
Exploiting Multicore Technology in
Software-Defined GNSS Receivers

Todd E. Humphreys, Jahshan A. Bhatti, The University of Texas at Austin, Austin, TX
Thomas Pany, IFEN GmbH, Munich

Brent M. Ledvina, Coherent Navigation, San Mateo, CA
Brady W. O’Hanlon, Cornell University, Ithaca, NY

BIOGRAPHIES

Todd E. Humphreys is an assistant professor in the de-
partment of Aerospace Engineering and Engineering Me-
chanics at the University of Texas at Austin. He received
a B.S. and M.S. in Electrical and Computer Engineering
from Utah State University and a Ph.D. in Aerospace En-
gineering from Cornell University. His research interests
are in estimation and filtering, GNSS technology, GNSS-
based study of the ionosphere and neutral atmosphere, and
GNSS security and integrity.

Jahshan A. Bhatti is pursuing a Ph.D. in the Department
of Aerospace Engineering and Engineering Mechanics at
the University of Texas at Austin, where he also received
his B.S.. His research interests are in development of small
satellites, software-defined radio applications, and GNSS
technologies.

Thomas Pany works for IFEN GmbH as a senior research
engineer in the GNSS receiver department. In partic-
ular, he is concerned with algorithm development and
C/C++/assembler coding. He was for six years assistant
professor (C1) at the University FAF Munich and for four
years research associate at the Space Research Institute
of the Austrian Academy of Science. He research interests
include GNSS receivers, GNSS-INS integration, signal pro-
cessing and GNSS science.

Brent M. Ledvina is Director of New Business and Tech-
nology at Coherent Navigation in San Mateo, CA. He re-
ceived a B.S. in Electrical and Computer Engineering from
the University of Wisconsin at Madison and a Ph.D. in
Electrical and Computer Engineering from Cornell Univer-
sity. His research interests are in the areas of ionospheric
physics, space weather, estimation and filtering, and GNSS
technology and applications.

Brady W. O’Hanlon is a graduate student in the School
of Electrical and Computer Engineering at Cornell Uni-
versity. He received a B.S. in Electrical and Computer
Engineering from Cornell University. His interests are in
the areas of ionospheric physics, space weather, and GNSS
technology and applications.

ABSTRACT

Methods are explored for efficiently mapping GNSS signal
processing techniques to multicore general-purpose proces-
sors. The aim of this work is to exploit the emergence
of multicore processors to develop more capable software-
defined GNSS receivers. It is shown that conversion of
a serial GNSS software receiver to parallel execution on
a 4-core processor via minimally-invasive OpenMP direc-
tives leads to a more than 3.6x speedup of the steady-state
tracking operation. For best results with a shared-memory
architecture, the tracking process should be parallelized
at channel level. A post hoc tracking technique is intro-
duced to improve load balancing when a small number
of computationally-intensive signals such as GPS L5 are
present. Finally, three GNSS applications enabled by mul-
ticore processors are showcased.

I. INTRODUCTION

Single-CPU processor speeds appear to have reached a wall
at approximately 5 GHz. This was not anticipated. As re-
cently as 2002, Intel, the preeminent chip manufacturer,
had road maps for future clock speeds of 10 MHz and be-
yond [1]. As more power was poured into the chips to
enable higher clock speeds, however, it was found that
the power dissipated into heat before it could be used
to sustain high-clock-rate operations [2]. Other perfor-
mance limitations such as wire delays and DRAM access
latency also emerged as clock speeds increased, and more
instruction-level parallelism delivered ever-diminishing re-
turns [3].

Interestingly, the current limitation of single-CPU proces-
sor speeds has not been the cause, nor the effect, of an
abrogation of Moore’s law. The number of transistors that
can be packed onto a single chip continues its usual dou-
bling every 24 months. The difference now is that, instead
of allocating all transistors to a single CPU, chip designers
are spreading them among multiple CPUs, or “cores”, on
a single chip.

The emergence of multicore processors is a boon for
software-defined radios in general, and for software-defined
GNSS receivers in particular. This is because the data pro-
cessing required in software radios naturally lends itself to
parallelism. Software radio is a special case of what are
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known as streaming applications, or applications designed
to process a flow of data by performing repeated iden-
tical operations within strict latency bounds. Streaming
applications are perhaps the most promising targets for
performance improvement via multicore processing [4].

The goals of this work are (1) to investigate how to ef-
ficiently map GNSS signal processing techniques to the
multicore architecture and (2) to explore software GNSS
applications that are enabled by multicore processors. In-
vestigating efficient mapping of GNSS signal processing
tasks to a multicore platform begins with the following
top-level questions, to which this paper offers answers:

1. How invasive will be the changes required to map exist-
ing serial software GNSS receiver algorithms to multiple
cores?
2. Where should the GNSS signal processing algorithms
be partitioned for maximum efficiency?
3. What new GNSS processing techniques will be sug-
gested by multicore platforms?

The general topic of mapping applications to multicore
processors has been treated extensively over the past
decade (see [4] and references therein). The particular case
of mapping software-defined GNSS applications to multi-
core platforms has been treated at an architectural level
in [5]. The current paper treats architectural issues, but
also reports on an actual multicore software GNSS receiver
implementation and discusses the challenges revealed and
adaptations suggested by such an implementation.

The remainder of this paper is divided into seven sections.
These are listed here for ease of navigation:
II: Parallel Processing Alternatives
III: Efficient Mapping to the Multicore Architecture
IV: Experimental Testbed
V: Testbed Results
VI: post hoc Tracking to Relax the Sequential Processing
Constraint
VII: Applications of Multicore Software-Defined Radios
VIII: Conclusions

II. PARALLEL PROCESSING ALTERNATIVES

While it is true that the emergence of multicore proces-
sors is promising for software-defined GNSS receivers, it is
also true that there exist viable alternatives to the coarse-
grained hardware parallelism of standard multicore pro-
cessors. Hardware parallelism—that is, the hardware fea-
tures that support parallel instruction execution—is best
thought of as a continuum, with field-programmable gate
arrays (FPGAs) on the one end and coarse-grained multi-
core processors on the other (see Fig. 1).

FineCoarse Granularity

Multicore GPP RISC Array FPGA

Fig. 1. Hardware parallelism granularity as a continuum.

A. Field-Programmable Gate Arrays (FPGAs)

FPGAs, programmable logic devices composed of regu-
lar arrays of thousands of basic logic blocks, offer the
finest grade of hardware parallelism: gate-level parallelism.
Streaming applications can take advantage of the enor-
mous throughput this fine-level parallelism offers. As FP-
GAs become denser and high-level programming tools ma-
ture, FPGAs are becoming an attractive target for full-
scale GNSS receiver implementation [6, 7].

B. Massively Parallel RISC Processors

The newest addition to the hardware alternatives for digi-
tal signal processing are massively parallel processors com-
posed of hundreds of reduced instruction set computer
(RISC) cores. For example, the PC102 from picoChip
(www.picochip.com) is a software-programmable processor
array that offers 308 heterogeneous processor cores and 14
co-processors, all running at 160 MHz [8,9]. As far as the
authors are aware, no GNSS receiver has yet been imple-
mented on a massively parallel processor, though such a
processors could no doubt support an implementation.

C. Multicore General-Purpose Processors

Multicore general-purpose processors (GPPs) such as
the Intel Core line and the Texas Instruments (TI)
TMS320C6474 offer coarse-grained hardware parallelism.
The multiple cores in these chips—typically from 2 to
4 cores—are large cores with rich instruction sets like
those found in legacy single-core processors. In addi-
tion to core-level parallelism, these chips typically offer
instruction-level parallelism, with each core supporting si-
multaneous instructions in one clock cycle. Instruction-
level parallelism can be used to great advantage in GNSS
receiver implementations. For example, the NavX-NSR
2.0 software GNSS receiver, (discussed in Section VII-A)
exploits Intel SSSE3 commands to perform 16 parallel 8-
bit multiply-and-accumulate (MAC) operations per core
per clock cycle—a remarkable total of 64 parallel MACs
on the preferred 4-core platform. Hence, the impressive
performance of the NavX-NSR 2.0 is dependent on both
instruction-level and core-level parallelism. Likewise, the
TI TMS320C6474 offers 3 cores, each of which can support
eight 8-bit MACs per cycle.
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D. Performance and Ease-Of-Use Comparison

A comparison of the foregoing three parallel processing
hardware alternatives reveals two kinds of gaps: (1) a
throughput gap that favors FPGAs over RISC arrays
and multicore GPPs, and (2) an ease-of-use gap that fa-
vors multicore GPPs over RISC arrays and FPGAs. The
throughput gap is evident in Table I, which is based on
the benchmarking results given in [8] with results for the
single-core ‘C6455 extrapolated to the three-core ‘C6474.
By measure of total channels supported, cost per channel,
or power consumption per channel (not shown in Table I),
the FPGA far outstrips the other two platforms.

The ease-of-use gap is more difficult to benchmark. FP-
GAs designs have historically been crafted in hardware
description languages such as Verilog or VHDL. While
powerful, these languages are less familiar to most engi-
neers and are not as expressive, easily-debugged, or easily-
maintained as high-level programming languages such as
C/C++. In recent years, FPGA vendors have intro-
duced high-level synthesis tools that allow users to gen-
erate designs from block-diagram-type representations or
from variants of the C language [10, 11]. But these high-
level tools typically use the FPGA resources inefficiently
compared to hand-coded Verilog or VHDL, and often are
inadequate to express the entire design, requiring engineers
to patch together a design from a combination of source
representations [7, 11].

In short, under current practices, implementing a digital
signal processing application on an FPGA typically takes
considerably more effort—perhaps up to five times more—
than implementing the same application on a single-core
DSP [11]. Thus there exists a wide ease-of-use gap between
FPGAs and single-core GPPs.

But the ease-of-use gap narrows as single-core GPPs give
way to multicore GPPs. The added complexity in syn-
chronization and communication for applications ported to
multicore GPP platforms makes all stages of a design life
cycle—from initial layout to debugging to maintenance—
more difficult. One of the goals of this paper is to evaluate
just how much the ease-of-use gap narrows with the tran-
sition to multicore GPP platforms.

One might think that massively parallel RISC arrays such
as the picoChip PC102 would fall somewhere between FP-
GAs and multicore GPPs in regard to ease-of-use. This
does not appear to be the case. In fact, it appears that
programming RISC arrays has proven so challenging for
users that vendors such as picoChip no longer offer general-
purpose development tools for their hardware. Instead,
users are limited to choosing from among several pre-
packaged designs. Hence, in general, RISC array ease-of-
use is far worse than that of FPGAs or multicore GPPs.

Because each designer evaluates the trade-off between per-
formance and ease-of-use differently, and differently for
each project, the right hardware platform is naturally
designer- and application-specific. For leading-edge re-
search into GNSS receiver technology, especially at re-
search institutions where projects are handed off from one
student to the next, ease-of-use is weighted heavily over
performance. Moreover, given that many exciting GNSS
applications are well within the performance capability of
high-performance multicore GPPs (as will be shown in
later sections of this paper), multicore GPPs remain the
authors’ platform of choice. However, the trend lines ap-
pear clear: with outstanding performance and ever-more-
powerful design tools, FPGAs are positioned to become
the future platform of choice for software-defined GNSS
receivers.

III. EFFICIENT MAPPING TO THE MULTI-
CORE ARCHITECTURE

The challenge of mapping an application to a multicore
architecture is one of preventing the gains from parallel
execution from being squandered on communication and
synchronization overhead or poor load balancing. These
are the basic problems of concurrency.

A. The Fork/Join Execution Model

A software-defined GNSS receiver, a general block dia-
gram of which is shown in Fig. 2, is an inherently par-
allel application. The two-dimensional acquisition search
can be parallelized along either the code phase or Doppler
shift dimension and can be further parallelized across the
unique signals to be searched. Once signals are acquired,
the tracking channels run substantially independently, and
thus are readily parallelizable (one exception to this are
vector tracking loop architectures, whose correlation chan-
nels are interdependent).

Both parallel acquisition and parallel tracking are punc-
tuated with synchronization events by which all parallel
task execution must be completed. For acquisition, the
synchronization event is the moment when a decision must
be made about whether a signal is present or not. For tra-
ditional scalar-type tracking, the synchronization event is
the computation of a navigation solution.

The parallel processing from one synchronization event to
the next can be represented by the fork/join execution
model (Fig. 3). At the fork, a master thread may create
a team of parallel threads. Alternatively, if threads exist
statically and the memory architecture is distributed, the
fork may consist of data being distributed to the separate
cores for processing. In any case, the fork marks the begin-
ning of parallel processing of a block of tasks. As defined
here, the task assigned to each core within a fork/join block
is the sum of all work the core must complete within the
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TABLE I

Performance and cost comparison of alternative parallel processing platforms

Chip Clock Chip Channels Cost per
Speed Cost Supported Channel

picoChip PC102 160 MHz $95 14 $6.8
TI TMS320C6474 1 GHz $170 ≤ 6 ≥ $28.3
Xilinx Virtex-4 FX140 -11 grade $1286 432 $3

block, no matter how many separate execution threads are
involved. Therefore, a core may service several threads in
completing its task within a fork/join block. The outputs
of each parallel task are joined at the join event.

The most computationally expensive of the parallel tasks
in a fork/join block is called the critical task. To meet real-
time deadlines, the critical task must complete within the
fork/join block. For maximum efficiency, the critical task
should not extend prominently beyond any other parallel
task. This objective is termed load balancing.

Acquisition

Correlation

Observables
Calculation

Tracking Loops

Data Decoding

Navigation
Solution

Front End
RF

Software

FFT−based

Software−Defined
Functions

Fig. 2. Block diagram of a general software-defined GNSS receiver.

Fork

Join

C
ri

tic
al

 T
as

k

Fig. 3. The fork/join execution model. The duration of each core’s
task within the fork/join block is marked by blue shading. The most
computationally expensive of the parallel tasks is the critical task.

B. Memory Architecture Considerations

The speed with which each core on a multicore processor
can access instructions and read and write data to memory
is a crucial determinant of processing efficiency, and must
be taken into account when partitioning tasks for parallel
execution.

To reduce accesses to off-chip RAM, which may take sev-
eral tens of clock cycles, processors have been built with a
hierarchy of memory caches that temporarily store often-
used instructions or data. Before performing an expensive
reach into off-chip RAM, a core will first check to see if the
same instruction or data are available in cache. If a “cache
hit” occurs, the processor saves valuable clock cycles; oth-
erwise, on a “cache miss” the processor must reach into
off-chip RAM.

The fastest cache, called level 1 (L1) cache, is also physi-
cally closest to the processing core. Read operations from
L1 can be executed in a single clock cycle. L1 cache is tied
to a particular core. Level-2 (L2) cache is further from the
core than L1, and read operations from L2 typically take
at least ten clock cycles. L2 cache can in some cases be
flexibly allocated within a unified L2 RAM/cache memory
module. L2 is often shared between multiple cores, though
access times to each core may differ. For example, the 3-
core TI ‘C6474 divides 3 MB of L2 RAM/cache among
the three cores either as an equal division at 1 MB apiece
or as 0.5 MB, 1.0 MB, and 1.5 MB. Each core can access
its portion of the L2 memory in roughly 14 clock cycles;
access to another core’s memory—while permitted—takes
much longer. Hence, each ‘C6474 core has a high affinity
for its private section of the L2 RAM/cache.

When partitioning tasks for parallel execution, one objec-
tive will be to maximize cache hits. Therefore, there should
be a preference for lumping together tasks that employ
identical data or instructions.

C. Process Partitioning

There are several ways one could choose to partition pro-
cessing for parallel execution. The partition should be
chosen to make most efficient use of computational re-
sources. Accordingly, the optimal partition should yield
a high computation to inter-core communication and syn-
chronization ratio, while maintaining good load balancing
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between cores. Furthermore, the optimal partition must
take into account the target memory architecture as de-
scribed above to avoid wasting computational cycles on
memory arbitration or expensive memory fetches.

Three broad types of parallelism are commonly defined:
pipeline, task, and data parallelism [4]. Within each of
these may exist several granularity options, from coarse to
fine.

C.1 Pipeline Parallelism

Pipeline parallelism is the parallelism of an assembly line:
separate cores work in parallel on different stages of the
overall task. For a software-defined GNSS receiver appli-
cation, one core may be tasked with acquisition, another
with tracking, and a third with performing the navigation
solution and managing inputs and outputs. For a target
platform whose L2 cache is not shared among cores (or
is formally shared but has private fast-access sections like
the ‘C6474), pipeline parallelism will result in a high rate
of cache hits. Unfortunately, load-balancing the pipeline
across multiple cores can be challenging because the differ-
ence in computational demand among the pipelined tasks
can be large and there may not be enough smaller tasks
to fill in the gaps.

C.2 Task Parallelism

Task parallelism refers to tasks that are independent in
the sense that the output of one task never reaches the in-
put of the others. In other words, task parallelism reflect
logical parallelism in the underlying algorithm. Task par-
allelism is often implicit in the for loops of serial programs.
The acquisition operation of a software-defined GNSS re-
ceiver can be thought of as a task-parallel operation, with
Doppler search bins distributed across cores. Likewise,
the tracking operation of a software GNSS receiver is task
parallel. Several alternatives for task parallelism exist, as
ordered below from coarse to fine granularity.
Signal-type: Signal-type-level task parallelism assigns, for
example, tracking for GPS L1 C/A, L2C, L5I+Q, and
Galileo E1B+C across four cores. Signal-type parallelism
results in a high cache hit rate and low communication
and synchronization overhead, but can lead to poor load
balancing.
Channel: Channel-level task parallelism is a partition at
each unique combination of satellite, frequency, and code.
Each channel update, which includes correlation opera-
tions and updates to the channel’s tracking loops, is dis-
tributed across cores. With heterogeneous channel types,
channel-level parallelism results in a lower cache hit rate
than signal-type-level parallelism, but load balancing is
typically better than signal-type-level parallelism and com-
munication and synchronization overhead is low.
Correlation: Correlation-level task parallelism is a parti-
tion at each unique correlation performed, whether in-
phase, quadrature, early, prompt, or late. Load balancing

is easy with correlation-level parallelism, but communica-
tion and synchronization overhead is high.

C.3 Data Parallelism

Data parallelism refers to “stateless” actors that have no
dependency from one execution to the next. For example,
a dot product operation between two large vectors can be
parsed such that the multiply-and-accumulate operations
on separate sections of the vectors are performed in par-
allel. Similarly, the correlate-and-accumulate operation in
a software GNSS receiver can be parsed into separate sec-
tions that are treated in parallel. After each section’s accu-
mulation is complete, the section-level accumulations are
combined into a total. This is an example of fine-grained
data parallelism, which suffers from a high communication
and synchronization overhead owing to the shortness of the
fork/join execution block.

For a typical GNSS receiver implementation, neither chan-
nel updates nor correlations can be data-parallelized be-
cause the carrier and code tracking loops that are inte-
gral to these operations retain state. Hence, current up-
dates and correlations affect subsequent ones. However, a
method called post-hoc tracking will be introduced later
in this paper that substantially data-parallelizes channels
at the expense of some loss of precision in the code and
carrier observables. The post-hoc tracking approach is an
example of coarse-grained data parallelism, which benefits
from low communication and synchronization overhead.

C.4 Preferred Partitioning

Preliminary experiments with software GNSS receiver par-
allelization revealed, not surprisingly, that task parallelism
is best for maximizing parallel execution speedup. In par-
ticular, Doppler-bin-level task parallelization of the acqui-
sition operation and channel-level task parallelization of
the tracking operation were shown to produce the maxi-
mum speedup. Accordingly, the remainder of the paper
will focus on these parallelization strategies.

D. Master Thread and Thread Scheduler

In implementation of parallel programs, the multiple par-
allel tasks that result from a fork are often referred to as
worker threads. At a join, a master thread performs se-
rial operations on the products of the previous fork/join
block and prepares for the upcoming fork into separate
worker threads. For the current software GNSS receiver
implementation, each worker thread initially executes a
short decision segment that determines which channel the
worker thread should process, if any. One can think of
these decision segments as a distributed thread scheduler.
The excerpt of source code below illustrates the structure
of a fork/join block as implemented in the OpenMP frame-
work (to be described subsequently). Each block contains
a fork, a decision segment, a process segment, and a join.
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// The master thread creates parallel worker threads that
// each execute the following code block.
#pragma omp parallel
{ /** FORK **/
while(true) {

/** DECISION SEGMENT **/
#pragma omp critical
{
// Only one thread can execute the decision segment
// at a time, a condition enforced by the "critical"
// pragma. The decision segment determines which
// channel each thread should update or whether the
// thread should exit.

}
/** PROCESS SEGMENT **/

}
} /** JOIN **/

D.1 Objectives

For efficient channel-level parallelism, the thread scheduler
attempts to load-balance parallel threads subject to the
constraint that each channel’s updates must be performed
serially (i.e., there must be no simultaneous processing of
the same channel).

If the thread scheduler does not balance the load between
the threads, some threads may end up idling before the
next join operation, leading to inefficient use of CPU re-
sources. In the case of heterogeneous channel types, the
thread scheduler’s load balancing objective is analogous to
playing the popular computer game “Tetris” except that
all blocks have identical shape (straight-line) and orien-
tation (upright), though they have variable length, where
length represents the time required to perform a channel
update. The thread scheduler aims to place the blocks
such that the number of complete rows is maximized.

The thread scheduler’s constraint can be explained as fol-
lows: state retained in each channel’s tracking loops im-
plies that a given channel update depends on information
resulting from the previous update of that channel. Hence,
each channel’s updates must proceed serially and thus sep-
arate cores cannot be allowed to simultaneously process
the same channel. The technique of post hoc tracking, in-
troduced later on, improves load balancing by relaxing this
serial channel processing constraint.

D.2 Strategy

The following strategy is employed by the thread scheduler
to optimally load balance parallel threads subject to the
serial processing constraint. Each channel is assigned a
lock mechanism, which remains locked when the channel
is being updated, and a counter representing the number of
updates remaining in the current fork/join block. When
a thread requests a channel from the thread scheduler,
the scheduler chooses the unlocked channel with the most
updates left.

E. Simulation

E.1 Simulator Description

A simulator was developed to test the thread scheduler.
The simulator is a C++ application that implements the
thread scheduler strategy but uses programmable dummy
loads for the process segment instead of GNSS channel
processing. The number of dummy loads and the run time
of each load can be configured in the simulator to test
the thread scheduler in different scenarios. The simula-
tor output contains timing and thread information that
can be plotted in MATLAB to visualize how the scheduler
arranges the load blocks in time and by threads.

E.2 Homogeneous Signal Type

The thread scheduler’s expected arrangement of homoge-
neous channels for two scenarios on a four-core platform
is illustrate schematically in Fig. 4. Each filled block
represents the processing for a single 10-ms L1 C/A ac-
cumulation (a single channel update). In each scenario,
five channel updates are shown, representing one fork/join
block. The scenarios are “worst case” in the sense that the
number of vacant processing blocks is maximized. If the
number of channels n is greater than the number of cores
N , then the maximum possible number of vacant blocks is
N − 1 (left panel of Fig. 4). For long fork/join blocks, the
impact of these vacant blocks is negligible. If n < N , then
N − n cores cannot be used at all due to the sequential
processing constraint (right panel of Fig. 4). In this case,
the sequential processing constraint prevents proper load
balancing. Actual simulation results for this scenario are
shown in Fig. 5
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E.3 Heterogeneous Signal Types

The thread scheduler’s expected arrangement of heteroge-
neous channels for seven scenarios with a decreasing num-
ber of L1 channels and a fixed number of L2 channels is
illustrated schematically in Fig. 6. For this figure, L2
channel updates were assumed to take 2.5 times as long
as L1 channel updates. The scenarios are designed to il-
lustrate the loss of throughput efficiency when the thread
scheduler must schedule two L2 channels and less than five
L1 channels. This loss of efficiency is an extension of the
second homogeneous worst-case scenario to heterogeneous
signal types. It can be shown that when the number of
L1 channels is less than the 2.5 times the number of L2
channels, there is no way to arrange all the channels for
maximum efficiency without breaking the sequential pro-
cessing constraint. The next section will show that a sim-
ple formula can express the general conditions required for
maximum efficiency. Actual simulation results for best-
and worst-case scenarios are shown in Figs. 7 and 8.

F. Optimum Load Balancing for Channel-Level
Task Parallelism

The load-balancing trend evident in the foregoing plots as
the number of channels decreases can be generalized. Let
the following definitions hold for a software-defined GNSS
receiver implemented via channel-level task parallelism on
a multicore processor:

N number of cores
m number of signal types
ni number of signals of type i
τi update run time for signals of type i

where the update run times are ordered such that τ1 ≤
τ2 ≤ · · · ≤ τm. Then for optimum load balancing the
following condition must hold
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Fig. 7. Execution graph showing good L1 C/A and L2C load bal-
ancing. Each shade of red (blue) corresponds to a different L1 C/A
(L2C) channel.
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Fig. 8. Execution graph showing poor L1 C/A and L2C load bal-
ancing due to a scarcity of channels. Each shade of red corresponds
to a different L1 C/A channel. Only one L2C channel, marked in
blue, is assumed to be present.

m∑

i=1

niτi ≥ Nτm (1)

This condition can be interpreted as follows. Under the
constraint of sequential channel processing, the signal type
with the longest update run time τm immediately sets the
critical task length to nuτm for the steady-state track-
ing fork/join block, where nu, which ranges from 10 to
100, is the number of updates for each channel within the
fork/join block (i.e., between calculations of the naviga-
tion solution). With the critical task length set, optimum
load balancing can only be achieved if there are sufficient
channels to occupy all N cores during the fork/join block.
This condition is achieved if the total average run time per
update

∑m
i=1 niτi meets or exceeds Nτm.
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Fig. 6. Expected load balancing results with heterogeneous signal types, from well-balanced cases (toward left) to poorly-balanced cases
(toward right) as a reduction in total channel load leaves a prominent L2C critical task. Each shade of red (blue) corresponds to a different L1
C/A (L2C) channel. Vacant processing blocks are colored green.

IV. EXPERIMENTAL TESTBED

An experimental testbed was developed to test the pre-
dictions of the foregoing simulations on an actual parallel
implementation of a software-defined GNSS receiver. Par-
allelization in the experimental testbed is based on the
OpenMP framework [12,13].

A. Post-Processing GRID Receiver

The software-defined GNSS receiver that was parallelized
is a post-processing version of the dual-frequency (L1 C/A,
L2C) GPS receiver described in [14]. This receiver, known
as the GRID receiver, is a dual-frequency extension of
the receiver described in [15]. The post-processing version
shares the code base of the embedded real-time implemen-
tation of the GRID, which targets the TI TMS320C6455
DSP, but the post-processing version implements a desk-
top interface. The software is written entirely in nat-
ural language C++, which facilitates code development
and maintenance. Most of the parallelization modifica-
tions (OpenMP directives) were surgically inserted into
the post-processing-specific code, requiring minimal mod-
ifications to the GRID code base.

B. The OpenMP Framework

The OpenMP framework provides C, C++, and Fortran
language extensions for shared memory concurrency and
is based on the fork/join execution model [13]. The lan-
guages extensions consist of compiler directives that con-
trol the distribution of tasks over the processor cores and
the necessary synchronization of these tasks. In the case
of C++, these extensions are #pragma statements, which
allows portability with compilers that do not support
OpenMP, since they will simply ignore the statements.

Most modern C++ compilers, such as the Intel C++ Com-
piler and GCC 4.2, now support OpenMP directives [12].

GCC’s implementation of the OpenMP framework con-
sists of a series of code transformations applied on the
original source code. The final expansion replaces the di-
rectives with function calls to a runtime library libgomp.
The runtime library is a wrapper around POSIX threads
with various system-specific performance enhancements
[13]. Examples of system-specific performance enhance-
ments include using a Linux extension to the POSIX API,
pthread setaffinity np, to enforce POSIX thread affin-
ity to specific cores and the reimplementation of mutex
synchronization using atomic CPU instructions and the
Linux futex system call rather than using pthread mutex
primitives (see the libgomp directory at
http://gcc.gnu.org/viewcvs/trunk/libgomp/config/linux).

OMPi and OdinMP/CCp are programs that parse C code
with OpenMP directives and generate multithreaded C
code using POSIX threads. With this program, compiler
support for OpenMP directives is not necessary; all that is
needed is system support for POSIX threads. For exam-
ple, a group of developers testing parallelization of digital
signal processing algorithms on the ARM MPCore plat-
form used OMPi with GCC 3.2 to compile their OpenMP
code [12]. Hence, the OpenMP directives can be used to
parallelize code intended for embedded targets. Figure 9 il-
lustrates the use of OpenMP directives for a basic fork/join
block.

C. Hardware Platform

The experimental testbed hardware platform is specified
in Table II.
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Fig. 9. An example of OpenMP-based execution of a basic fork/join
block. (From [12].)

TABLE II

Experimental Testbed Hardware Platform Specification

Processor Intel Xeon E5530
Number of Cores 4
Clock Frequency 2399 MHz
L3 Cache Size 8 MB
Operating System openSUSE Linux 11.1 64bit

V. TESTBED RESULTS

Testbed results were generated by accumulating the CPU
cycles elapsed during the parallelized update segments of
the post-processing GRID receiver. The CPU cycles re-
quired to load the data from file into memory and com-
pute the navigation solution were not considered in the
speedup factors. This makes the speedup factors applica-
ble to the real-time embedded GRID receiver, where the
CPU cycles required for data loading and for computation
of the navigation solution are minimal.

As shown in Tables III–V, minimally-invasive paralleliza-
tion via OpenMP delivers near-optimal speedup (≥ 3.6x
on 4 cores) for acquisition and track for typical signal en-
sembles. For atypical signal ensembles, having few L1 or
L2 channels, the speedup factor for tracking drops due to
poor load balancing across the cores.

TABLE III

Speedup Factor for Heterogeneous Signal Types:

Acquisition

2 Cores 3 Cores 4 Cores
1.933 2.743 3.594

TABLE IV

Speedup Factor for Homogeneous Signal Types: Tracking

Channels 2 Cores 3 Cores 4 Cores
2L1 1.907 1.727 1.690
3L1 1.932 2.715 2.549
4L1 1.954 2.734 3.611
5L1 1.936 2.745 3.586
6L1 1.956 2.773 3.614
7L1 1.941 2.774 3.649

TABLE V

Speedup Factor for Heterogeneous Signal Types: Tracking

Channels 2 Cores 3 Cores 4 Cores
2L1, 1L2 1.934 1.917 1.887
3L1, 1L2 1.938 2.470 2.415
4L1, 1L2 1.952 2.740 2.899
5L1, 1L2 1.955 2.759 3.639
6L1, 1L2 1.946 2.767 3.618
7L1, 1L2 1.951 2.780 3.638

VI. POST-HOC TRACKING TO RELAX THE
SEQUENTIAL PROCESSING CONSTRAINT

As described earlier, Eq. (1) must be satisfied for opti-
mum load balancing under the constraint that channels be
processed sequentially. Unfortunately, satisfying Eq. (1) is
likely to be difficult over the next five years or so. Consider
the following factors:
• The number of cores in coarse-grained multicore archi-
tectures will increase over the next few years (e.g., from 4
to 8);
• The disparity in update run time τi between signal types
will increase over the next few years. For example, the up-
date run time for L5I+Q signals on the real-time embedded
GRID receiver will be approximately 30 times that of the
L1 C/A channels. This is due to the wider bandwidth of
the L5 signal and the need to generate the oversampled
ranging codes in real time, as opposed to drawing them
from a table [14].
• Until a significant fraction of the GPS constellation is
modernized, there will likely be fewer computationally ex-
pensive (e.g., L5) channels than cores on a multicore soft-
ware receiver.

Based on these factors, load balancing will be a challenge
for multicore multi-frequency software-defined GNSS re-
ceivers over the next few years. This prospect motivates
a second look at the sequential processing constraint. The
following procedure relaxes the sequential processing con-
straint, thereby allowing concurrent processing of the same
channel, at the expense of a slight increase in the noise of
the channel’s code and carrier tracking observables.
1. Over a suitable sub-interval of np accumulations within
a fork/join block, break the carrier- and code-tracking
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feedback loops so that code and carrier tracking for each
channel are performed open loop based on the last esti-
mated Doppler shift and a model of satellite motion. Call
this open-loop Doppler time history the nominal Doppler
trajectory.
2. Calculate the in-phase I and quadrature Q accumula-
tions for the np intervals assuming the nominal Doppler
trajectory, yielding {Ip(i), Qp(i), Ieml(i), Qeml(i)} for i =
1, 2, ..., np, where the p and eml subscripts on the Is and
Qs respectively denote prompt and early-minus-late.
3. Perform post hoc closed-loop carrier tracking on the
prompt accumulations {Ip(i), Qp(i)} for i = 1, 2, ..., np by
predicting the Doppler shift and carrier phase at the be-
ginning of the ith interval based on the carrier tracking
loop state at the end of the (i− 1)th interval. Before mea-
suring the carrier phase at the midpoint of the ith inter-
val, rotate the [Ip(i), Qp(i)] vector by an angle ϕ̄ equal to
the sum of (1) the average phase error resulting from the
difference ∆fi between the predicted and nominal carrier
phase and Doppler trajectory over the ith accumulation
and (2) the phase difference at the beginning of the ith
accumulation interval between the phase implied by the
nominal Doppler trajectory and the phase implied by the
closed-loop-predicted Doppler time history over the inter-
val 1, 2, ..., i− 1.
4. Apply the closed-loop-estimated Doppler time history
fi, i = 1, 2, ..., np to estimate the code phase offset δτi at
the beginning of each accumulation interval.
5. From the differences between each δτi and the
code phase offset predicted by the measurements
{Ip(i), Qp(i), Ieml(i), Qeml(i)}, estimate a constant code
chipping rate offset over the np updates due to code-carrier
divergence.
6. Accounting for this constant code chipping rate offset,
estimate the code phase at the beginning of each of the np

accumulation intervals.

The post hoc tracking algorithm produces Doppler, carrier
phase, and code phase estimates for each of the np accumu-
lation intervals within the post hoc tracking window. The
precision of these is slightly degraded compared to those
produced by normal closed-loop tracking because (1) the
power in the accumulations {Ip(i), Qp(i), Ieml(i), Qeml(i)}
for i = 1, 2, ..., np decreases as the nominal and actual
Doppler time histories diverge, and (2) the power in
the prompt accumulations {Ip(i), Qp(i)} decreases as the
prompt correlator slips off the peak of the autocorrelation
function. The number np of accumulation intervals in the
post hoc tracking window must be small enough that the
increased noise in the observables remains within accept-
able limits. The value of np will depend on these limits,
on the stability of the receiver clock, and on unmodeled
satellite and receiver dynamics. To enable good load bal-
ancing, in no case does np have to exceed the number of
cores N .

Performing the correlations and accumulations neces-
sary to calculate {Ip(i), Qp(i), Ieml(i), Qeml(i)} for i =
1, 2, ..., np in an open-loop manner makes the correla-
tion/accumulation operations independent from one iter-
ation to the next, which is the defining characteristic of
data parallelism. Hence, the np correlation/accumulation
operations for any given channel can be scattered across
all available cores. This is an example of how GNSS signal
processing can be specially adapted to multicore platforms.

VII. APPLICATIONS OF MULTICORE
SOFTWARE-DEFINED RADIOS

The emergence of multicore technology marks an inflec-
tion point for software-defined GNSS radios, allowing them
to transition from quaint research platforms to practical
science-grade GNSS platforms. The following subsections
illustrate the kinds of GNSS applications multicore plat-
forms enable.

A. The Multicore NavX-NSR 2.0 Receiver

The NavX-NSR v2.0 is a dual-frequency PC-based
software-defined GNSS receiver that makes use of an
L1/L5 front end connected to the PC via the USB port.
The NavPort2 front end also receives IMU input and op-
tionally provides a stable OCXO. The receiver can acquire
and track multiple GNSS services and runs on any Intel
x86 platform including Intel Atom CPUs. It provides an
application programming interface and targets R&D ap-
plications. A screenshot of the user interface is shown in
Fig. 10.

Fig. 10. Graphical user interface of the NavX-NSR 2.0 receiver.

The NSR v2.0 is a successor of the V1.2 version [16, 17]
and shares common ideas with the ipexSR of the Univer-
sity FAF Munich [18], but uses different core algorithms
and front ends. It performs signal correlation at baseband
by representing IF samples as 8-bit integers and exploits
Intel’s SSSE3 command PMADDUBSW to perform 16 8-
bit MACs per clock cycle per core, which makes software
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correlation possible even for the wideband GPS L5 and
Galileo E5a signals.

The receiver employs two cores for FFT-based acquisi-
tion operations and employs all available cores for par-
allel tracking of GNSS signals. It parallelizes the signal
tracking at signal-type-level, which, as discussed in Sec-
tion III-C.2, is not as efficient as channel-level parallelism,
but it nonetheless achieves spectacular throughput: On
the hardware platform specified in Table VI, and when
connected to a GPS/Galileo simulator, the NSR v2.0.10
tracks 10 GPS and 8 Galileo satellites with an average pro-
cessor load of around 55%. In recognition of its potential
as a science-grade reference receiver, the NSR v2.0 was re-
cently incorporated for test within the International GNSS
Service network [see IGS Mail message number 5899].

TABLE VI

NavX-NSR v2.0 Hardware Specification

Processor Intel QX9300
Number of Cores 4
Clock Frequency 2526 MHz
L2 Cache Size (shared) 12 MB
Operating System Windows XP
Front end L1@16 MHz, L5@33 MHz
GPS channels 12 × L1 C/A, 12 × L5I+Q
Galileo channels 12 × E1B+C, 12 × E5aI+Q

B. Parallel Acquisition of TDMA/FDMA Signals

Aside from its application to code-division-multiple-
access-type GNSS signals, parallel processing can be
applied to speed acquisition of time-division-multiple-
access/frequency-division-multiple-access (TDMA/FDMA)
signals. Signals of this type are designed to support thou-
sands of simultaneous communication channels—many
more than the number of unique GNSS signals. For ex-
ample, the GSM (Global System for Mobile communica-
tions) standard supports thousands of independent com-
munication channels for each cellular base station. Each
channel is allocated a unique frequency access and time-
slot pair. It has been shown that TDMA/FDMA signals
can be exploited for navigation and timing [U.S. Patent
Applications 20080001819 and 20080062039].

Acquisition of TDMA/FDMA-type signals is typically
aided by one or more pilot signals and by handshaking be-
tween the basestation and the mobile user that enables the
mobile user to determine the correct frequency access and
time slot. In contrast, when using TDMA/FDMA-type
signals as navigation signals, a brute-force search of all fre-
quency accesses and time slots may be required. Parallel
execution naturally benefits such a brute-force acquisition.

Figure 11 shows acquisition performance results for simu-

Fig. 11. Simulation results for TDMA/FDMA signal acquisition.
The y-axis represents the percentage of the search that could be
completed in real time.

lated TDMA/FDMA acquisition on a 4-core desktop pro-
cessor. Parallelization was effected in this case by direct
handling of POSIX threads. In this example each thread
is assigned to perform accumulation calculations for one
frequency access over a sequence of frames. Two param-
eters were varied in the experiment: (1) the number of
separate threads (from 1 to 16), and (2) the duty cycle
of the TDMA/FDMA signal along the time axis (i.e., the
duration of a time slot within a frame).

Several observations can be made from the results. First,
for each of the five accumulation duty cycles, the percent-
age of the search completed in real time scales linearly
when going from one to four threads. This is because each
of the four cores can be used independently to search over
more of the frequency accesses and time slots. Second,
as the accumulation duty cycle increases the percentage
of the search completed in real time decreases. This is
because a higher accumulation duty cycle corresponds to
larger computational load per frame, and thus an over-
all larger computational load for the entire search. Third,
there is, in general, a slight benefit to allocating more than
four threads to the search. This is because for lower ac-
cumulation duty cycles multi-threading on the same pro-
cessor is possible even in real time. Fourth, as the number
of threads allocated to the search grows beyond eight, the
percentage of search completed in real time is reduced due
to competition between threads for the hardware cores.
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C. The GPS Assimilator

The final multicore-enabled application considered in this
paper is a method for upgrading existing GPS user equip-
ment, without requiring hardware or software modifica-
tions to the equipment, to improve the equipment’s po-
sition, velocity, and time (PVT) accuracy, to increase its
PVT robustness in weak-signal or jammed environments,
and to protect the equipment from counterfeit GPS sig-
nals (GPS spoofing). The method is embodied in a de-
vice called the GPS Assimilator that couples to the radio
frequency (RF) input of an existing GPS receiver (Fig.
12). The Assimilator extracts navigation and timing in-
formation from RF signals in its environment—including
non-GNSS signals—and from direct baseband aiding pro-
vided, for example, by an inertial navigation system, a
frequency reference, or the GNSS user. The Assimilator
optimally fuses the collective navigation and timing infor-
mation to produce a PVT solution which, by virtue of
the diverse navigation and timing sources on which it is
based, is highly accurate and inherently robust to GNSS
signal obstruction and jamming. The Assimilator embeds
the PVT solution in a synthesized set of GNSS signals and
injects these into the RF input of a GPS receiver for which
an accurate and robust PVT solution is desired. The code
and carrier phases of the synthesized GNSS signals can be
aligned with those of the actual GNSS signals at the in-
put to the target receiver. Such phase alignment implies
that the synthesized signals appear exactly as the authen-
tic signals to the protected receiver, which enables a user
to “hot plug” the Assimilator into the protected receiver
with no interruption in PVT. Besides improving the PVT
accuracy and robustness of the attached receiver, the As-
similator also protects the receiver from GPS spoofing by
continuously scanning incoming GNSS signals for signs of
spoofing, and, to the extent possible, eliminating spoofing
effects from the GPS signals it synthesizes.

A prototype version of the Assimilator has been imple-
mented on a single-core TI TMS320C6455 DSP. Although
it is the flagship of TI’s single-core high-performance line,
the ‘C6455 can only support assimilation of GPS L1 C/A
and L2C signals. To extend the prototype Assimilator to
the other input signals shown in Fig. 12, it is currently
being ported to the 3-core TI TMS320C6474. Pipeline
parallelism will be employed, with correlation, navigation
fusion, and RF signal synthesis each performed on a sepa-
rate core.

VIII. CONCLUSIONS

This paper’s first goal was to investigate how to efficiently
map GNSS signal processing techniques to the multicore
architecture. Conclusions relevant to this goal are pre-
sented below in question-and-answer format with the ques-
tions as originally posed in the introduction.
Q: How invasive will be the changes required to map ex-
isting serial software GNSS receiver algorithms to multiple

cores?
A: It has been shown that the OpenMP framework can
be exploited to convert the post-processing version of a
software-defined GNSS receiver, originally written for se-
rial execution, to an efficient parallel implementation by
minimally-invasive insertion of compiler directives into the
C++ source code.
Q: Where should the GNSS signal processing algorithms
be partitioned for maximum efficiency?
A: If the level-2 cache memory is shared among the mul-
tiple cores, with access speed invariant across the cores,
then Doppler-bin-level task parallelization of the acquisi-
tion operation and channel-level task parallelization of the
tracking operation produce the maximum speedup. If the
level-2 cache is distributed among the cores so that a mem-
ory accesses to another core’s level-2 cache is much slower
than to a core’s own level-2 cache, then signal-type-level
task parallelization of the tracking operation may on bal-
ance be better due to a high cache hit rate.
Q: What new GNSS processing techniques will be sug-
gested by multicore platforms?
A: The challenge of load balancing across multiple cores
subject to the constraint that channel updates be pro-
cessed serially has motivated a technique called post hoc
tracking, which relaxes the serial processing constraint by
performing open-loop correlation and accumulation and
after-the-fact (post hoc) tracking.

This paper’s second goal was to explore software GNSS ap-
plications that are enabled by multicore processors. Three
applications have been showcased:
1. The NavX-NSR v2.0 dual-frequency PC-based software-
defined GNSS receiver, which is capable of simultaneously
tracking 12 each of GPS L1 C/A, GPS L5I+Q, Galileo
E1B+C, and Galileo E5aI+Q on a 4-core Intel processor;
2. A brute-force technique for acquiring TDMA/FDMA
signals such as those used in GSM telephony systems;
3. The GPS Assimilator: a novel device targeted for im-
plementation on a 3-core DSP platform that can be used to
upgrade existing GPS equipment, without requiring hard-
ware or software changes to the equipment, to improve
the accuracy and robustness of the equipment’s position,
velocity, and time solution.
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