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Abstract— Exchange of location and sensor data among
connected and automated vehicles will demand accurate global
referencing of the digital maps currently being developed to aid
positioning for automated driving. This paper explores the limit
of such maps’ globally-referenced position accuracy when the
mapping agents are equipped with low-cost Global Navigation
Satellite System (GNSS) receivers performing standard code-
phase-based navigation. The key accuracy-limiting factor is
shown to be the asymptotic average of the error sources that
impair standard GNSS positioning. Asymptotic statistics of each
GNSS error source are analyzed through both simulation and
empirical data to show that sub-50-cm accurate digital mapping
is feasible in moderately urban environments in the horizontal
plane after multiple mapping sessions with standard GNSS, but
larger biases persist in the vertical direction.

I. INTRODUCTION & MOTIVATION

Localization is one of the primary operations that con-
nected and automated vehicles must perform, both to navi-
gate from one location to another and to interact with each
other and with their surroundings within a mapped envi-
ronment. Satellite-based navigation sensors have historically
been the unrivalled sensor of choice for navigating from
source to destination. However, the high-reliability sub-50-
cm precision demanded by automated vehicles for lane-
keeping and other applications, especially in urban areas,
has significantly changed this landscape [1]. In most au-
tomated vehicles being developed, the GPS/GNSS receiver
is relegated to a secondary sensor whose role is to loosely
constrain (within a few meters) the primary localization sen-
sors, usually camera(s) and/or LiDAR, to a global reference
frame when building a digital map. The vehicles then locate
themselves to decimeter accuracy within this digital map.

Automated driving does not necessarily demand sub-50-
cm agreement between the coordinates of a given point in the
digital map and the coordinates of the same point in a well-
defined global reference frame. Rather, local self-consistency
and accurate localization within the digital map is of greater
importance. However, consistency of the digital map with a
global coordinate frame is likely to become a pre-requisite
for cooperative automated driving. If all collaborating ve-
hicles navigate within the same digital map, then precise
exchange of information such as vehicle position, velocity,
intent, etc. is possible [2], [3], even if the map itself is only
globally accurate to a few meters. However, it is unlikely
that automated vehicles from different manufacturers will
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rely on a common digital map. Consequently, the accuracy
of the exchanged vehicle position is lower-bounded by
the disagreement on the coordinates of the same physical
location between different maps. Thus, exchange of accurate
vehicle pose among vehicles, as well as other associated
high-level information such as sensor data in the vehicle’s
body frame, will demand consistency among, or translation
between, different digital maps.

Standard code-phase-based GNSS position measurements,
such as those provided by all mass-market GNSS receivers,
may be biased by as much as 3–5 meters on any given
mapping session. Maps anchored by these measurements
may not exhibit lane-level consistency with each other. One
possible solution is to create digital maps with decimeter-
accurate carrier-phase differential GNSS (CDGNSS) systems
[4]. However, at current prices, such systems can only be
installed on a limited fleet of specialized mapping vehicles.
Precise point positioning (PPP) techniques offer a low-
cost alternative to CDGNSS, but the frequent cycle-slipping
experienced in urban areas impedes the convergence of PPP
techniques [5].

This paper explores the accuracy limit of globally-
referenced mapping involving collaborating consumer vehi-
cles whose sense of global position is based on standard
code-phase-based GNSS receivers. Key parameters in this
exploration are the asymptotic averages of the error sources
that impair code-phase-based GNSS positioning: receiver
thermal noise, satellite clock and orbit errors, ionospheric and
tropospheric modeling errors, and multipath. One or more
vehicles navigating through a digital map over time make
multiple time-separated GNSS measurements of the same
location. If these vehicles collaboratively update the map
over multiple sessions, then the GNSS errors are averaged
across all sessions with appropriate weighting.

Are the GNSS errors at every map location—including
deep urban locations—asymptotically zero-mean, or, on the
contrary, do location-dependent biases persist in averages of
time-separated standard GNSS measurements? Such is the
question this paper seeks to address.

II. PREVIOUS WORK

Improving the accuracy of maps by averaging GPS/GNSS
tracks has been explored previously using a variety of
approaches. An early effort, detailed in [6], proposed the
precise determination of lane centerlines by clustering and
averaging the GNSS tracks of probe vehicles. The accuracy
of the estimated centerline was assessed in terms of the
spread of GNSS tracks, assuming, without analysis, that the
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error was zero-mean at every location. More recently, [7]
proposed vehicle lane determination via PPP on a rural
road under open-sky conditions. The current paper aims to
perform localization at a similar accuracy level, but in urban
and suburban areas and with the aid of a digital mapping
sensor.

Minimizing the difference between GNSS measurements
and the assigned map coordinates of locations visited mul-
tiple times by probe vehicles has been a common feature
of the seminal works on map-based precise localization in
urban environments for automated driving [2], [3], but no
analysis of the accuracy of the resulting map in the global
coordinate system was provided.

The effect of multipath on measured pseudoranges was
studied extensively for various signal types in [8]. However,
this study was done under open-sky conditions with a static
survey-grade antenna, hardly representative of a mass-market
receiver in an urban environment. A detailed study on
the distribution of code-phase and Doppler offsets of the
multipath components from individual satellites in a dynamic
urban setting was carried out in [9]. However, the error was
characterized as the combined distribution of code phase
delays over the entire duration of the run, which marginalizes
over the temporally- and physically-local biases. On the
contrary, this paper explores the errors in the position domain
for repeated sessions through a given realization of an urban
corridor.

Other GNSS error sources such as errors in modeling
of ionospheric [10] and tropospheric [11] delay have been
studied extensively over many decades, and their long-term
error characteristics have also been reported in the literature.
However, the impact of these errors on the asymptotic
statistics of code-phase-based GNSS position estimates has
not been previously presented.

To the authors’ best knowledge, despite the apparent
simplicity of the problem, no prior work has studied the
long-term statistics of GNSS errors in an urban environment
representative of the conditions to be encountered by con-
sumer vehicles creating digital maps.

Note that an extended version of this paper, submitted for
review after an initial version of this paper was accepted
for the ITSC, has been published in [12]. The current paper
corrects a few typographical errors in the extended version.

III. GNSS ERROR ANALYSIS

A. Low-Cost GNSS in Urban Areas

Low-cost multi-GNSS receiver manufacturers have re-
cently announced the development and release of low-
cost multi-frequency multi-GNSS receivers. Accordingly,
the analysis in this section considers a vehicular platform
equipped with a multi-frequency multi-GNSS receiver capa-
ble of tracking both code and carrier phase of GNSS signals.

Development of an extensive dense reference network in
support of CDGNSS consumer vehicular positioning in urban
areas, as suggested in [13], could be an expensive affair. PPP
is a low-cost alternative to CDGNSS that requires only a
sparse network of reference stations across the globe, but is

not considered a viable option for urban GNSS positioning
in this paper because the constant cycle slips and outages
experienced in urban areas [4] make it difficult for PPP’s float
carrier phase ambiguity estimates to converge [5], in which
case PPP degrades to code-phase positioning accuracy.

While convergence of PPP carrier-phase ambiguities may
be infeasible in urban areas, a partial PPP solution that
exploits precise satellite orbits and clocks, as well as iono-
spheric and tropospheric corrections, can certainly improve
the accuracy of code-phase-based GNSS position estimates.
Since connected and automated vehicles will perforce enjoy
network connectivity, this paper assumes the availability of
such GNSS corrections. Thus, the kind of GNSS errors as-
sessed in this section lie between those corresponding to the
two extremes of standard standalone code-phase positioning
and PPP. This type of GNSS positioning, hereafter referred to
as enhanced code-phase positioning, exploits both code and
carrier phase or frequency tracking, but, as opposed to PPP,
does not attempt to estimate a quasi-constant float carrier
phase ambiguity, making it suitable for urban applications.

B. Pseudorange Measurement

The nonlinear pseudorange measurement vector ρ ∈ Rnz

from nz satellites is linearized around an initial estimate
of the receiver state x̄, modeled ionospheric delay Ī , and
modeled tropospheric delay T̄ as

ρ = h(x̄, Ī, T̄ ) +H(x− x̄) + Ĩ + T̃ +w. (1)

where h denotes the nonlinear measurement model vector,
H denotes the Jacobian of the measurement model evaluated
at x̄, x denotes the true state of the receiver, and Ĩ , I− Ī ,
T̃ , T−T̄ with I and T denoting the true ionospheric group
delay and tropospheric delay, respectively. The measurement
noise w denotes the sum of measurement thermal noise,
multipath interference, non-line-of-sight (NLOS) delay, and
other unmodeled errors.

Rearranging measured and modeled quantities on the left-
hand side to get the standard form for a linearized measure-
ment model yields

z , ρ− h(x̄, Ī, T̄ ) +Hx̄ = Hx+ Ĩ + T̃ +w. (2)

By solving (2) for x, updating x̄, and iterating until
convergence, the receiver estimates its position and clock
bias. For dynamic applications such as vehicle tracking, the
state x is typically augmented to include the time derivatives
of receiver position and clock bias, and the measurement
model typically assumes direct measurement of apparent
Doppler frequency.

C. Error Sources

The major sources of error in the estimated receiver state
are as follows:

1) Thermal Noise: Measurement thermal noise at the
receiver is one of the components of w in (1). The effect of
thermal noise can be accurately modeled as a white Gaussian
random variable with zero mean and standard deviation σT.
For the pseudorange measurement, σT is typically between

2



10–30 cm, depending on the signal carrier-to-noise ratio,
signal bandwidth, and receiver tracking bandwidth [14].
Estimation of the receiver state from multiple appropriately-
weighted measurements with independent thermal-noise er-
rors, and processing such measurements over time through a
filter based on the modeled dynamics of the receiver, renders
negligible the position-domain effects of uncorrelated zero-
mean thermal noise. As a result, thermal noise is not a major
contributor to the asymptotic accuracy of a digital map.

2) Satellite Orbit and Clock Errors: Satellite orbit and
clock errors manifest in the modeled satellite position and
the modeled satellite clock bias. The International GNSS
Service (IGS) provides orbit and clock models for GNSS
satellites. The 17-h retroactively-available rapid orbits and
satellite clock models are accurate to ∼2.5 cm and ∼75 ps
RMS errors, respectively [15], adding up to less than 5 cm
of RMS error in the modeled pseudorange for a given signal.
Since the orbit and clock parameters are fit to measurements
made at IGS analysis centers, the errors in the estimated
parameters must be asymptotically zero-mean by design
of the estimator. For post-processing applications such as
mapping, it is reasonable to assume the availability of rapid
orbit and satellite clock products, and thus the asymptotic
average position errors due to errors in modeled satellite
position and clock bias can be reduced to a sub-5-cm level.

3) Ionospheric Modeling Errors: The ionospheric delay
of GNSS signals can be estimated via an ionosphere model
or, in case of a multi-frequency receiver, eliminated via
a combination of multiple-frequency pseudorange measure-
ments. The latter technique does not require any external
aiding, but the formation of the ionosphere-free combination
exacerbates pseudorange noise, including any biases due to
tracking of multipath signals. While both methods have their
merits, the analysis in this section considers corrections from
an ionospheric model, and thus will not be relevant to ap-
plications where the ionosphere-free combination is applied.
Note that those applications would likely experience worse
multipath errors than the ones presented later, requiring a
separate multipath analysis along the lines of Section III-
C.5.

Ionospheric model accuracy was studied comprehensively
in [10]. The method in [10] generates unambiguous carrier-
phase measurements from a global distribution of permanent
receivers to compute the true slant total electronic content
(STEC) for each satellite, and compares the model prediction
for a number of models with the ground truth. This section
extends the analysis in [10] to examine whether there exist
long-term position-domain biases in enhanced code-phase
positioning.

To observe the position-domain effect of the ionospheric
modeling errors in isolation, this section neglects all other
error sources, reducing the linearized measurement model in
(2) to

z = Hx+ Ĩ.

The post-fit residuals for multiple regional and global
ionospheric models, computed as described in [10], were

graciously made available by the same authors for the year
2014. Historical GPS satellite almanacs can be combined
with the timestamps from the residuals data to obtain the
measurement sensitivity matrix H at each epoch for each sta-
tion. With an elevation-dependent measurement covariance
matrix R, the error in the weighted least-squares solution
due to errors in ionospheric modeling is

x̂− x =
(
HTR−1H

)−1
HTR−1Ĩ.

Table I presents a numerical summary of the long-term
average position error when applying ionospheric corrections
from the IGS global ionospheric map (GIM), as estimated
over 12 months of data from 2014 (more than 800,000
samples per station). Interestingly, there is clear evidence of a
southward bias in the position error for stations in the north-
ern hemisphere, and a northward bias in the position error for
stations in the southern hemisphere. Results from a similar
analysis for the Wide Area Augmentation System (WAAS)
ionospheric corrections available for the contiguous United
States (CONUS) region are also presented in Table I. The
WAAS model was found to exhibit a significantly smaller
RMS error in ionosphere TEC estimates when compared to
the IGS GIM; however the long-term position bias due to
WAAS corrections is similar to or worse than those for the
IGS model.

TABLE I
LONG-TERM AVERAGE POSITION ERROR DUE TO IONOSPHERIC MODEL

ERRORS (φ DENOTES STATION LATITUDE).

Ionosphere Model Region East (m) North (m)

IGS
φ ≥ 30◦ 0.0107 −0.2129

30◦ > φ >−30◦ −0.0651 −0.0692
φ ≤−30◦ 0.0237 0.2450

WAAS CONUS −0.0048 −0.2916

Fast PPP IONEX
φ ≥ 30◦ −0.0042 −0.0099

30◦ > φ >-30◦ −0.0390 0.0013
φ ≤-30◦ −0.0325 −0.0087

Another global ionospheric model, the Fast PPP IONEX
model [16], was also studied as above. In comparison with
the IGS corrections, it is clear that the Fast PPP IONEX
GIM corrections result in substantially unbiased long-term
position errors at the global test locations. However, it must
be conceded that the results in Table I are best-case results,
as they are based on data from the same permanent reference
stations used to constrain the model.

To understand the reason behind the systematic biases
with IGS corrections, note that any ionospheric modeling
bias that identically affects all satellites does not have any
impact on the accuracy of the GNSS position solution, as
this common error is absorbed in the clock bias estimate.
Rather, position-domain biases arise from the azimuthal-
and elevation-dependence of ionosphere model errors. From
analysis of the spatial distribution of post-fit residuals, it
was found that appreciable azimuthal and elevation residual
gradients persist in the IGS ionospheric corrections. These
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gradients are represented graphically in Fig. 1 for one repre-
sentative station from the northern hemisphere (station code:
EUSK, latitude: 50◦40′26.87′′, longitude: 6◦45′48.72′′) and
one representative station from the southern hemisphere
(station code: VACS, latitude: -20◦17′48.47′′, longitude:
57◦29′13.79′′). The post-fit residuals are binned in azimuth
and elevation and the average value in each bin is denoted by
the color of the representing disc. The size of the disc denotes
the number of samples of post-fit residuals available in each
bin. Due to the inclination angle of the GPS satellite orbits,
the angular distribution of satellites at any given latitude is
non-uniform.

From Fig. 1, it is clear that the elevation gradients in the
ionospheric residuals are pronounced. A subtle azimuthal
gradient also exists, mainly along the north-south direc-
tion. Such spatial non-uniformity, coupled with the non-
uniform satellite angular distribution, may be the reason for
the observed persistent position biases. While the elevation
gradients are consistent for stations at all locations, the
azimuthal gradients appear to invert along the north-south
direction between the northern and southern hemisphere.
This is likely the reason for the opposite direction of the
average horizontal position bias in the northern and southern
hemispheres.

In conclusion, persistent decimeter-level biases in the east-
north plane and meter-level biases in the vertical direction
can arise when ionospheric delay corrections are sourced
from the IGS GIM, or similar, even under ideal open-sky
conditions. More advanced models of the ionosphere with
more accurate slant TEC measurements may achieve better
results. Elimination of the ionospheric delay based on the
ionosphere-free combination is another option, but tends to
worsen multipath-induced position errors. If corrections from
some ionosphere model lead to unbiased position errors, then
for globally-referencing digital maps by averaging GNSS
measurements over many sessions it is advisable to avoid
the combination of multi-frequency signals.

4) Tropospheric Modeling Errors: The tropospheric delay
is obtained from models of the climatological parameters
(temperature, pressure, and water vapor pressure) along the
propagation path. State-of-the-art tropospheric models [11]
fit a small number of location- and day-of-year-dependent
coefficients to climatological data from numerical weather
models (NWMs) to estimate the zenith delay, and subse-
quently apply a mapping function to map the zenith delay
to a given zenith angle. For empirically-derived mapping
functions such as Vienna Mapping Function (VMF1) [17]
and Global Mapping Function (GMF) [18], the mean error at
lowest elevation of 5◦ has been shown to be under 50 mm. As
a result, this paper assumes that time-averaged tropospheric
model errors would introduce sub-5-cm errors in the position
domain, and would thus not impede asymptotically accurate
collaborative mapping in both horizontal and vertical com-
ponents at the several-decimeters level.

5) Multipath Error: In ideal circumstances, each signal
received from an overhead satellite arrives only along the
least-time path. In practice, however, this so-called line-
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Fig. 1. Azimuth and elevation dependence of post-fit IGS GIM residuals.
(a) A representative station from the northern hemisphere. (b) A represen-
tative station from the southern hemisphere. The average residual error, in
total electron content (TECU), is denoted by the color of the disc. The size
of the disc indicates the number of samples of post-fit residuals available
in each bin.

of-sight (LOS) component is accompanied by other com-
ponents due to signal diffraction and single- or multiple-
signal reflections off surrounding surfaces and obstacles
(e.g., the glass facade of a nearby building, poles, trees,
etc.). The combination of multiple components distorts the
received signal and causes errors in the pseudorange and
phase measurements.

Unlike the study of ionospheric modeling errors, for
application in urban mapping, multipath errors cannot be
characterized with data from survey stations with a clear
view of the sky. This section considers a simulation approach
for scalable analysis of multipath tracking errors in an urban
environment. The objective of this study was to inspect the
presence of persistent biases caused by multipath due to
the surrounding structure in the navigation solution averaged
over multiple sessions

a) Scenario Setup: The present simulation study was
based on the open-access Land Mobile Satellite Channel
Model (LMSCM) [19], itself based on extensive experi-
mentation with a wideband airborne transmitter at GNSS
frequencies in urban and suburban environments. The sim-
ulated corridor is composed of buildings, trees, and poles.
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Some of the important parameters for the generation of
the scene are summarized in Table II. Multi-GNSS satellite
trajectories were generated at randomly-selected times based
on GPS and Galileo satellite almanac data. An average of
25 satellites were available above an elevation mask of 5◦,
consistent with modern multi-GNSS receivers. The satellites
were assumed to be stationary over the simulation period of
60 s. Navigation solution errors were computed over 1000
60-s sessions.

TABLE II
SOME URBAN SCENARIO PARAMETERS.

Distance from road center to buildings 24 m
Distance from road center to vehicle 5 m
Mean distance between road center and trees 20 m
Antenna height 2 m
Mean building width 30 m
Building width standard deviation 25 m
Mean building height 40 m
Building height standard deviation 20 m
Probability of gap between buildings 0.5
Mean gap width 30 m
Mean distance between trees 60 m
Mean distance between poles 25 m

The vehicle trajectory was kept consistent across all 1000
driving sessions to avoid decorrelation of multipath error due
to variable receiver motion. The trajectory, parametrized by
its speed and heading as described in [20], is shown in Fig. 2.
The 60 s long trajectory simulates a vehicle in stop-and-
go traffic executing one 90◦ right turn. The three low-speed
intervals in the simulated trajectory present severe multipath
effects since multipath errors decorrelate slowly, and thus
tend to reinforce one another within the navigation filter,
when the vehicle moves slowly.
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Fig. 2. Vehicle speed (solid line) and heading (dashed line) simulating
stop-and-go motion with a 90◦ right turn.

b) Multipath Simulation: The LMSCM generates
power, delay, and carrier phase for N LOS and echo signals.
The interaction of the LOS with the simulated obstacles is
governed by deterministic models for attenuation, diffraction,
and delay. The LOS signal may be composed of more than
one, say NLOS, components due to signal diffraction. In the
special case of an unobstructed LOS signal NLOS = 1.

The LMSCM generates the N − NLOS NLOS echoes
stochastically based on satellite azimuth and elevation, re-
ceiver dynamics, and general characteristics of the scene
(e.g., an urban car scenario). This stochastic procedure might
not be representative of multipath over multiple sessions
through the same urban corridor, where certain echoes might
persist over different sessions. To address this limitation,

the LMSCM was augmented by the present authors to
generate one- and two-bounce deterministic reflective NLOS
echoes off the simulated buildings, and a one-bounce NLOS
echo off the ground surface, thus simulating a total of N +3
signal components. Since the deterministic specular reflec-
tions are expected to be the stronger than other diffracted and
multiple-bounce NLOS echoes, the amplitudes for reflective
echoes were drawn from the distribution of the strongest echo
generated stochastically by the LMSCM at each epoch. By
experiment, this distribution was found to be log-normal with
with a mean of -22 dB and standard deviation of 5 dB. A
random carrier-phase offset was added at the reflection point
every time a new reflective echo was spawned to simulate
the material-specific phase offset introduced by the reflection
process.

c) Receiver: A receiver simulator was developed to
account for the mediating effects that a receiver’s track-
ing loops and navigation filter have on multipath-induced
position errors in a receiver’s reported position solution. If
R(τ) denotes the correlation function of the GNSS signal’s
spreading code, then the multipath delay error in the tracked
code phase, relative to unobstructed LOS, is given as the
solution to [21]

0 = Scoh(τ) ,
N+2∑
i=0

Ai cos (θi − θc)

×
[
R

(
τ − τi +

d

2

)
−R

(
τ − τi −

d

2

)]
,

where Ai, θi, and τi are the amplitude, carrier phase, and ex-
cess propagation delay with respect to an unobstructed LOS
signal of the ith received signal component, respectively,
and θc is the tracked carrier-phase of the combined received
signal. The parameter d is the early-to-late correlator spacing
in the receiver. It is well-known that a wide-bandwidth
receiver with narrow correlator spacing mitigates the effect
of multipath [21]. To this end, the receiver considered in this
simulation implements d = 0.1. It must be mentioned that
R(τ) was implemented as the correlation function for GPS
L1 C/A identically for all the simulated signals. Modernized
GNSS signals have better multipath mitigation characteris-
tics [8], but this behavior was not included in the simulation.

In a GNSS receiver, the phase lock loop’s phase-lock
indicator indicates whether a sufficiently strong LOS signal
is available, enabling carrier lock [4]. To emulate similar
behavior, the simulator’s phase-lock indicator is asserted only
if (1) the tracked Doppler frequency does not deviate signifi-
cantly from a second-order polynomial, and (2) the strongest
received component (either LOS or NLOS) is attenuated no
more than 25 dB with respect to an unattenuated signal.

d) Navigation Filter: At each epoch, nz multipath-free,
ionosphere-free, and troposphere-free simulated pseudorange
measurements were combined with corresponding simulated
multipath tracking delay errors and fed to a navigation
filter that estimates the receiver state. The navigation filter
implemented in this paper is an extended Kalman filter (EKF)
with a nearly constant velocity motion model following [22].
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The standard details of the EKF are omitted for brevity.
The effect of multipath tracking on the navigation solution

is strongly dependent on the receiver’s multipath rejection
scheme. Two schemes are explored here. The first is a
hypothetical ideal multipath rejection scheme that excludes
all signals for which the LOS signal has a smaller-than-10-dB
advantage over its multipath echoes. A second realistically
feasible scheme implements a normalized innovation squared
(NIS) test to reject multipath signals based on measurement
innovations [22]. In the absence of multipath tracking errors,
the NIS statistic is chi-squared distributed with nz degrees
of freedom. If the NIS statistic exceeds a chosen threshold,
then the signal with the largest normalized innovation is
dropped. This continues until the NIS statistic falls below
the threshold or the number of remaining signals drops to a
preset minimum number of required signals.

e) Simulation Results: Fig. 3 shows the mean position
error in the east, north, and up directions over 1000 ses-
sions for the two multipath rejection schemes mentioned
previously. From Fig. 3a, it can be seen that sub-20 cm
average error is achievable with hypothetical ideal multipath
exclusion. Fig. 3b shows that the NIS test based exclusion
of signals was able to approach the performance of ideal
exclusion in the horizontal plane, save for the first stationary
period where the vehicle was moving at low speed between
buildings on both sides. The average vertical position error
was much worse, growing as large as 1.75 m in magnitude.
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Fig. 3. Mean position error in the east-north-up (ENU) frame over 1000
sessions due to multipath. (a) Ideal multipath exclusion. (b) NIS-based
multipath exclusion. The black, gray, and dashed-black lines represent the
error in the east, north, and up directions, respectively. The up error in the
bottom panel reached a maximum magnitude of 1.75 m.

Table III shows the 95-percentile horizontal error mag-
nitude for increasing averaging ensemble sizes and for both
ideal and NIS-based multipath exclusion. To compute the 95-
percentile horizontal error for an averaging ensemble size N ,
first the 1000 simulated sessions are randomly grouped in to
1000/N disjoint ensembles of size N each. The horizontal

position errors are then averaged for each group, and the 95-
percentile error is computed from the 1000/N data points.

The 0–60 s average case lists the 95-percentile error
over the entire trajectory, whereas the 13–19 s average
case lists the 95-percentile error in the worst-case segment
of the trajectory in terms of horizontal position bias and
standard deviation. This challenging segment is illustrative of
persistent problem spots that will arise in urban areas, within
which multipath-induced biases will be larger than average.
As expected, the 95-percentile error in Table III shrank as
the averaging ensemble size became larger. For the urban
corridor and vehicle dynamics considered in this simulation,
NIS-based exclusion achieved 35 cm 95-percentile horizontal
error with averaging over 100 sessions. Even in the worst-
case region of the trajectory, the 95-percentile horizontal
error remained below 50 cm. As multipath exclusion ap-
proaches the ideal case, with aid from other sensors or a 3D
model of the surroundings, for example, the 95-percentile
horizontal error could be reduced to as low as 25 cm for the
simulated corridor.

TABLE III
95-PERCENTILE HORIZONTAL ERRORS.

Averaging Ensemble Size: 1 16 50 100

Ideal 0–60 s average (m) 1.5910 0.4078 0.2696 0.2147
13–19 s average (m) 2.5925 0.6416 0.3544 0.2609

NIS 0–60 s average (m) 1.7851 0.5169 0.3920 0.3526
13–19 s average (m) 3.1217 0.8456 0.5950 0.4702

From the Section III-C.3’s analysis of asymptotic iono-
spheric errors, and from this section’s multipath simulation
study, one can draw the following conclusion: so long as
the asymptotic horizontal position errors of the ionosphere
corrections are below 5 cm, as is true for the Fast-PPP
model, and assuming statistical independence of ionospheric
and multipath errors, it appears feasible to achieve 50-
cm horizontal positioning accuracy at approximately 95%
in moderately urban environments by averaging over 100
mapping sessions.

IV. EMPIRICAL RESULTS

To validate the results obtained in the above analyses,
GNSS data were collected in a moderate urban area north of
the University of Texas at Austin campus in Austin, TX. This
section presents the data collection setup and error statistics
of various flavors of code-phase GNSS positioning.

A. Rover and Reference Platforms

The rover GNSS receiver was fed by two Antcom G8Ant-
3A4TNB1 triple-frequency patch antennas separated by just
over one meter, whose signals were routed to a unified RF
front end. The experimental setup also included a surveyed
GNSS reference station that aids in the generation of the
ground truth trajectory.

The intermediate frequency (IF) GNSS data were pro-
cessed by a software-defined GNSS receiver tracking signals
from GPS L1 C/A, GPS L2CLM, Galileo E1, and SBAS.
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Data from both GNSS antennas were used to reconstruct a
sub-dm-accurate CDGNSS-based ground truth trajectory, as
described in [4]. Enhanced code-phase positioning was per-
formed on the data from the primary antenna, incorporating
precise orbit and clock products from IGS, ionospheric cor-
rections from WAAS satellites, and the Saastamoinen model
for tropospheric corrections, in addition to NIS-based exclu-
sion of multipath signals. Double-differenced pseudorange-
based positioning was also performed with the data from
the primary antenna, as discussed later in this section. The
code-phase-based position estimates were compared against
the ground truth from the primary antenna to study the code-
phase positioning error statistics.

B. Test Route

The test route was a 1-km loop north of the University of
Texas at Austin campus. The route included a variety of light-
to-moderate urban conditions, from open-sky to overhanging
trees to built-up areas. The Dean Keeton corridor, toward the
left in Fig. 4, was the most challenging stretch along the test
route for GNSS positioning. It passes below a pedestrian
bridge and is flanked on both sides by buildings ranging
from 30 to 65 meters tall set back 28 meters from the center
of the roadway.

Fig. 4. An overview of the 1-km test route. The Dean Keeton corridor,
toward the left, is spanned by a pedestrian bridge and flanked by buildings
on both sides.

To study the code-phase-based positioning error char-
acteristics over time-separated sessions in the same area,
multiple laps of the test route were driven over six separate
campaigns. The following GNSS error charts are presented
for a total of 75 laps of the test route.

C. Empirical GNSS Error Analysis

Fig. 5 shows the error in the enhanced code-phase GNSS
position solutions with respect to the ground truth. The
error is plotted versus the distance along the 1-km loop.
The beginning of this loop was taken to be immediately
after the overhead pedestrian bridge along the Dean Keeton
corridor. It is observed that the enhanced code-phase GNSS
errors are clustered separately for each of the campaigns,
and that each cluster is offset from zero by as much as
1 m in the horizontal plane. Such error characteristics are
representative of ionospheric modeling errors, which have
a long decorrelation time. It is also evident that the error

variance was larger as the receiver exits the challenging
portion of the loop at which point the tracking loops were
recovering from signal loss under the bridge. The effect was
especially pronounced in the vertical direction.

Fig. 5. Errors in enhanced code-phase position estimates with respect to
ground truth in the east, north, and up directions. Different colors distinguish
data from six different campaigns. The dashed reference lines are drawn at
± 50 cm. The solid black lines show the mean positioning error over the
six campaigns.

On the basis of Fig. 5, one might be tempted to conclude
that errors in enhanced code-phase and stand-alone GNSS
navigation solutions are substantially non-zero-mean, espe-
cially in the north and up directions, despite the overhead
GNSS constellation changing substantially between sessions.
It certainly appears that the permanent structures (buildings,
bridge) along the test loop left a bias in the vertical direction
during the first 400 m along the loop. However, the bias in the
north direction, and to a lesser extent in the east, may only
be an artifact of the small sample size: ionospheric modeling
errors were not yet averaged down to nearly zero in the east
and ∼30 cm in the north, as one would expect from the
WAAS ionospheric model (see Table I).

Given that the asymptotic properties of ionospheric mod-
eling errors are better understood than those of multipath
errors, it is instructive to eliminate, insofar as possible,
all ionospheric modeling errors from the along-track error
histories. To this end, a differential code phase GNSS
technique was applied whereby the navigation solution was
based on double-difference pseudorange measurements using
data from a nearby reference station at an accurately known
location. Such double differencing over a short 1-km baseline
eliminates virtually all ionospheric and tropospheric errors,
but does nothing to reduce vehicle-side multipath. Thus, one
can empirically examine multipath effects in isolation from
ionospheric effects.

Fig. 6 shows the results of this study based on all six
data capture campaigns. Note that biases for all components
are much smaller. It appears that for the test route cho-
sen, non-zero-mean horizontal errors in the enhanced code
phase positions were almost entirely driven by ionospheric
modeling errors, and not by persistent effects of multipath
due to the permanent structures along the test route. This
is broadly consistent with the analyses presented earlier in
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this paper on position-domain biases due to ionospheric and
multipath errors. However, it does appear that a bias due to
multipath remained in the vertical direction over the first 400
m, even when ionospheric errors were removed. Apparently,
the arrangement of buildings over this segment caused non-
line-of-sight effects that did not average away. Mercifully,
horizontal errors, which appear to be close to zero-mean
over the six campaigns, matter most for high-accuracy digital
mapping, since obstacle avoidance and vehicle coordination
are largely 2-D problems.

Fig. 6. Errors in double-differenced pseudorange-based position estimates
with respect to ground truth in the east, north, and up directions. Different
colors distinguish data from six different campaigns. Dashed reference lines
are drawn at ±50 cm. The solid black lines show the mean positioning error
over the six campaigns.

Based on Fig. 6, one can conclude that multi-session av-
eraging with a sufficiently accurate ionospheric model, such
as the Fast PPP model, yields sub-50-cm global referencing
accuracy for digital maps in moderately urban environments
in the horizontal plane with code-phase-based GNSS, even
in the presence of persistent multipath.

V. CONCLUSIONS

The accuracy limits of collaborative global referencing of
digital maps with standard GNSS were explored through
simulation and real data. The asymptotic average of posi-
tion errors due to thermal noise, satellite orbit and clock
errors, and tropospheric modeling errors were assumed to
be negligible. It has been shown that the position error due
to inaccurate ionospheric modeling may lead to persistent
dm-level biases in the horizontal position if the corrections
are sourced from the IGS GIM, but other recent models
such as the Fast PPP IONEX GIM perform better in this
regard. Multipath errors persist with multiple mapping ses-
sions through the same urban corridor and may not be
zero mean. With adequate multipath exclusion, persistent
multipath biases may be reduced below 50 cm on average.
In conclusion, sub-50-cm accurate digital mapping has been
shown to be feasible in moderately urban environments in the
horizontal plane after multiple mapping sessions with code-
phase-based GNSS, but larger biases persist in the vertical
direction.
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