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Abstract—A comparison of neural network, state augmenta-
tion, and multiple model-based approaches to online location
of inertial sensors on a vehicle is presented that exploits dual-
antenna carrier-phase-differential GNSS. The best technique
among these is shown to yield a significant improvement on a
priori calibration with a short window of data. Estimation of
Inertial Measurement Unit (IMU) parameters is a mature field,
with state augmentation being a strong favorite for practical
implementation, to the potential detriment of other approaches. A
simple modification of the standard state augmentation technique
for determining IMU location is presented that determines which
model of an enumerated set best fits the measurements of this
IMU. A neural network is also trained on batches of IMU and
GNSS data to identify the lever arm of the IMU. A comparison of
these techniques is performed and it is demonstrated on simulated
data that state augmentation outperforms these other methods.

Keywords—GPS/INS integration, neural networks

I. INTRODUCTION

Online calibration of sensors is a persistent problem for

multi-sensor integration. Estimation of IMU parameters must

be performed to determine the biases and location of the

device on the vehicle; failing to accurately determine these

parameters creates large errors in state estimates produced

from inertial measurements. However, measuring the location

on the vehicle of the IMU relative to the GNSS antenna

may be difficult, due to the design of the vehicle, or time-

consuming, for platforms in the prototyping phase. For many

applications, it is preferable to locate the IMU on a vehicle

during standard operation. Bias estimation must be performed

during device operation and, though many solutions to the

problem of simultaneous estimation have been developed,

several techniques have not been applied to this problem.

Active calibration of IMUs has been extensively studied

from the perspective of state augmentation. Reference [1] an-

alytically determined necessary conditions on vehicle motion

to determine the lever arm and biases of an IMU mounted on

a car equipped with carrier-phase differential GNSS. Refer-

ence [2] studied the full nonlinear problem on a car with a

single-antenna GNSS setup and derived a series of sufficient

conditions to determine intrinsic parameters. The approach

presented herein will estimate biases and mounting errors

from an enumerated set. A multiple-model filter (MMKF)

should be able to accurately determine the true location faster

and more efficiently than conventional methods by extracting

information from discarded knowledge. For example, the ve-

hicle’s approximate size constrains the search space for sensor

location. While it may be more accurate to explicitly handle

the constraint, underlying distributions become strongly non-

Gaussian. Selection from an enumerated set does not encounter

this problem. Multiple model estimation has been held back by

its prohibitive computational cost compared to other adaptive

estimation methods [3]; however, modern processing power is

quickly compensating for this increased cost. Reference [4]

presents a modern comparison of a multiple model estimator

with a 15-state extended Kalman filter (EKF) and demonstrates

gains in accuracy and convergence time, a clear indicator of

the potential of this approach.

The equations for dynamics propagation of the coupled

INS/GNSS system are linear within the limits of the IMU

employed for model replacement, if biases are exactly known.

The measurement equation, however, may behave poorly, de-

pending on the integration architecture employed [5]. Tightly

coupled estimation incorporates the pseudorange to each

GNSS satellite into its measurement equation and, as a re-

sult, is highly nonlinear. Loosely coupled estimation instead

incorporates the position solution provided by a GNSS receiver

and results in a measurement equation that can be linearized

without large errors. The extended Kalman filter is typically

applied to this architecture ( [1], [6]). This work will concern

itself with loosely coupled estimation. State augmentation is

typically performed for integrating these sensors but, given the

performance benefits of multiple-model filters over EKFs, it is

possible that a multiple-model filter with a fine discretization

over possible lever arm locations will outperform the standard

state augmentation approach. In addition to the MMEKF,

machine learning may be beneficial for solving this problem;

a neural network may be able to resolve nonlinearities where

a standard filter would experience difficulties.

Aforementioned improvements to processing power have

enhanced the accuracy and availability of neural networks for

a wide range of problems. The literature is rich with algo-

rithms improving the accuracy of machine learning, ranging

from improvements to the training process such as dropout

[7] to modifications to network architectures such as batch

normalization [8] and convolutional networks [9]. These re-

finements to standard approaches have greatly increased the

U.S. Government work not protected by U.S. copyright 680



number of applications that are amenable to neural network-

based solutions. It is well-established that neural networks can

successfully perform dynamic estimation for well-posed non-

linear problems [10]. Machine learning has also demonstrated

successes at system identification for later application within

a Kalman Filter ( [11], [12]). A neural network may be able to

estimate this parameter without need for well-tuned or more

sophisticated filters.

Reference [12] noted several problems with convergence of

the network employed in system identification–in particular,

that an H∞-based technique outperforms the neural network

in near-linear cases. They experimented with a one-layer

network; it is likely that using a more modern network, larger

in size and trained with methods developed after [12]’s initial

publication, a better estimate for system parameters can be

obtained. On the other hand, the loosely coupled estimation

problem with unknown lever arm is only weakly observable

under most movement patterns [1] and a neural network may

have difficulty recognizing those weaker areas.

This paper makes two closely related contributions. First,

it establishes that both multiple model-based and neural

network-based solutions can be successfully applied to the

problem of lever arm estimation in GPS/INS integration. These

approaches are tested at attitudes lower than those against

which standard techniques are typically validated. Second,

it compares these techniques to established techniques and

demonstrates that their performance is of middling quality

compared to tried-and-true methods. There are some problems

that neural networks cannot solve as accurately as existing

techniques; it is important that the current excitement sur-

rounding neural networks does not lead to their application

to problems for which they show poor performance.

II. LOOSELY COUPLED ERROR MODELS AND ESTIMATORS

State augmentation is typically performed for online esti-

mation of biases for a platform with integrated INS/GNSS. A

lever arm error state, δlab, can be appended to the full state

if the exact value of the lever arm is not known. This work

will concern itself with the loosely coupled formulation of the

problem, with GNSS position included in the measurement

equation rather than raw psuedoranges. This section will

introduce models for error states in GPS/INS integration and

measurement equations corresponding to their use. A review

of the interacting multiple-model Kalman filter will then be

performed.

A. Loosely Coupled Estimation with Unknown Location

Using [6]’s formulation, the equations of motion of an

object moving in the Earth-Centered Earth-fixed (ECEF) frame

can be expressed as

Ṗ e = V e

V̇ e = Re
bf − 2ωe × V e + g

Ṙe
b = Re

bΩ

(1)

where P , V , and Re
b are position vector, velocity vector, and

rotation matrix of the body’s local frame with respect to the

ECEF frame, ωe is the angular velocity of the Earth, f is the

specific force acting on the body’s center of gravity expressed

in the ECEF frame, and Ω is the cross-product matrix of

angular rates of the body relative to the ECEF frame, expressed

in the body frame.

Denote estimated states for position, velocity, and the rota-

tion matrix as P̂ , V̂ , and R̂ and likewise denote δP , δV as the

errors in position and velocity. Γ is the cross product matrix

of γ, the attitude estimation error, f is the specific force on

the body and f̂ its measurement, ωB the true angular rate of

the body frame with respect to the inertial frame and ω̂B its

measurement, ba and bg are accelerometer and gyro biases,

respectively, and wa and wg denote noise. Though these biases

evolve quickly in low-quality sensors, they can be treated as

constant over sufficiently short periods of time. Scale factor

and alignment errors are ignored for this examination. A multi-

antenna solution is capable of estimating alignment errors

which, if not in yaw, are typically small. Scale factor errors

are of lesser impact than alignment errors for aerial vehicles,

producing position errors almost an order of magnitude lower

[13]. The estimation errors of state estimates and biases can

be modeled as

P̂ e = P e + δP

V̂ e = V e + δV

R̂e
b = Re

b(I3 + Γ)

f̂ = f + ba +wa

ω̂B = ωB + bg +wg

(2)

The GNSS position solution is denoted P . A complemen-

tary filter output P̂ is used as an additional estimate of P .

The difference between the two is taken as the measurement.

Defining the vector in the body frame describing the IMU’s

location relative to the GPS unit as Lab and its estimation

error as δlab, the linearized measurement equation is

z = P̂ − P = δP +Re
bLabγ +Re

bδlab − v (3)

Combining 1 and 2, the linearized dynamics can be ex-

pressed in terms of state x = [δP T δV T γT bTg bTa δlTab]
T

with additive IMU noise w(t) as

ẋ(t) =

















03 I3 03 03 03 03
03 03 −Re

bFb 03 Re
b 0

03 03 −Ωb I3 0 0
03 03 03 03 03 03
03 03 03 03 03 03
03 03 03 03 03 03

















x(t) +w(t) (4)

wherein Ωb and Fb are the cross product matrices of body-

frame acceleration and angular rate. This must be discretized

when implemented in the filter; the authors have found that

a first-order approximation in time is accurate enough for

(simulated) real-time use. The measurement equation of Eq. 3

can be written in terms of x as
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z(t) =
[

I3 03 −Re
bLab 03 03 Re

b

]

x(t)− v(t) (5)

Linearization errors are small. The Kalman filter described

by these equations has unobservable modes for most trajecto-

ries and care must be taken during validation to guarantee that

the vehicle experiences pitching and/or rolling motions during

operation [1].

If an additional GPS unit is added to the system at a known

location L21 in the body frame, then the measurement equation

can be modified to incorporate it. If the antenna and IMU

frames are aligned, incorporating z2(t) = δP21 = P2 − P1

into the measurement equation results in

z(t) =

[

I3 03 −Re
bLab 03 03 Re

b

03 03 −Re
bL21 03 03 03

]

x(t)− v(t) (6)

This modification provides better attitude observability, bet-

ter constraining the gyro biases.

B. Multiple-Model Estimation

The multiple-model filter adaptively determines which dy-

namics model of an enumerated set best fits collected data

by comparing the outputs of a bank of filters with different

dynamics and/or measurement models. This work will exper-

iment with an interacting multiple-model EKF (IMMEKF),

which differs slightly from the standard MMEKF in the size

of its bank of filters–the IMMEKF mixes all data from the

previous iteration of the filter before performing the next

update step, reducing the number of filters that must operate

simultaneously.

From [14], the probability that the ith model was in effect

at time k − 1 given measurement zk and that the jth model

is in effect at time k is

µi|j(k − 1|k − 1) = P (mi(k − 1)|mj(k), z
k)

=
1

c
pi,jµi(k − 1)

(7)

where cj is the normalizing constant such that
1

cj

∑n

i=1
pi,jµi(k − 1) = 1. pi,j represents the probability of

switching models from i to j.

The pre-measurement state estimate x̂j(k − 1) and covari-

ance matrix P j for the jth filter at time k is

x̂
j
0
(k − 1|k − 1) =

n
∑

i=1

µi|j(k − 1|k − 1)x̂i(k − 1|k − 1)

P
j
0
(k − 1|k − 1) =

n
∑

i=1

µi|j(k − 1|k − 1)×

(

Pi(k − 1|k − 1) + [x̂j
0
(k − 1|k − 1)

− x̂i(k − 1|k − 1)][ . ]T
)

(8)

A measurement is taken and the likelihood function of the

jth filter is updated to

Fig. 1. A single propagation and measurement step of the IMM algorithm
with two models.

Λj(k) = p(z(k)|mj(k), ẑ
k−1)

= N

(

z(k); ẑ(k|k − 1, x̂j
0
(k − 1|k − 1)),

Sj(k, P j
0
(k − 1|k − 1))

)

(9)

The model probabilities can be updated as

µj(k) =
1

d
cjΛj(k)

where d is another normalization constant such that
1

d

∑n

i=1
cjΛj(k) = 1.

The state estimates and covariance can be recovered at any

time from

x̂(k|k) =

n
∑

i=1

µi(k)x̂i(k|k) (10)

P (k|k) =

n
∑

i=1

µi(k)

(

Pi(k|k)[x̂(k|k)− x̂i(k|k)][ . ]
T

)

(11)

Relevant to this application, Eq. 4 can be easily modified

by removing rows and columns corresponding to δlab. This

renders the equations into a form amenable to a known, fixed

lever arm. The continuous space of possible locations on the

body is then discretized into a mesh. The MMKF treats each

node in the mesh as a separate model for the IMU’s location.

The computational burden of the MMKF employed to estimate

lever arm is approximately O(3) in the fineness of the mesh
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employed in the discretization.

C. Neural Networks

A neural network consists of an input layer, followed by

a chain of matrix multiplications. After each matrix multi-

plication, the resulting matrix is fed through some function

(typically a sigmoid or ramp function) to normalize data before

being fed into the next matrix multiplication. A depiction of

this structure with a network with three nodes in its input

layer, two hidden layers, and an output layer with two nodes

is shown below in Fig. 2.

Fig. 2. Illustration of a neural network with two hidden layers, with neurons
represented as colored dots and connections between neurons by lines.

The matrices used in the network are initialized randomly

and trained in a process in which the network is evaluated

against some known truth data, errors between the network

output and the true stateare evaluated, and the network matri-

ces are adjusted based on the backpropagated errors.

Several common modifications to network structure and

training procedures exist; the results presented here only

employed dropout during training, a procedure in which node

outputs have a chance to become zero during training and

other node outputs are reweighted to compensate [7].

III. RESULTS

The aforementioned filters and a neural network were tested

against simulated data for vehicles with one and two GNSS

receivers.

A. Simulation Results: Single Antenna

A simulated quadrotor was commanded to follow random

trajectories with nonzero velocities and always initialized with

its local body frame aligned with the world frame. This initial-

ization angle forces the quadrotor to pitch and/or roll through

the course of its trajectory, with relatively constant pitch- and

roll-rates near control saturation. The vehicle was provided

with yaw commands filtered through a noisy double integrator

with a constant bias, to guarantee that the vehicle rotates

about its body z-axis with nonzero angular acceleration. These

conditions on vehicular motion guarantee the observability of

all error and bias states [1]. The trajectory against which the

filters were tested is shown in Figs. 3-6 below. While some of

the literature on loosely coupled extrinsic parameter estimation

incorporates data taken at high attitudes of the body relative

to the local frame (often in excess of 40o), the trajectories

presented here are more realistic in scale. Filter performance

suffers as a result.
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Fig. 3. Simulated true position of the quadrotor for the single- antenna
validation trajectory.
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Fig. 4. Simulated true attitude of the quadrotor for the single- antenna
validation trajectory. The angular motion shortly after 10 s is a strong feature
for observability ( [1]).

Data were simulated with a 80 Hz navigation grade IMU

with each bias state modeled as a two-state Markov process (

[14]) with simulated decorrelation times of 10 s (accelerometer

and gyro) and 100s (accelerometer). 20 Hz GNSS measure-

ments were simulated with a standard deviation of 2cm in each

of east/north/up. The true lever arm from the GNSS unit to

the IMU was also generated randomly on N(0, I3x3) and had

a value of [0.865 0.321 −0.080]T meters. Two discretizations

for the MMKF are presented–one grid of 50 cm intervals and
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Fig. 5. Simulated true velocity of the quadrotor for the single- antenna
validation trajectory.
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Fig. 6. Simulated true attitude rate, expressed in the body frame, of the
quadrotor for the single-antenna validation trajectory. Noisy peaks in pitch
and roll are the product of saturation in the low-level controller.

another with a 10 cm grid. The performance of the various

filters is shown below in Figs. 7-9.

The standard state augmentation EKF appears to have the

best performance, with a final estimation error of 63cm. Both

forms of the MMKF provide poorer performance, with final

estimation errors of 99cm and 116cm for the 10cm and 50cm

grids, respectively. All estimators arrive at an incorrect final

value for δlz; the vehicle’s roll and pitch were roughly constant

during this motion, rendering the system partially unobserv-

able for long periods of motion. The state augmentation filter

(SA) and MMKFs were initialized with the same weighted

mean errors; the SA makes a large initial deviation, likely

misinterpreting the initial roll necessary to begin flying the

trajectory. The MMKFs are resistant to this error but are more

susceptible to later errors, failing to fully reject inaccurate

models.
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Fig. 7. Error in lever arm estimation for a simulated single-antenna quadrotor
with a state augmentation EKF.
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Fig. 8. Error in lever arm estimation for a simulated single-antenna quadrotor
with a multiple-model filter with a 50 cm discretization.

The trajectory here is less information-rich than others

in the literature. The simulated trajectories of [6] are not

dynamically feasiable for quadrotors which can only apply

accelerations along the body frame z-axis. Furthermore, a

single-antenna solution only weakly couples the attitude state

to the measurement, resulting in poorer accuracy than that of

a multi-antenna design.

A neural network was trained on 14000 flights (in batches

of 100) with full IMU and GNSS data provided as network

inputs and the lever arm as the output state. The objective of

the network was to absorb all of the data that would normally

be sent sequentially to a filter for post-processing and attempt

to perform the job of the filter, without knowledge of the

underlying process. Though the EKF does an admirable job

of handling the nonlinearities present in the problem, it was

hoped that the neural network would learn the underlying filter

equations in addition to finding a more accurate approximation
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Fig. 9. Error in lever arm estimation for a simulated single-antenna quadrotor
with a multiple-model filter with a 10 cm discretization.

than the standard linearization. The network was trained to

view the data as a standard bandit problem, treating each

input as a new data set unconnected to previous data. The

most successful network tested was composed of seven layers,

with 14000 nodes in its outermost layer and 40 nodes in its

final layer. Intermediate layers had 11000, 8000, 5000, 2000,

and 500 nodes. The network was trained using dropout with

Pkeep = 0.75. Other modifications to network architecture,

such as convolution, did not produce noticeable effects on

network accuracy.

After training, the data provided to the filters was input to

the network. The neural network produced the output estimate

Lab,NN = [0.1761 0.2729 0.5510]′, with a final estimation

error of 106 cm. This is close to the performance of the MMKF

but slightly below the performance of the standard EKF with

state augmentation.

The tried-and-true technique of state augmentation outper-

forms both multiple-model estimation and neural network-

based approaches for navigation-grade IMU units. The results

are summarized below in Table I.

TABLE I
SUMMARY OF ESTIMATION ERRORS FOR LEVER ARM ESTIMATION ON A

SINGLE-ANTENNA SIMULATED QUADROTOR.

Estimation Final error (cm)

EKF 63

MMKF (fine discretization) 99

MMKF (coarse discretization) 116

Neural network 106

B. Simulation Results: Dual Antenna

The quadrotor trajectory is less aggressive than many of

those shown in the literature ( [6]) and has smaller maximum

attitude deviations. Furthermore, the attitude rates are noisy

due to frequent control saturations encountered in the simu-

lated controller. A second set of simulations was performed on

a simulated point mass with two antennas in order to present

a best-case scenario for IMU integration.

A simulated point mass was commanded to follow random

trajectories with nonzero velocities and trajectories with slowly

varying attitude states in order to guarantee observability. For

training the neural network, as was done with the quadrotor

simulation, double integrators with biased noise were used

to generate all attitude components. Measurements were col-

lected with two antennas simulated with noise of the same

quality as in the single-antenna experiment. The validation

trajectory, presented below, was composed of a heavy rolling

sinusoid with small yawing and pitching actions used to

provide observability.
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Fig. 10. Simulated true position of the point mass for dual- antenna validation
trajectory.
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Fig. 11. Simulated true attitude of the point mass for dual- antenna validation
trajectory.
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Fig. 12. Simulated true velocity of the point mass for dual- antenna validation
trajectory.

0 5 10 15 20

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

A
tt

it
u

d
e 

(r
ad

/s
)

roll

5x 
pitch

5x 
yaw

Fig. 13. Simulated true attitude rate, expressed in the body frame, of the
point mass for dual-antenna validation trajectory.

Data were simulated with a 80 Hz navigation grade IMU

with each bias state modeled as a two-state Markov process (

[14]) with simulated decorrelation times of 100 s. 20 Hz GNSS

measurements for two antennas located at [±0.18 0 − 0.08]T

cm were simulated with a standard deviation of 2 cm in each

of east/north/up. The true lever arm from the center of gravity

to the IMU had a value of [1.00 0.50 0.20]T meters. A MMKF

with 25 cm discretizations was compared against a UKF. An

EKF was implemented for this case but had poor performance

due to the nonlinearities in the measurement equation. The

performance of the various filters is given in Figs. 14-15.

The UKF converged to an estimate with a final error of 36

cm.

The MMKF had poor performance due to large errors

introduced at the start of the estimation phase caused by

overweighting of incorrect lever arms. It was hoped that

restricting the models used by employing a smaller lever
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Fig. 14. Error in lever arm estimation for simulated dual-antenna point mass
with a state augmentation UKF.
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Fig. 15. Error in lever arm estimation for simulated dual-antenna point mass
with a multiple-model filter with a 25 cm discretization.

arm set would improve performance. The MMKF was re-

evaluated with a second model set with a known direction from

the IMU’s location to the center of gravity but an unknown

length. After tuning, the best results were obtained with a

discretization of 15 cm intervals. The performance of this filter

is shown in Fig. 16.

The additional information provided to the multiple-model

filter greatly improves performance. The final error with this

approach was 51 cm, slightly worse than the tried-and-true

UKF.

A neural network was trained on 16000 flights (in batches

of 10 flights per training step) with full IMU and GNSS

data provided as network inputs and the lever arm as the

output state. The network was trained to view the data as

a standard bandit problem, treating each input as a new data

set unconnected to previous data. The most successful network
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Fig. 16. Error in lever arm estimation for simulated dual-antenna point mass
with a multiple-model filter with a known direction from the IMU location
to the body CG.

tested was smaller than the network used in the single-antenna

test, with 14000 nodes in its outermost layer and 25 nodes

in its final layer. The two intermediate layers had and 270

and 190 nodes. The network was trained using dropout with

Pkeep = 0.85.

After training, the data provided to the filters was input

to the network. The neural network provided the output

estimate Lab,NN = [−0.0317 0.3922 0.1801]′, with a final

estimation error of 104 cm. The neural network had the worst

performance of all estimation methods examined in this work.

Kalman filtering is near-optimal (in an MMSE sense) for

problems with only mild nonlinearities; any other approach

would be hard-pressed to outperform a well-designed Kalman

filter.

Estimator performance is summarized below in Table II.

TABLE II
SUMMARY OF ESTIMATION ERRORS FOR LEVER ARM ESTIMATION WITH

DUAL-ANTENNA SIMULATED POINT MASS.

Estimation Final error (cm)

UKF 36

MMKF (known direction) 51

Neural network 104

IV. CONCLUSIONS

A simulated experiment has been performed to examine

various algorithms for loosely-coupled estimation of an IMU-

and GNSS-equipped platform with unknown IMU location.

Multiple model estimation over a fine discretization demon-

strated similar performance to a neural network; both were

outperformed by state augmentation. The neural network re-

sults presented here should be viewed as a lower bound on

performance, due to the tuning-intensive and unpredictable

nature of networks; due to the near-optimality of the Kalman

filter for this problem, however, it is unlikely that a well-tuned

or better-trained network will exceed the performance of the

Kalman filter.
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