for publication

parties. This mutual knowledge of costs is key to streamlining
behavior, anticipating that some strategies offer limited benefit
to one swarm and conserving resources that would otherwise
be spent countering an unlikely action.

The underlying game-theoretic problem is likely computa-
tionally intractable. It can be solved using dynamic program-
ming, but such solutions are only guaranteed to converge if the
game is zero-sum [12]. This assumption may not be reasonable
for real-world applications; a zero-sum game requires that one
player’s loss is explicitly represented in the other player’s cost
function as a reward. Consider the case of an interception game
surrounding a set of ground targets. The defender may place
more value on defending a target than the attacker does on
attacking it due to differences in the perceived value of the
target and what role each swarm believes that target may play
in future interactions. The resulting game is non-zero sum.

This paper splits the swarm interception problem into a
high-level game of assigning a defensive interceptor to each
attacker and a low-level game of pursuit-evasion played out
by each pairing. The result can be thought of as the game-
theoretic equivalent of a local minimum of the underlying
problem, one created by finding the optimal solutions to two
subproblems.

This paper assumes known attacker objectives to produce a
defensive solution that anticipates the behavior of the attacker
swarm and more efficiently plans actions for defenders using
this knowledge. It seeks a Nash equilibrium of an underly-
ing game of reduced complexity with some simplifications
for computational efficiency. Neural networks are applied to
develop control profiles for the low-level game and enhance
cost generation of the high-level game, reducing the overall
system’s response time, thus improving scalability. Finally, this
paper examines the usefulness of heuristic pruning of strategies
to reduce the game’s search space.

The remainder of this paper is organized as follows. Follow-
ing a brief review of background material in Section II, Section
III outlines the problem and introduces a split between the
high- and low-level parts of the swarm interception problem.
Section IV provides a simple outline for neural network
training procedures and evaluation for the high-level problem.
Heuristics using iterative strict dominance to bound swarm
costs and eliminate non-optimal strategies are introduced in
the latter half of Section IV. Finally, Section V provides
simulation results for the proposed algorithms.

II. BACKGROUND: GAME THEORY AND NASH EQUILIBRIA

In an n-player perfect-information game, two or more
players must choose from a finite set of strategies to mini-
mize some mutually-known costs. A classic example is the
Prisoner’s Dilemma, a game in which two conspirators face a
choice after being arrested: the prisoners may either cooperate
with one another by remaining silent, or may defect by
confessing to the crime. If both cooperate, they are convicted
of a lesser charge and sent to prison for 2 years; if both defect,
they are sentenced to 4 years. If one defects and the other
cooperates, the defector goes free on a plea deal whereas the

cooperator spends 5 years in prison. The dilemma can be cast
as a bimatrix non-zero-sum game as shown in Table I.

TABLE I: A standard two-player two-action game, with costs
to Players 1 & 2 represented in the table entries as (C1, C2).

Player 2

Player 1 Cooperate Defect

Cooperate (2, 2) (5, 0)

Defect (0, 5) (4, 4)

A Nash equilibrium is the strategy pair for which each
player’s best response to the opponent’s action is to play
the equilibrium pair, essentially ensuring convergence on a
given strategy driven by mutual self-interest. The Prisoner’s
Dilemma equilibrium is (Defect, Defect), which is counterin-
tuitive, as the (Cooperate, Cooperate) pair produces the best
joint outcome. But a player who knows that the other will
cooperate would rather defect in order to minimize his own
cost and fear of the other player defecting prompts rational,
self-interested players to defect, thus making (Defect, Defect)
the equilibrium action of the game. In terms of costs J1 and
J2 as a function of actions u1 and u2 for Players 1 and 2, the
Nash equilibrium can be expressed as the action pair (u∗

1, u
∗
2)

from which neither player profits by unilateral deviation:

J1(u∗
1, u

∗
2) ≤ J1(u1, u

∗
2)

J2(u∗
1, u

∗
2) ≤ J2(u∗

1, u2)

Uncertainty in costs complicates the underlying problem. For
simple games played in the presence of noise, if multiple equi-
libria emerge, the risk-dominant equilibrium (lowest product
of costs of deviation from equilibrium) proves to be the most
robust [13] [14].

III. PROBLEM FORMULATION

This paper examines the problem of interception of in-
dividual UAVs in an attacker-swarm-versus-defender-swarm
engagement between two parties consisting of M defending
interceptors and N attackers, with M > N . The dynamics of
all vehicles are assumed known, as are the costs (see Section
III-A). While it may be impractical for real-world problems to
assume that all cost parameters are known, it is standard within
the literature to assume large amounts of mutual knowledge
[15]. An evaluation of the necessity of this assumption is left
to future work.

Each attacker UAV also has a mutually known ground
target, with a reward to the attacking swarm if the relevant
UAV arrives at its location and a penalty to the defending
swarm for permitting this. These costs and values are not
necessarily zero-sum; one side, for example, may prioritize
long-term goals over short-term goals so protecting/damaging
easily-replaced resources may be more valuable to one side’s
higher-level plans than the other’s. However, this concession
adds a layer of complexity to the problem–as the game is now
necessarily non-zero sum, many standard numerical solution
techniques no longer apply [16].

2

Finally, each side receives a discount to its cost function for
leaving forces in reserve, rewarding it for preserving forces
for a later engagement. If the weight of this discount were
sufficiently high, a refusal by both parties to sortie would
represent a Pareto-optimal equilibrium (a Nash equilibrium
with the lowest costs to each player) of the underlying game.
It is assumed that the discount factor is sufficiently high to
motivate some UAVs to stay in reserve, but not the entire
swarm. UAVs can be withdrawn from service at any time
during the engagement.

A. Costs and Dynamics

Denoting the current position/velocity state of the ith de-
fender as xi, the time index as k, the control action applied by
player i at time k as ui(k), each defending UAV has mutually
known dynamics

xi(k + 1) = fi(k, xi(k), ui(k), wi(k)) (1)

where wi(k) is normally distributed Gaussian white noise
sampled from a known covariance matrix Wi. The covariance
is assumed sufficiently small to promote noise-independent
selection of Nash equilibria [14]. Using the subscript j to
denote attacker states, the attacker UAVs have dynamics

xj(k + 1) = fj(k, xj(k), uj(k), wj(k)) (2)

The cost function of the defending swarm consists of a sum
of quadratic fuel costs, the sum of the proximity of each sortied
attacker to the nearest interceptor, a penalty for losing one of
the T targets, and the discount for maintaining a reserve force.

Jd =

M∑
i

uT
i Rdui

+

N∑
j

(xj − xd,n)TQd(xj − xd,n)

−
T∑
k

PdVd,k −MrsvVrsv

(3)

Similarly, the attacker’s cost function is

Ja =

N∑
j

uT
j Rauj

−
N∑
j

(xj − xd,n)TQa(xj − xd,n)

−
T∑
k

PaVa,k −NrsvVrsv

(4)

Ra, Qa, Rd, Qd > 0. The signs of the proximity terms are
opposite for each cost function so as to capture the competing
goals of the defending and attacking swarms–the defender
wishes to reduce the distance between UAVs while the attacker
wishes to increase this distance.

B. Solution Techniques

The players seek a Nash equilibrium set of controls (u∗
d, u

∗
a)

of the paired cost functions defined in Equations 3 and 4 such
that Jd(u∗

d, u
∗
a) < Jd(ud, u

∗
a) and Ja(u∗

d, u
∗
a) < Ja(u∗

d, ua).
Determining this equilibrium may be difficult. The game is
both stochastic and non-zero sum, which disqualifies conver-
sion of the problem to one amenable to dynamic programming
as outlined in [16]. Optimal control techniques performed in
an iterative best response framework could be used to solve
this problem but the large state space of this problem makes
this approach computationally intractable [17].

Instead, this paper seeks to decompose the swarm-versus-
swarm game into two sets of games. The first is a large number
of low-level games between paired attackers and interceptors.
The higher-level game determines these pairings (assignments)
and whether or not to hold a given UAV in reserve. Existing
solutions for solving low-level pursuit-evasion games require
significant assumptions, ranging from ignoring the effects
of noise to sharing raw sensor data [15], [18]. This paper
uses a stochastic mixed trajectory technique which discretizes
the control space of each party and solves for the Nash
equilibrium of the underlying stochastic non-zero sum game.
This approach represents the local equivalent to a global
Nash equilibrium; while it lacks guarantees of optimality a
global sense, this approach provides an avenue for real-time
implementability.

C. The Low-Level Game

Each low-level game is treated as a standard pursuit-evasion
game [19]. The UAVs belonging to the attacker and defender
swarms have costs derived from the swarm cost function, with
the cost function weights for the attacker UAV corresponding
to the cost function weights of the attacker UAV within the
higher-level swarm game.

Solving these games is computationally intensive. For the
case of linear dynamics and quadratic costs, a pair of coupled
differential (algebraic) Riccati equations can be solved for
the control value pair that represents the Nash equilibrium
of the continuous-time (discrete-time) game [20]. A defender
could precompute low-level controls to improve real-time
implementability, but this requires either advance knowledge
of all cost functions or interpolation over a very large set of
precomputed game matrices. This approach is too restrictive
for real-world implementation.

This lack of advance knowledge of cost functions invites
investigation of alternative techniques. Though a discretized
mixed trajectory approach is computationally burdensome
[20], its ease of adaptation to games with nonlinear dynamics
and non-LQR costs makes it ideal for this use case. The
portion of the algorithm that involves shooting of trajectories
is easily parallelized and can be used as a fall back in limited
cases [12]. This paper will continue by using a modified
mixed trajectory approach that handles noise by examining
risk-dominance of equilibria in cases in which a pure strategy
Nash equilibrium does not emerge. In the deterministic case,
this approach reduces to [20]’s mixed trajectories.

3

To further enable real-time implementability, this work
instead uses a neural network to approximate the solutions
of these low-level games.

IV. ALGORITHMS

Algorithms and potential heuristic modifications will be
presented here.

A. Solving the Low-Level Game

Denote the simulation horizon as ks and planning horizon
as kh, the cost function structure as Js, admissible range
of cost function parameters as Jc, actuator constraints umax,
number of training simulations as kS , game dynamics f ,
controller (producing a (u∗

A, u
∗
D) pair) gu, and initial state

constraints xmax. The resulting low-level controller is presented
in Algorithm 1.

Algorithm 1: Train/predict controls
Input : ks, Js, Jc, xmax, umax, ks
Output: N

1 Training Time:

2 D = []kSkh

3 S = []kSkh

4 n = 0

5 for i = 1:kS do
6 Jp = rand(Jc)
7 xA, xD = rand(xmax)
8 for j = 1:ks do
9 (uA, uD) = gu(xA, xD, umax, kh)

10 D(n) = {xA, xD, Jp}
11 S(n) = {uA, uD}
12 xA, xD = f(xA, uA, xD, uD)
13 n++
14 end
15 end

16 no = randsample(1 : ksks)
17 D = D(no)
18 S = S(no)

19 N = new neural network
20 N = train network(D,S)

21 Evaluation Time:

22 (uA, uD) = predict(N, xA, xD, Jp)

The initial states and cost function parameters are ran-
domized at each new simulation iteration to ensure that
the neural network can be used to handle a broader range
of interception games without requiring specialized advance
knowledge. Training data is randomized after generation in
order to ensure that each training batch represents a variety of
cost parameters as well as a variety of states representative
of a late-stage pursuit. This provides a mild performance
improvement in practice. This may be a result of the learning
rate discount providing decreasing weight to batches learned
later in training; varying the cost parameters in batches seen
early in training will improve performance.

B. Solving the High-Level Game

During selection of target assignment, the above neural net-
work is evaluated to provide estimates for control pairs in order
to enhance evaluation speed. Pairings are evaluated against a
global cost function at the swarm level. Low-level pursuit-
evasion games are governed by cost matrices representing the
proximity costs of the global cost functions. Denote the lists
of attackers and defenders as LA and LD, respectively, the
list of attacker targets and values as Xa and Va, the costs
to the defender of a lost target as Jt, swarm cost functions
as Ja and Jd, cost parameters for the low-level games Jp,
and inputs to Algorithm 1 as S. Denoting the output set of
swarmwide controls for each party as (u∗

A, u
∗
D), the resulting

target assignment algorithm is presented in Algorithm 2.

Algorithm 2: Target assignment
Input : LA, LD , Xa, Va, Ja, S, N , Jp
Output: (u∗

A, u∗
D)

1 UA, UD = []

2 for i = 1 : length(LA) do
3 (UA(i), .) = predict(N, xA, xD, Jp)
4 end

5 for j = 1 : length(LD) do
6 (. , UD(j)) = predict(N, xA, xD, Jp)
7 end

8 JA, JD = []

9 for i = 1 : length(LA) do
10 for j = 1 : length(LD) do
11 JA(i, j) = Ja(UA(i), UD(j), xA, xD, Xa, Va)
12 JD(i, j) = Jd(UD(i), UD(j), xA, xD, Xa, Jt)
13 end
14 end

15 (u∗
A, u∗

D) = Nash(JA, JD)

Cost function terms related to ground targets are evaluated
over the active sets of sortied attackers. Aside from the control
generation and Nash steps, the runtime of Algorithm 2 is
second-order in the mean list size. It may be advantageous to
develop some heuristics with which to prune the assignment
lists in order to reduce computational costs.

C. Heuristics and Computation Time

The Nash step of Algorithm 2 can be computationally
intensive for large swarms. To generate a non-reserve list
of possible launches of a set of n drones creates Σn

i=1

(
n
i

)
items, which then must be paired with possible launches of
a similar size from the other swarm. The possible pairing
matrix which must be solved in the Nash step grows as
min(nattacker, ndefender)

2. Solution algorithms for this matrix,
such as the Lemke-Howson algorithm, are roughly seventh-
order in matrix size for standard implementations [21]. This
is computationally impractical for real-world applications.

As distance between paired attacker and defender UAVs
becomes large, the proximity cost and value terms (∆xTQ∆x)
come to dominate the control cost terms (uTRu) and inputs

4

reach their maximum allowable limits. A simple heuristic
could lower- and upper-bound the costs to the attacker of each
pairing, with the lower-bound cost for the attacker being the
case in which the defender moves towards the attacker with
maximum thrust and the upper-bound cost for the attacker
being the case in which the defender flees with maximum
thrust. Modifying a standard velocity matching interception
technique [22] with motion prediction based on the above
bounds permits rapid shooting of trajectories to calculate
asuccession of states. From here, iterative strict dominance
(iteratively eliminating strategies whose lower-bounded costs
exceed another strategy’s upper-bounded costs for all pairings)
can be used to prune the cost matrices and reduce the
search space for possible assignments. Denoting the maximum
control inputs of the attacker and defender as va and vd,
respectively, a proposed algorithm for heuristic pruning an
attacker’s input control set LA to a reduced set lA is presented
in Algorithm 3.

Algorithm 3: Attacker strategy pruning
Input : LA, LD , Xa, Va, Ja, S, va, vd
Output: lA

1 UA, U−
D , U+

D = []

2 for i = 1 : length(LA) do
3 for j = 1 : length(LD) do
4 ûm =

unit vector(heading(velocity match(Xa, Xd)))

5 UA(i) = vaûm

6 U+
D(j) = vdûm

7 U−
D (j) = −vdûm

8 end
9 end

10 J−
A , J+

A = []

11 for i = 1 : length(LA) do
12 for j = 1 : length(LD) do
13 J−

A (i, j) = JA(UA(i), U−
D (j), xA, xD, Xa, Va)

J+
A (i, j) = JA(UA(i), U+

D(j), xA, xD, Xa, Va)
14 end
15 end

16 lA = LA

17 for i = 1 : length(LA) do
18 for j = 1 : length(LA), j 6= i do
19 D = J−

A (i, :)− J+
A (j, :)

20 s = signs(D)
21 if min(s) ≥ 0 then
22 lA = lA(:6= i)
23 end
24 end
25 end

The defending swarm may apply a similar pruning ap-
proach, assuming that the assigned defender UAV applies
maximum input towards the attacker UAV and that the at-
tacker UAV applies maximum input towards (away from) the
defender, thus forming an upper (lower) bound on costs.

These two pruning algorithms can be applied iteratively
in alternating attacker-defender order in order to iteratively

Algorithm 4: Defender strategy pruning
Input : LA, LD , Xa, Va, Ja, S, va, vd
Output: lD

1 U−
A , U+

A , UD = []

2 for i = 1 : length(LA) do
3 for j = 1 : length(LD) do
4 ûm =

unit vector(heading(velocity match(Xa, Xd)))

5 U+
A (i) = vaûm

6 U−
A (i) = −vaûm

7 U−
D (j) = vdûm

8 end
9 end

10 J−
D , J+

D = []

11 for i = 1 : length(LA) do
12 for j = 1 : length(LD) do
13 J−

D (i, j) = JD(U−
A (i), UD(j), xA, xD, Xa, Va)

J+
D(i, j) = JD(U+

A (i), UD(j), xA, xD, Xa, Va)
14 end
15 end

16 lD = LD

17 for i = 1 : length(LD) do
18 for j = 1 : length(LD), j 6= i do
19 D = J−

D (:, i)− J+
D(:, j)

20 s = signs(D)
21 if min(s) ≥ 0 then
22 lD = lD(: 6= i)
23 end
24 end
25 end

reduce the size of pairing lists necessary to examine. This step
is O(n2) in the number of UAVs launched by either swarm but
it reduces the size of the input to the required O(n7) solution
algorithm.

V. RESULTS

To validate Algorithm 1, a neural network was trained on
1500 full simulations of simple pursuit-evasion games with
double integrator dynamics with an additional aerodynamic
drag term proportional to velocity v̇ = −0.3v. Iterative testing
found that a neural network composed of six layers provided
the best performance for these data, shown in Figure 1.

Splitting the neural network into two networks, one de-
signed to predict pursuer controls and a second designed
to predict evader controls, provides further insight into the
behavior of the neural network trained for this problem, shown
in Figures 2 and 3.

An identically structured seven-layer neural network was
used for each case. The discrepancy between neural network
quality for pursuer and evader cases is left to later research.
Simulations with the neural networks provided worse perfor-
mance than a hand-tuned velocity matching controller; this
may be the result of velocity matching providing controls
close to the Nash-optimal values for low control costs. This
work will proceed using Algorithm 2 as outlined above, though

5

Fig. 1: Matlab-generated training summary. The six-layer neural network converges to its final error range after approximately
600 training steps. A final RMSE value of 1.0354 is obtained; this is the RMSE value of the concatenated attacker/defender
control vector with a control input range varying on [−2, 2]. In the worst-case scenario that error is constant across all output
states, this represents an error of approximately 7% compared to the standard algorithm.

Fig. 2: Matlab-generated training summary for neural network approximating pursuer controls only. The network provides better
accuracy (lower RMSE) for pursuer controls alone than it does for simultaneous generation of pursuer and evader controls.

6

Fig. 3: Matlab-generated training summary for neural network approximating evader controls only. The network provides worse
accuracy (higher RMSE) for evader controls alone than it does for simultaneous generation of pursuer and evader controls.

for simple problems, velocity matching may prove to produce
lower errors (and thus, lower costs) than a neural network.

To validate Algorithm 2, a simulation was performed using
randomized cost weights and attacker and defender swarms
initialized in randomized clusters. Each swarm consisted of
three UAVs.

Algorithms 3 and 4 were then implemented and added to
the simulation.

The heuristic successfully reduced the number of eval-
uations of the low-level controller. However, the increased
number of evaluations of the high-level cost functions in-
creased total computational time. It is likely that, with a less
efficient low-level controller, Algorithms 3 and 4 will provide
substantial performance gains.

VI. CONCLUSIONS

Four algorithms have been presented to efficiently generate
control actions, assign targets, and prune target assignments
for attacking and defending swarms involved in a large-
scale attack on a series of defended targets. This approach
is capable of exploiting knowledge of attacker optimality
in order to avoid behaviors that may lead to failures in
longer engagements. A series of simulation experiments have
been performed to validate four proposed algorithms, though
unexpectedly poor performance was observed with the latter
two algorithms.

REFERENCES

[1] M. S. Schmidt and M. D. Shear, “A drone, too small for radar to detect,
rattles the White House,” Jan. 2015, https://www.nytimes.com/2015/01/
27/us/white-house-drone.html.

0 1 2 3 4 5 6 7 8

x-position (km)

-15

-10

-5

0

5

10

y
-p

o
si

ti
o
n
 (

k
m

)

D
1

D
2

D
3

A
1

A
2

A
3

Fig. 4: Attacker and defender swarm trajectories plotted over
a 20 time step attack/defense simulation. The attacking swarm
initially moves from its initial location in the upper right
towards the origin, where their targets are clustered, but the
defending swarm (initialized near the origin) moves to head
them off. The attacking swarm drops several UAVs from its
active set (represented by the UAVs which begin to coast in
a nearly straight line). The attacking attempts to withdraw
them but their momentum forces the defenders to treat them
as hostile in order to prevent a potential reactivation. This
eventually drives the game into a stalemate in which all players
on each swarm are active.

7

https://www.nytimes.com/2015/01/27/us/white-house-drone.html
https://www.nytimes.com/2015/01/27/us/white-house-drone.html

5 10 15 20 25 30 35 40

Iteration count

0

5

10

15

20

25

30

35

40

45

50

E
x
e
c
u
ti

o
n
 T

im
e
 (

s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
n
tr

o
l

e
v
a
lu

a
ti

o
n
s

(f
ra

c
ti

o
n
 o

f
n
o
n
-h

e
u
ri

st
ic

 c
a
se

)

Execution time without heuristic

Execution time with heuristic

Reduction in scale

Fig. 5: Execution time and low-level control evaluations with
and without the heuristic. For this simple case with a neural
network generating low-level control commands, the velocity
matching technique only reduces the computational time of
the low-level controller slightly. The increase in evaluations
of the cost function (as heuristics must be evaluated at least
three times) increase the total computational burden. The total
evaluations of the low-level controller are reduced by more
than 60% through a long interception. If a low-level controller
with a high computational cost (with a runtime of three to
four times the computational time of evaluating the costs
of the high-level game), the heuristic may drastically reduce
computational time.

[2] B. Mueller and A. Tsang, “Gatwick airport shut down by ‘deliber-
ate’ drone incursions,” Dec. 2018, https://www.nytimes.com/2018/12/20/
world/europe/gatwick-airport-drones.html.

[3] T. E. Humphreys, “Congressional testimony: Statement on the security
threat posed by unmanned aerial systems and possible countermeasures,”
Mar. 2015.

[4] R. P. Goldman, K. Z. Haigh, D. J. Musliner, and M. J. Pelican,
“Macbeth: a multi-agent constraint-based planner [autonomous agent
tactical planner],” in Proceedings. The 21st Digital Avionics Systems
Conference, vol. 2. IEEE, 2002, pp. 7E3–7E3.

[5] R. Simmons, D. Apfelbaum, D. Fox, R. P. Goldman, K. Z. Haigh,
D. J. Musliner, M. Pelican, and S. Thrun, “Coordinated deployment
of multiple, heterogeneous robots,” in Proceedings. 2000 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2000)(Cat. No. 00CH37113), vol. 3. IEEE, 2000, pp. 2254–2260.

[6] M. Sinay, N. Agmon, O. Maksimov, G. Levy, M. Bitan, and S. Kraus,
“UAV/UGV search and capture of goal-oriented uncertain targets.”

[7] S. Nardi, F. Mazzitelli, and L. Pallottino, “A game theoretic robotic
team coordination protocol for intruder herding,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 4124–4131, 2018.

[8] M. R. Brust, G. Danoy, P. Bouvry, D. Gashi, H. Pathak, and M. P.
Gonçalves, “Defending against intrusion of malicious UAVs with net-
worked UAV defense swarms,” in 2017 IEEE 42nd Conference on Local
Computer Networks Workshops (LCN Workshops). IEEE, 2017, pp.
103–111.

[9] M. Pavone, E. Frazzoli, and F. Bullo, “Adaptive and distributed algo-
rithms for vehicle routing in a stochastic and dynamic environment,”
IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1259–1274,
2010.

[10] M. Khosravi, H. Khodadadi, H. Rivaz, and A. G. Aghdam, “Cooperative
control for multi-target interception with sensing and communication
limitations: A game-theoretic approach,” in 2015 54th IEEE Conference
on Decision and Control (CDC). IEEE, 2015, pp. 1048–1053.

[11] G. Arslan, J. R. Marden, and J. S. Shamma, “Autonomous vehicle-target
assignment: A game-theoretical formulation,” 2007.

[12] H. Zhang, Q. Wei, and D. Liu, “An iterative adaptive dynamic pro-
gramming method for solving a class of nonlinear zero-sum differential
games,” Automatica, vol. 47, no. 1, pp. 207–214, 2011.

[13] H. Carlsson and E. Van Damme, “Global games and equilibrium
selection,” Econometrica: Journal of the Econometric Society, pp. 989–
1018, 1993.

[14] D. M. Frankel, S. Morris, and A. Pauzner, “Equilibrium selection in
global games with strategic complementarities,” Journal of Economic
Theory, vol. 108, no. 1, pp. 1–44, 2003.

[15] P. Kumar and J. Van Schuppen, “On Nash equilibrium solutions in
stochastic dynamic games,” IEEE Transactions on Automatic Control,
vol. 25, no. 6, pp. 1146–1149, 1980.

[16] E. N. Barron, L. C. Evans, and R. Jensen, “Viscosity solutions of Isaacs’
equations and differential games with Lipschitz controls,” Journal of
Differential Equations, vol. 53, no. 2, pp. 213–233, 1984.

[17] D. Fridovich-Keil, E. Ratner, A. D. Dragan, and C. J. Tomlin, “Effi-
cient iterative linear-quadratic approximations for nonlinear multi-player
general-sum differential games,” arXiv preprint arXiv:1909.04694, 2019.

[18] Y. Yavin, “Stochastic pursuit-evasion differential games in the plane,”
Journal of optimization theory and applications, vol. 50, no. 3, pp. 495–
523, 1986.

[19] W. Willman, “Formal solutions for a class of stochastic pursuit-evasion
games,” IEEE Transactions on Automatic Control, vol. 14, no. 5, pp.
504–509, 1969.

[20] T. Basar and G. J. Olsder, Dynamic noncooperative game theory. SIAM,
1999, vol. 23.

[21] B. Codenotti, S. De Rossi, and M. Pagan, “An experimental analysis of
Lemke-Howson algorithm,” arXiv preprint arXiv:0811.3247, 2008.

[22] F. Kunwar and B. Benhabib, “Rendezvous-guidance trajectory planning
for robotic dynamic obstacle avoidance and interception,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36,
no. 6, pp. 1432–1441, 2006.

8

https://www.nytimes.com/2018/12/20/world/europe/gatwick-airport-drones.html
https://www.nytimes.com/2018/12/20/world/europe/gatwick-airport-drones.html

