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Magnetometer-based Attitude and Rate Estimation

for a Spacecraft with Wire Booms
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Cornell University, Ithaca, New York 14853-7501

A magnetometer-based filter and smoother are presented for estimating attitude, rate,
and boom orientations for a spinning spacecraft that has wire booms. These estimates are
needed to analyze science data from the subpayloads of a recent sounding rocket mission.
The estimator is initialized with the measured angular rate of each subpayload at ejection
and thereafter relies solely on three-axis magnetometer data. The estimation process is
complicated by the flexible wire booms whose full parameterization for even the simplest
pendulous modes would require 16 state elements. Several simplifying assumptions about
the motion of the booms reduce the problem’s complexity. A magnetometer-based attitude
and rate estimator is developed which is suited to the time-varying model errors resulting
from these assumptions. The estimator uses inertial angular momentum in place of angular
rate in its state vector, and it explicitly includes an error model for its approximate rela-
tionship between angular rate and angular momentum. The estimator, a filter/smoother, is
applied to synthetic data from a truth-model simulator and then to actual telemetry from
the mission subpayloads. Accuracies are on the order of several degrees. The estimator is
applicable whenever Euler-type equations must be used to propagate rate estimates in the
presence of significant dynamics modeling errors.

I. Introduction

The present work draws its impetus from the sounding rocket experiment known as SIERRA (Sound-
ing of the Ion Energization Region: Resolving Ambiguities), launched from Poker Flat, Alaska in January
of 2002. Roughly 350 seconds before apogee, the primary SIERRA payload ejected two smaller spacecraft
at an interval of 33 seconds between ejections. The three spin-stabilized payloads continued along a bal-
listic trajectory, finally reaching apogee at 735 km before falling earthward. Total flight time was about
950 seconds.1 The separate payloads were essential to resolving a temporal/spatial ambiguity in electric
field measurements of the ionosphere. Also critical was a broad measurement baseline for each payload.
Mission specifications called for four probes extending radially from each payload’s nominal axis of rotation,
with opposing probes separated by 6 meters. This was a challenge particularly for the subpayloads, whose
compactness barred the use of rigid booms. SIERRA designers ultimately satisfied the opposing broad base-
line and compactness requirements via the Cornell Wire Boom Yo-Yo (COWBOY) system.2,3 Probes were
connected to flexible cables wound helically around an articulating drum, and then spun out during flight in
a yo-yo-type deployment that was controlled by a damper.

An estimate of spacecraft attitude and boom orientations for each payload enables researchers to correlate
telemetry with spatial features of the background electric field. For the primary payload, with rigid booms
and a comprehensive attitude sensor suite consisting of inertial sensors and a three-axis magnetometer
(TAM), formulating an attitude estimate is conceptually straightforward. The subpayloads present more of a
challenge. Much more compact and lighter than the primary payload, their only attitude sensor is an onboard
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TAM. Each TAM measurement provides two axes of attitude information. This is insufficient for single-frame
attitude estimation, obliging reliance on both an Euler model, for propagation of the spacecraft dynamics
between measurements, and an initial estimate of the angular momentum vector. The complex dynamics of
the flexible wire booms are difficult to incorporate directly into an estimation algorithm. Therefore, modeling
approximations are used, but these introduce uncertainty into the Euler model. The estimation challenge
for the subpayloads is tersely restated in the following terms: 3-axis attitude, rate, and boom orientation
estimates are desired in the face of significant time-varying modeling uncertainty and weak observability
about one axis.

Previous research efforts have produced various results that can be used to synthesize a solution to the
SIERRA subpayload attitude estimation problem. A general dynamics analysis of spacecraft employing
wire-boom antennas was presented in Ref. 4. Work on another sounding rocket mission recognized the
challenges posed by structural flexibility in Euler-based attitude and rate estimation.5 In particular, it was
found that rigid-body models are inadequate when significant flexible modes are present. In contrast to
the present case, however, the sounding rocket of Ref. 5 was equipped with semi-rigid booms and multiple
attitude sensors that provided data during most of its flight.

A substantial body of research has dealt with magnetometer-only attitude estimation applied to rigid
spacecraft.6–10 These methods rely on accurate Euler models of the spacecraft dynamics because of the lack
of rate-gyro data. The Euler models are used to estimate attitude rates and to observe the attitude about
the axis that is not already sensed. These models assume accurate prior knowledge of the spacecraft inertial
parameters. In Ref. 9 it is demonstrated that estimates of inertia matrix parameters may be refined by
including these as part of the estimated state. This applies, however, to the inertia parameters of a rigid
body. A similar approach would be unworkable in the present case due to the complexity of the wire boom
system. Many of the flexible-body modes are themselves unobservable purely from magnetometer data, and
a significant number of the inertial parameters, such as the tip-mass values, are equally unobservable.

Attitude observability for magnetometer-based estimation is dependent upon movement of the local mag-
netic field vector’s direction in inertial space. This movement is primarily a consequence of the spacecraft’s
motion along its orbit. An additional challenge for SIERRA attitude estimation is that the sounding rocket
trajectory is short. Over the course of the 700 second data capture phase, the magnetic field moves only
13.6 degrees in inertial coordinates.

A consequence of this condition is increased reliance on an initial estimate of each subpayload’s angular
momentum vector. These estimates are provided at separation by inertial sensors onboard the primary
payload. The low level of external torques for the SIERRA mission implies that the angular momentum
vector for each subpayload remains nearly fixed in inertial space. Therefore, the initial angular momentum
acts almost like an independent attitude reference throughout the duration of the flight.

The filter and smoother developed in this paper are Euler-based estimators that exploit prior knowledge
of the spacecraft angular momentum while gracefully accommodating errors that arise from unmodeled
torques and from approximation of the effects of the flexible modes. The estimated state vector in the new
filter/smoother directly includes the angular momentum components in inertial coordinates in place of the
more common angular rate vector. The benefit of this approach is that, owing to conservation of angular
momentum, the prediction step for this vector is essentially trivial. This is important because modeling
errors, when coupled with nonlinearities, would otherwise bleed into the rate propagation and ultimately
express themselves in a wandering inertial angular momentum vector. This unforced wander is undesirable
especially when one axis is weakly observable, as in the present case, since errors accumulating about the
weakly observable axis are not easily corrected.

Euler-model errors are accommodated in the estimator by including a random uncertainty model for
the relationship between the angular rate and the angular momentum in spacecraft coordinates. This extra
source of random uncertainty is important in the present problem for the following reason: The significant
effects of the spacecraft’s flexible modes are included through an approximate relationship between angular
velocity and angular momentum that is tailored to be relatively accurate for the dominant mode of motion.
This dominant mode is the flexible-body equivalent of the nutation mode of a rigid minor-axis spinner. The
random uncertainty model is included in the spacecraft kinematics exactly where the approximate angular-
rate/angular-momentum relationship is invoked. This approach more accurately models the way errors are
introduced into the Euler model than does, say, a simple increase of the modeled disturbance torque.

The three main contributions of this paper to attitude estimation techniques are: 1) Use of the inertially-
referenced angular momentum components in the state vector in place of the body-referenced angular velocity
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Figure 1. Geometry of the SIERRA subpayloads.

components, 2) Inclusion of a random error model in the angular-momentum/angular-velocity relationship,
and 3) An approximate angular-momentum/angular-velocity relationship that is valid for unstable nutation
of a spinning spacecraft with flexible wire booms. These contributions are key to successful magnetometer-
based attitude estimation for spinning spacecraft with wire booms. Their utility is demonstrated by successful
application of a filter and a smoother employing these techniques to the problem of the SIERRA subpay-
loads. Contributions 1) and 2) should also prove useful for Euler-based attitude and rate estimation for any
spacecraft if there is significant modeling uncertainty in the Euler dynamics model.

The balance of this paper is laid out as follows. A mathematical model of the flexible spacecraft motion is
presented in Section II, and several simplifying assumptions are motivated and used to develop a relationship
between the angular momentum and the angular velocity. Section III provides a summary of the attitude
parameterization used, then proceeds to develop the estimator. The estimator is evaluated in Section IV
using synthetic data from a truth-model simulation, and it is evaluated in Section V using data telemetered
from the SIERRA subpayloads. Section VI considers other situations in which the paper’s techniques apply,
and Section VII presents the paper’s conclusions.

II. Flexible-Body Model and Simplifying Assumptions

The essential features of the deployed SIERRA subpayloads are represented in Fig. 1. Four 3-m wire
booms nominally spanning a plane are oriented radially about the spin axis. The articulating upper drum,
which is used to control the unwinding of the wire booms during deployment, and about which the wire
booms are wrapped in the stowed configuration, is held fast by a locking brake after deployment. This
implies that the drum and the main spacecraft body may be modeled as a single rigid body. The center
of mass of this rigid body constitutes the origin of the spacecraft body reference frame. The body z-axis,
zb, is aligned along the nominal spin axis. When the flexible booms are added, a system center of mass
may be defined, which is, in general, slightly displaced from the center of mass of the main-body-plus-drum
system. The translational motion of the system center of mass is independent of attitude, and this fact can be
used to advantage when deriving the equations governing the attitude dynamics. Attitude is measured with
respect to an inertial reference frame whose axes are aligned with those of the mean J2000 Earth-centered
inertial reference frame. The system angular momentum is given as the vector h. Boom vibrational modes
beyond the first order (pendulous) mode are assumed to be negligible. This is a good approximation for
the SIERRA subpayloads.2–4 Hence, the physical wire booms which are flexible all along their length are
modeled as simple pendulums for purposes of simulation and estimation. In this work, both the physical
booms and their model are described as flexible because their positions can deform with respect to spacecraft
coordinates. Out-of-plane and in-plane deflections of the ith boom are denoted by the angles φi and γi. Note
that this represents a notational shift from Refs. 2, 3 wherein θi denotes the in-plane boom deflection.
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A comprehensive dynamics model for a general case with N booms is found in Ref. 2. This may be used
to construct, for the four-boom case, a dynamics model of the form ẋ = f(x,n) governing the time evolution
of a 23-element state vector x. The state vector is composed of the angular rate vector of the rigid body, ω,
the attitude quaternion q, the angles φi, γi, and their first time derivatives,

x =
[
ωT , qT , φ1, φ̇1, γ1, γ̇1, . . . , φ4, φ̇4, γ4, γ̇4

]T

(1)

External torques act on the system through the vector n.
Insight into the behavior of the spacecraft and flexible booms is had by by linearizing f(x,n) about a

nominal state and examining the characteristic motion of the linearized system. The SIERRA subpayloads
nominally rotate about the zb axis at an angular rate of 1.7 Hz. The in- and out-of-plane angles γi and φi

and their first time derivatives are nominally zero. Linearization about these nominal values (and a chosen q)
yields a linearized dynamics model of the form ∆ẋ = F∆x valid for small perturbations about the nominal
values. Eigenvalue analysis of the linearized dynamics matrix F reveals a slightly unstable nutational mode–
a result of design constraints that leave the subpayloads spinning about the rigid-body equivalent of their
minor inertia axes. As a consequence, energy dissipation in the flexible booms drives an increase in the
spacecraft nutation angle (the angle between h and zb), and leads finally to rotation about the equivalent of
the major rigid-body inertia axis. Due to the short duration of the flight, the unstable mode and consequent
slow growth of the nutation angle were considered acceptable.3

The rate of growth of the unstable mode and the decay time constants of the stable modes are functions
of the energy dissipated by bending in the booms. A lumped dissipation parameter was calculated for the
SIERRA subpayloads in pre- and post-launch empirical studies, predicting stable mode time constants of
less than 300 seconds.2,3 Immediately following boom deployment, spacecraft motion may be expected to
contain contributions from several different modes. Within a short interval the nutational mode dominates
as the stable modes die out.

An important feature of the nutational mode in the SIERRA design is that as long as the nutation angle
is small (< 15 degrees), in-plane displacements of the wire booms are very small (< 1/2 degree). Moreover,
to a very good approximation, the booms remain perpendicular to the angular momentum vector (within
1/2 degree). Using this perpendicularity approximation, the angles φi and rates φ̇i can be estimated if h is
known in spacecraft body coordinates (call this latter quantity hsc). These features of boom motion motivate
the following approximations which greatly simplify the spacecraft dynamics model:

γi = γ̇i = 0, i = 1, ..., 4 (2)

cT
i hsc = 0, i = 1, ..., 4 (3)

Here, the unit vector ci = ci(φi) is aligned along the ith boom.
An implicit relationship between hsc, ω, and the boom angles φi and rates φ̇i follows from these simplify-

ing assumptions. First, angular momentum about the system center of mass is expressed in body coordinates
as

hsc = −mb(rcm × vb) + Jbω +
4∑

i=1

mi(ri − rcm)× vi (4)

under the following definitions, where all vectors are in body coordinates:
mb mass of the main spacecraft body plus drum

rcm = rcm(φ1, φ2, φ3, φ4) vector from the main body/drum CM to the system CM
vb = vb(φ1, ..., φ4, φ̇1, ..., φ̇4) inertial velocity of the main body/drum CM

Jb moment-of-inertia matrix of the main body/drum
mi effective tip mass of the ith boom

(includes 1/3 of the mass of the ith cable)
ri = ri(φi) vector from the main body/drum CM to the ith tip mass

vi = vi(φ1, ..., φ4, φ̇1, ..., φ̇4) inertial velocity of the ith tip mass

The functions rcm(φ1, ..., φ4), vb(φ1, ..., φ4, φ̇1, ..., φ̇4), ri(φi), vi(φ1, ..., φ4, φ̇1, ..., φ̇4), and ci(φi) are all de-
fined in Ref. 2.
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Second, the approximation of Eq. (3), repeated here for convenience, is considered together with its first
time derivative:

cT
i (φi)hsc = 0, i = 1, ..., 4 (5)

φ̇i

[
dci

dφi

]T

hsc + cT
i (φi)[−ω × hsc] = 0, i = 1, ..., 4 (6)

where the second term on the left-hand side of Eq. (6) assumes that ḣsc = −ω×hsc, which is true if external
torque is zero. Equation (5) implicitly defines (under mild smoothness conditions) each φi in terms of hsc:

φi = φi(hsc), i = 1, ..., 4 (7)

Thus, given hsc, one can solve for each φi and hence each ci(φi). Substitution into Eq. (6), yields φ̇i as a
function of hsc and as a linear function of ω:

φ̇i = φ̇i(hsc,ω), i = 1, ..., 4 (8)

With these relations, the vectors on the right hand side of Eq. (4) may be written in terms of hsc and ω,
and the resulting equation takes the form

hsc = J(hsc)ω (9)

This form arises because of the linear dependence of vb and vi on φ̇1...φ̇4 and ω. The matrix function J(hsc)
is effectively an angular momentum-dependent moment-of-inertia matrix. Equation (9) may be inverted to
yield ω as a function of hsc:

ω(hsc) = J−1(hsc)hsc (10)

III. Estimator Development

Attitude Representation

The magnetic field is the sole attitude measurement for the SIERRA subpayloads after separation from
the primary payload. Hence, the greatest attitude uncertainty is in rotation and rate about the magnetic
field vector. In Ref. 9, a 3-parameter attitude representation is developed which isolates rotation about the
measured magnetic field vector in a single parameter, θ. Two other attitude parameters, α1 and α2, are used
to account for magnetometer measurement noise. The full attitude parameterization is {α1, α2, θ}, and may
be introduced in the following manner:

If b̂sc is the unit vector in the direction of the measured magnetic field in the spacecraft reference frame
and b̂in is the unit vector in the direction of the magnetic field in the inertial reference frame, then the
quaternion relating the two reference frames is parameterized as

q(α1, α2, θ) =
1√

1 + α2
1 + α2

2

[
α1v̂1 + α2v̂2

1

]
⊗

[
b̂sc sin(θ/2)

cos(θ/2)

]
⊗ qmin(b̂sc, b̂in) (11)

where v̂1,2 are unit vectors that, together with b̂sc, form a right-hand orthonormal triad, and the symbol
⊗ denotes quaternion composition. The minimum quaternion qmin(b̂sc, b̂in) is the quaternion of minimum
rotation that maps b̂in into b̂sc.

Figure 2 illustrates the rotations associated with each attitude parameter. The parameter θ corresponds
to a rotation about the measured magnetic field vector in spacecraft coordinates. The parameters α1 and α2

correspond to respective rotations about axes v̂1 and v̂2. Note by Eq. (11) that α1 and α2 approximately
equal 1/2 of the total rotation about v̂1 and v̂2, respectively. This can be seen by comparing the first
quaternion on the right-hand side of Eq. (11) with the general form of the quaternion in which the axis of
rotation is scaled by the factor sin(θ/2), which, in the small-angle approximation, is 1/2 of the rotation angle
θ. When combined in Eq. (11) under the small-angle approximation, α1 and α2 produce a total rotation
angle of 2

√
α2

1 + α2
2 about the rotation vector α1v̂1 +α2v̂2 to correct for errors in b̂sc, as depicted in Fig. 2.

The attitude singularity associated with this 3-parameter attitude representation occurs at 180 degrees
rotation about any vector perpendicular to the measured magnetic field. It is avoided because α1 and α2,
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Figure 2. Attitude parameters θ, α1, and α2 and their corresponding rotation angles.

which represent rotation about vectors perpendicular to bsc, also parameterize the magnetometer measure-
ment errors. Small magnetometer measurement errors lead to small values for α1 and α2, and the singularity
is avoided.

One advantage of this parameterization is that, as will be seen in a later section, it provides for a simple
model relating magnetic field measurements to spacecraft attitude.

Estimator State Vector

The state vector of the new filter/smoother is

x =
[
hT

in, α1, α2, θ
]T

(12)

where angular momentum expressed in inertial coordinates has been included with the attitude parameteri-
zation of the previous section. The inclusion of hin represents a departure from typical state vectors used to
estimate spacecraft attitude and rate. These commonly employ angular rate ω instead of hin. The rationale
behind this replacement will become clear in later sections as the estimator is formulated and tested.

It should be pointed out that the state vector presented here is sufficient to describe the angular rate
of the rigid body and the boom orientations, provided the simplifying assumptions of Eqs. (2) and (3) are
valid. This can be seen by using the attitude parameterization to map hin into spacecraft body coordinates,

hsc = A[q(α1, α2, θ)]hin

where A[q] is the direction-cosine matrix equivalent of the quaternion q. The function ω(hsc) is then used
to compute ω in body coordinates. Finally, out-of-plane boom angles φi are calculated using Eq. (7), and
in-plane boom angles γi are assumed to be zero, following the assumption in Eq. (2).

State Observability

A brief discussion of state observability will aid understanding of the filter and smoother behavior.
Any single magnetometer measurement provides only two axes of attitude information, but a series of
measurements is, under modest conditions, sufficient for full attitude and rate observability. The reasoning for
this is as follows. Except under very restrictive circumstances (when the spacecraft angular momentum vector
and the magnetic field are aligned), the angular rate ω is observable from a series of vector magnetometer
measurements.10 The spacecraft-referenced angular momentum hsc can then be calculated using Eq. (9).
Presuming the spacecraft location is known (e.g. from an onboard GPS receiver), the vector b̂in may be
calculated using a geomagnetic field model. The vector b̂sc is given by magnetometer measurements. If the
vector hin were also known, the set {hsc,hin, b̂sc, b̂in} would completely determine the spacecraft attitude
{α1, α2, θ}, provided hin and b̂in were not aligned. This well-known result is embodied in the algebraic
(TRIAD) method of attitude determination.11 State observability is thus reduced to observation of hin.

The magnitude of h and the relationship between h and b̂ are invariant from one reference frame to
another. Hence, from corresponding quantities in the body reference frame, the magnitude ‖hin‖ and
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the component of hin along b̂in are known, which leaves only one unknown component of hin. Because
external torques are assumed to be negligible, hin remains fixed in inertial coordinates. If b̂in moves between
measurements, then the projection of hin onto the span of two measurements may be calculated from the
component along each measurement. This situation is illustrated in Fig. 3. The component of hin orthogonal
to the plane spanned by b̂in(t1) and b̂in(t2) may be calculated from knowledge of ‖hin‖ = ‖hsc‖, to within
a sign uncertainty. Any b̂in at a 3rd time that moves out of the plane resolves the sign uncertainty.

h
T

in
b̂in(t2)

hin

bin(t2)

bin(t1)

h
T

in
b̂in(t1)

Figure 3. Relationship between hin and the magnetic field vector at times t1 and t2.

The key point here is that movement of b̂in in inertial space is crucial to observation of x =
[
hT

in, α1, α2, θ
]T .

Of course, very small movements of b̂in result in weak state observability, whereas larger transits approaching
90 degrees strengthen the observation.

Owing to a short flight duration, the SIERRA subpayloads do not enjoy large excursions of b̂in. The
total change in the magnetic field direction over 700 seconds of data capture is less than 14 degrees. Weak
observability in this case demands accuracy in the a priori momentum estimate, ĥin(0) (the circumflex here
denotes an estimate, not a unit vector as for b̂sc). Errors in the magnitude of ĥin(0) and in its component
along b̂in are readily corrected by magnetometer measurements, whereas errors orthogonal to the plane
spanned by {ĥin(0), b̂in} are not immediately visible because they constitute rotation of ĥin(0) about b̂in.
They can be corrected only through movement of b̂in.

Dynamics and Kinematics Models

In the case of the SIERRA subpayloads, no control torques or significant environmental forces act on
the spacecraft, so angular momentum is nearly conserved from one time step to the next. This fact, coupled
with inclusion of hin directly in the estimator state vector, leads to a very simple spacecraft dynamics model:

hin(k+1) = hin(k) + wk (13)

The impulse wk is a process noise term that accounts for disturbance torques. For the kinematics model,
implicit trapezoidal integration is used to equate the angular rate with the eigenvector of rotation e and the
average angular rate over the interval (tk, tk+1),

ωk+1(hsc(k+1)) + pk+1 + ωk(hsc(k)) + pk

2
=

[
ψ(sk+1, sk)
tk+1 − tk

]
e(sk+1, sk) (14)

Here, the attitude portion of the estimator state vector has been abbreviated into the vector sk,

sk =
[
α1(k), α2(k), θk

]T

The vector e(sk+1, sk) is the unit vector in the direction of the Euler rotation that takes the system from
attitude sk to attitude sk+1, and the angle ψ(sk+1, sk) is the magnitude of this rotation. Reference 9 gives
expressions for both of these quantities. It should also be noted that since hsc(k) = A[q(sk)]hin(k), the
angular rate terms ωk+1 and ωk on the left-hand side of Eq. (14) are dependent on sk+1 and sk.

The vectors pk+1 and pk play a key role in accommodating the errors in the approximate function ω(hsc)
that result from the simplified model of boom motion, where in-plane boom angles are assumed to be zero
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and out-of-plane boom angles are such that the booms are orthogonal to hsc. To the degree that spacecraft
motion departs from uniform nutation, these approximations of boom motion are less valid, introducing
more error into the hsc to ω conversion. Since ω is not included as an element of the state, application of
the kinematic model in Eq. (14) requires calculation of hsc = A[q(α1, α2, θ)]hin and conversion from hsc to
ω via ω(hsc). The noise parameters pk+1 and pk account for the errors introduced by this conversion.

It is important to note that, because the noise sequence pk corresponds to macroscopic motion of the
booms, it will be time-correlated. The estimator does not model any correlation of the pk sequence, but its
use of both pk+1 and pk on the left-hand side of Eq. (14) constitutes a correlated model of the effect on the
kinematics of this error sequence. This is further explained in the subsequent filter development.

Measurement Model

When the spacecraft attitude is parameterized based on the magnetometer measurement b̂sc, as in Ref.
9, an uncomplicated measurement model results:

[
0
0

]
=

[
0 1 0 0
0 0 1 0

]



hin(k)

α1(k)

α2(k)

θk


 + ν̃

= C̃xk + ν̃

(15)

The 2 × 1 vector ν̃ represents measurement noise. The measurement model implies that, in the absence of
noise, the parameters α1 and α2 are identically zero, and the true and measured magnetic field vectors in
Fig. 2 are exactly aligned. Subsumed into ν̃ are contributions from several error sources including sensor
noise, quantization noise, spacecraft position error, and geomagnetic field model error. The discrete sequence
ν̃ is modeled as zero-mean uncorrelated Gaussian noise with covariance

E[ν̃kν̃T
j ] =

[
σ2

ν̃I2×2

]
δk,j = Pν̃ν̃δk,j (16)

Filtering

The discrete-time square-root information filter described here is based on material drawn from Refs. 9
and 12. Departures from the filter presented in Ref. 9 are those required to incorporate the new state vector
in which hin replaces ω, and to incorporate the new model error sequence pk. The results of this paper
are not dependent on a square-root implementation of the filter and smoother: an extended Kalman filter
implementation would be equally effective. This is because round-off errors are much less significant than
modeling errors in the SIERRA attitude estimation problem.

In the following, the overbar indicates an a priori estimate: an estimate of the state xk based on
measurements up to time tk−1. The circumflex (̂.) denotes an a posteriori estimate: an estimate of the state
xk based on measurements up to time tk. The filtering algorithm proceeds as follows:

1. Given an a posteriori state estimate

x̂k =
[
ĥT

in(k), α̂1(k), α̂2(k), θ̂k

]T

=
[
ĥT

in(k), ŝ
T
k

]T

the attitude portion of the state, ŝk, is used to convert ĥin(k) to spacecraft coordinates: ĥsc(k) =
A[q(ŝk)]ĥin(k). The relation ω(hsc) is then applied to obtain ω̂k in spacecraft coordinates. A quater-
nion of rotation qrot(ω̂k,∆tk) is formed from ω̂k and ∆tk = tk+1− tk. It describes the rotation during
the sampling interval, assuming ω is constant. This is used to construct the quaternion

q(s̄k+1) = qrot(ω̂k,∆tk)⊗ q(ŝk) (17)

from which θ̄k+1 may be extracted assuming a priori values ᾱ1(k+1) = ᾱ2(k+1) = 0, as described in Eqs.
(28)-(30) of Ref. 9. The a priori angular momentum h̄in(k+1) is calculated from Eq. (13) assuming
wk = 0. The full a priori state estimate is then

x̄k+1 =
[
h̄T

in(k+1), 0, 0, θ̄k+1

]T
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2. Equations (13) and (14) are each linearized about both x̂k and x̄k+1 to produce the mapping equation

xk = Φkxk+1 + Γkwk + Λk,kpk + Λk,k+1pk+1 + ξk (18)

where ξk is a known non-homogeneous term.

3. Information equations are constructed from the measurement model in Eq. (15) and from noise models
for wk and pk+1. For convenience in working with the square-root information filter, information
equations are square-root normalized such that the noise terms are distributed as ∼ N(0, I). For
example, Eq. (15) is premultiplied by Rν̃ν̃ where (RT

ν̃ν̃Rν̃ν̃)−1 = Pν̃ν̃ , yielding

0 = Cxk + νk (19)

with νk ∼ N(0, I). Similarly, the information equations for pk+1 and wk are

0 = R̄pp(k+1)pk+1 + νp(k+1) (20)
0 = R̄wwwk + νw(k) (21)

with ν(.) ∼ N(0, I).

4. The state xk and noise term pk are combined into an augmented state. The a posteriori information
equation for this augmented state from the previous iteration is

[
zp(k)

zx(k)

]
=

[
Rpp(k) Rpx(k)

0 Rxx(k)

][
pk

xk

]
+

[
νp(k)

νx(k)

]
(22)

again with ν(.) ∼ N(0, I). The a posteriori state estimate x̂k and error covariance Pxx(k) are related
to this information equation by

x̂k = R−1
xx(k)zx(k), Pxx(k) =

(
RT

xx(k)Rxx(k)

)−1

To perform time and measurement updates from time tk to tk+1, the square-root information filter
minimizes the following least-squares cost function subject to the linearized dynamics mapping equation
(18):

J =

∥∥∥∥∥

[
zp(k)

zx(k)

]
−

[
Rpp(k) Rpx(k)

0 Rxx(k)

] [
pk

xk

]∥∥∥∥∥

2

+ ‖R̄pp(k+1)pk+1‖2

+‖R̄wwwk‖2 + ‖Cxk+1‖2
(23)

Minimization of J is equivalent to maximization of the state vector’s a posteriori conditional probability
density function, making the current least-squares formulation a maximum a posteriori estimator.
Combining the cost functional terms and eliminating xk via Eq. (18) leads to

J =

∥∥∥∥∥∥∥∥∥∥∥




Rpp(k) +Rpx(k)Λk,k Rpx(k)Γk Rpx(k)Λk,k+1 Rpx(k)Φk

0 R̄ww 0 0
0 0 R̄pp(k+1) 0

Rxx(k)Λk,k Rxx(k)Γk Rxx(k)Λk,k+1 Rxx(k)Φk

0 0 0 C







pk

wk

pk+1

xk+1




−




zp(k) −Rpx(k)ξk

0
0

zx(k) −Rxx(k)ξk

0




∥∥∥∥∥∥∥∥∥∥∥

2 (24)
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5. An orthogonal transformation found by QR factorizing the large block matrix in Eq. (24) is applied to
both terms within the vector norm, triangularizing the block matrix without affecting the magnitude
of the overall vector norm,

J =

∥∥∥∥∥∥∥∥∥∥∥∥




R∗pp(k) R∗pw(k) R∗p(k)p(k+1) R∗p(k)x(k+1)

0 R∗ww(k) R∗w(k)p(k+1) R∗w(k)x(k+1)

0 0 Rpp(k+1) Rpx(k+1)

0 0 0 Rxx(k+1)

0 0 0 0







pk

wk

pk+1

xk+1


−




z∗p(k)

z∗w(k)

zp(k+1)

zx(k+1)

εk+1




∥∥∥∥∥∥∥∥∥∥∥∥

2

(25)

The matrices on the diagonal of the large block matrix in Eq. (25) are all square, non-singular, and
upper-triangular. The asterisk (∗) refers to quantities that will be used to do smoothing.

6. The a posteriori state estimate x̂k+1 is solved for using x̂k+1 = R−1
xx(k+1)zx(k+1). The quantity ‖εk+1‖2

represents the sum of the squared errors in the least-squares fit. The third and fourth lines of Eq. (25),
which are like Eq. (22), are extracted for use in the next filter iteration, with k replaced by k + 1.

An important feature of the filtering algorithm is the evolution of the noise vector pk. At time step k,
information equation (20) effectively resets pk+1, modeling it as being uncorrelated with previous values
of pk. However, as can be seen in the structure of Eqs. (22) and (25), an a posteriori estimate of pk+1

forms part of the augmented state in the information equation for the next iteration. Note that an extended
Kalman filter formulation of the filtering algorithm must likewise include the three elements of pk in an
augmented state vector. This one-step-memory process implements a time correlation model of the error in
Eq. (14).

Fixed Interval Smoothing

The smoother problem formulation and solution algorithm use the same discrete-time square-root infor-
mation structure as the filtering problem. The smoother performs a backwards pass on the data, taking as
initial estimates the terminal estimates x̂N and p̂N provided by the filter. Equation (18), inverted to express
xk+1 in terms of xk, is used as the mapping equation for the backwards pass. At each time step, information
equations for smoothed estimates x̂k+1|0:N and p̂k+1|0:N are available in the form of Eq. (22) from the
previous iteration (subscript notation employed here refers to the smoothed estimate at k+ 1 ∈ [0, N ] based
on all data from 0 to N). These are combined with a posteriori data from iteration k+1 of the filtering pass
by replacing the third and fourth lines of Eq. (25) with the R matrices and z vectors that are associated
with x̂k+1|0:N and p̂k+1|0:N . The quantity xk+1 is eliminated from the resulting cost by using Eq. (18) to
solve for xk in terms of xk+1, wk, pk and pk+1. Finally, an appropriate orthogonal transformation is applied
as in Step 5 of the filter to yield smoothed information equations for x̂k|0:N and p̂k|0:N that are independent
of wk and pk+1. The process is then repeated.

Filter Tuning

The process of filter tuning consists in choosing values for the a priori statistical models represented
by matrices Rν̃ν̃ , R̄pp(k), R̄ww, Rpp(0), Rpx(0), and Rxx(0), along with an initial state estimate x̂0. (Because
the smoother relies on a posteriori filter statistics, no additional smoother-specific tuning is required.) The
tuning process typically proceeds by first relating parameter values to physical phenomena and then adjusting
these values to achieve satisfactory filter performance as measured by truth-model simulation and innovations
analysis.

The matrix Rν̃ν̃ , used to develop Eq. (19), is the square root of the inverse covariance of the zero-mean
measurement noise ν̃k. The statistics of ν̃k must account for geomagnetic field model errors as well as sensor
and quantization noise. Model errors may be approximated by comparing a 7th-order 1995 geomagnetic
model against a 10th-order, year 2000 model. Sensor and quantization noise are modeled for the SIERRA
subpayload magnetometers as a random measurement error with a standard deviation of 0.4 degrees in each
of the two axes orthogonal to the measured magnetic field. These are combined with the field model errors
for a standard deviation of σν̃ = 0.0077 rad. Recall by Eq. (11) that the parameters α1 and α2 correspond
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to 1/2 of the total rotation about v̂1 and v̂2, respectively. The matrix Rν̃ν̃ is formed as

Rν̃ν̃ = σ−1
ν̃ I2×2

For simplicity, the time correlation in the slowly varying geomagnetic field model error is not included in the
filter, but it is included in the truth model that has been used to test the filter.

The process noise wk represents a torque impulse impingent on the spacecraft over the sample period.
It is related to physical phenomena. Solar radiation pressure, gravity-gradient torques, and atmospheric
drag torques are the primary disturbance factors over the altitude range of the SIERRA subpayloads. The
square-root information matrix R̄ww is related to wk by

E[wjwk] =
(
R̄T

wwR̄ww

)−1
δj,k

The matrix R̄ww is assumed diagonal with identical elements, i.e.,

R̄ww = σ−1
w I3×3

The tuned value of σw is 10−4 N-m-s. This value has been selected based on the expected levels of the
disturbance sources listed above.

The vector pk models the error in the conversion from hsc to ω through the function ω(hsc). The
statistics of the sequence pk depend on the richness of the spacecraft’s modal excitation. The approximations
in ω(hsc) are more exact as the spacecraft motion more closely approximates pure nutation. For example,
multi-modal excitation in a typical test case led to sinusoidal ω(hsc) errors with an amplitude of 0.1 rad/s,
or 1% of the nominal 10 rad/s spin rate, whereas errors when the nutational mode acted alone were about 10
times smaller. A good model for the pk sequence must take into account both the decay in non-nutational
spacecraft modes (and the consequent decrease in the error pk) and the nominal intensity of pk when in
pure nutation. The equation governing the time dependence of R̄pp(k) has been formulated as

R̄pp(k) = σ−1
p(k)I3×3, σp(k) = σf + (σ0 − σf ) exp

(−tk
τ

)
(26)

The parameter σ0 reflects the magnitude of errors in ω(hsc) immediately following boom deployment,
whereas σf represents errors after the stable boom articulation modes have decayed to zero. Selection
of values for these parameters is guided by a comparison of truth-model data for ωk against the approxima-
tion ω(hsc(k)) under the type of post-deployment multi-modal excitation that might be expected. The time
constant τ is chosen close to the decay time constants of significant non-nutational modes. The selected
parameter values for the SIERRA subpayloads are

σ0 = 0.4 rad/s, σf = 0.03 rad/s, τ = 100 s

The time correlation in the error in Eq. (14) is modeled using the one-step memory process whereby pk

and pk+1 both appear in the equation. A more exotic exponentially correlated process has also been tested,
with unremarkable improvement. The one-step memory process was selected because it requires a minimal
number of tuning parameters while capturing the bulk of the time correlation. The square-root information
matrix R̄pp(k) is related to pk by

E[pkpT
k ] =

(
R̄T

pp(k)R̄pp(k)

)−1

The diagonal elements of Rxx(0) are chosen to be commensurate with expected errors in the initial state
estimate x̂0, and the off-diagonal elements are set to 0. The matrix Rpp(0) is set equal to R̄pp(0), whereas
Rpx(0) is set to 0, reflecting the assumption that p0 and the errors in x̂0 are uncorrelated.

Adjustments to the tuning values have been made to match the modeled covariances with filter perfor-
mance. The sequence of residuals εk in Eq. (25) is used as the performance metric in this process. In the
absence of modeling errors, the sequence εk is distributed as

E[εk] = 0, E[εkεT
j ] = I2×2δk,j (27)

An average of ‖εk‖2 over K time steps may be written

ε̄K =
1
K

K∑

i=1

‖εi‖2 (28)
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From this it may be noted that Kε̄K ∼ χ2
(2K). The matrices Rxx(0), R̄pp(k), and R̄ww have been tuned so that

the weighted average Kε̄K is near the 95% confidence bounds of the χ2
(2K) distribution. This process worked

well when using simulated data but was less effective with empirical data where high frequency errors in the
measurement were insignificant compared with the slowly varying magnetic field model errors. This resulted
in smaller innovations than expected because the filter was able to fit the low-frequency noise better than
the high-frequency noise model predicted. The final strategy adopted was to tune the filter using simulated
data and then to vary only Rxx(0) when tuning the filter to empirical data, choosing the Rxx(0) that gave a
good overall fit to the measurements while maintaining hin fairly constant. The tuned values of R̄pp(k) and
R̄ww are as noted above, while the tuned value of R−1

xx(0) = diag([1, 1, 1, 0.01, 0.01, 0.01]). The magnitude of
the angular momentum vector for each subpayload is more than 20 N-m-s. The three 1 values for the initial
angular momentum component error standard deviations are less than 5% of this magnitude.

IV. Results when the Filter and Smoother
Operate on Simulated Data

Truth-Model Simulation

The truth-model simulator employs the dynamics model of Ref. 2, which governs the time evolution
of the 23-element state vector x presented in Section II. It models the spacecraft attitude and rate and
the relative boom positions and rates. Runge-Kutta integration is used to solve for x(tk). To validate the
simulator output, the total system angular momentum was reconstructed for the zero-torque case. This was
shown to be constant over 700 seconds of simulated data.

A realistic simulation of the sensor noise is important to truth-model testing of an estimation algorithm.
Errors in magnetometer measurements are of two categories: sensor errors and magnetic field model errors.
Sensor errors relating to non-orthogonality, scale factor errors, and biases are not included in the simulator
output. It is assumed that these errors are removed by calibration during the data preparation process. It
is further assumed that magnetometer mounting misalignment is calibrated prior to launch. The remaining
sensor errors are non-deterministic thermal noise and quantization noise. These can be lumped together
and modeled as a discrete-time zero-mean white Gaussian process. It is important to consider the sampling
interval when selecting the value of the process variance, since more closely spaced samples are less likely
to be uncorrelated. This effect can be modeled loosely by increasing the variance of the uncorrelated noise
added to simulate the measurement. The sampling rate of the magnetometer measurements produced by the
simulator was set at 120 Hz to match the sampling rate of the SIERRA magnetometers. The magnetometer
sampling rate must be at least twice the angular frequency of the rotating spacecraft to avoid aliasing. Higher
sampling rates generally improve the performance of the estimator as long as the increased correlation in
the noise from one measurement to the next is accounted for in the measurement model.

For the current simulator, a zero-mean uncorrelated error angle with a standard deviation of 0.57 degrees
is added to each magnetometer measurement to simulate thermal and quantization noise within the magne-
tometer. Comparison with SIERRA flight data has shown this to be a pessimistic estimate of high-frequency
noise, but it has been adopted so that the simulation cases will be demanding. Time-tagging errors in
the magnetometer measurements for the SIERRA subpayloads were not modeled as these are a negligible
fraction of the sampling interval.

To simulate magnetic field model errors, which include errors in spacecraft position knowledge within the
geomagnetic field, a 10th-order, year 2000 International Geomagnetic Reference Field (IGRF) is used as the
truth model, whereas a 7th-order 1995 IGRF model is used in the filter/smoother. This strategy captures
the time correlation inherent in the magnetic field model errors. The field is calculated at the Earth-relative
positions of the SIERRA flight trajectory. Hence, the simulated magnetic field movement reflects the actual
13.6 degree rotation of the true magnetic field during the data collection period of the SIERRA mission.

Representative Results

A 700 second data segment was created using the SIERRA simulator under the following conditions:

• Initial spacecraft angular rate ω0 = 10.14 rad/s.

• Initial nutation angle = 1.8 deg., final nutation angle = 10.4 deg.
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Figure 4. Filtered and smoothed total attitude error angle for a 700 second run using simulated data.

• Initial angle between hin and bin = 34 deg. This angle is related to the sensitivity of the attitude
estimate to errors in the estimate of hin. Maximal (minimal) sensitivity occurs for hin and bin aligned
(orthogonal). Although the actual SIERRA subpayloads enjoy a robust 87 and 97 degrees separation,
a narrower angle was chosen in simulation to represent a less ideal situation.

• Total angular rotation of bin = 13.6 deg.

• Error in initial estimate of attitude parameter θ = 5.7 deg.

• The error in the initial hin estimate consists of 3 equal components: one in the {hin, bin} plane and
perpendicular to hin, one orthogonal to the plane, and one along hin. The magnitude of each error
component is 5% of the magnitude of hin(0). These lead to an initial hin(0) estimate 4 degrees from
the true angular momentum.

Estimation results for the filter and smoother using simulated data are presented in Figs. 4-6. Figure
4 displays the total error angle in the attitude estimates produced by the filter and the smoother over a
700-second run. The effect of the non-nutational modes is evident in the first 300 seconds where the attitude
estimation errors undergo larger excursions than during the remaining 400 seconds. The smoothed total
attitude error angle remains below 4 degrees throughout the run. It drops below 2 degrees as multi-modal
motion gives way to pure nutation, causing approximations within the estimator to become more accurate.

Figure 5 presents the errors in the smoothed estimates of the boom articulation angles φ1 and γ1. These
are representative of the errors in all 4 booms. Errors in the out-of-plane angle φ1 fall below 0.5 degrees after
non-nutational modes die out, validating the assumption that the booms lie approximately perpendicular
to the angular momentum vector during pure nutation. Errors in the in-plane boom angle γ1 reflect the
deviation from the assumed value of zero. These errors increase as the spacecraft nutation angle grows.
Analysis shows that this instability of the in-plane boom angles is due to the boom attachment points being
slightly displaced along the z-direction from the system center of mass. As the spacecraft nutates, the
in-plane motion of the booms’ base attachment points produces a periodic in-plane forcing which acts to
increase the in-plane boom articulation angles γi. For nutation angles below 15 degrees, the in-plane boom
deflection remains below 1 degree.

The filtered and smoothed estimates of the inertial angular momentum components are compared with the
true component values in Fig. 6. The z-component of ĥin contains less error than the x and y components.
This is because hin is nearly aligned along the reference z-axis, so that corrections to the magnitude of
ĥin are reflected in the z-component of ĥin. As has been mentioned, the magnitude of hin is a strongly
observable quantity, which is why the filter is able to correct the z-component of ĥin almost immediately.
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Figure 5. Errors in the smoothed estimates of the angles φ1 and γ1 for a 700 second run using simulated data
(representative of errors in all 4 booms).
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Figure 6. Filtered and smoothed estimates of hin components compared with values from the truth-model
simulation for a 700 second run using simulated data.
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The large initial x- and y-component corrections in Fig. 6 are along the other most observable direction,
which is in the {hin, bin} plane. The key to the remaining gradual improvement in the filtered angular
momentum estimate is the movement of bin in inertial space. Additional information about hin is revealed
as bin changes its direction. Since knowledge of hin is linked to attitude knowledge, the attitude estimate is
also refined.

Herein lies the significance of including hin directly as an element of the state. Under the conditions of
weak observability brought on by using only a magnetometer and by the small 13.6 degree rotation of bin,
incremental information gathered about hin must be closely guarded. It was found that a more traditional
estimator state, where ω describes rate, allows errors in the ω(hsc) conversion to creep into the angular
momentum, making a reconstruction of hin wander in inertial space, contrary to conservation of angular
momentum. This drives the spacecraft attitude estimate into divergence.

One may easily contrast a filter dynamics model based on a state vector that includes ω and one based on
a state vector that instead includes hin for the SIERRA estimation problem. One way to do this is to provide
each dynamics model with an error-free initial state and propagate this state forward without measurement
updates. These open-loop estimates are then compared to the output of the SIERRA truth-model simulator
primed with the same initial state.

The significant deficiencies in both the ω- and hin-based dynamics models are due to errors in the relation
ω(hsc). These errors arise because the underpinning assumptions of Eqs. (2) and (3) are inexact–especially
for subpayload motion that includes modes other than pure nutation. A comparison of the propagation
accuracy of these two models has been carried out using the initial conditions described at the beginning of
this subsection. These initial conditions lead to subpayload motion that is not purely nutational. It was found
that the open-loop state estimate produced by the ω-based model diverged within 10 seconds. In contrast,
the hin-based model produced open-loop attitude estimates which strayed only 16 degrees from the truth-
model attitude after 100 seconds of propagation. Thus, the use of the inertial angular momentum components
as states of the SIERRA filter improves the filter’s accuracy by decreasing its dynamics propagation errors.

In any Euler-based estimation scheme, there will exist small errors in the relationship between ω and hsc

owing to factors such as uncertainty in the inertia matrix or in the motion of flexible appendages. Under
conditions of strong attitude observability, these errors are corrected soon after they arise, meaning that
an unforced hin remains fixed in inertial space. In these cases, a traditional state vector employing ω is
adequate. Under weak observability, however, use of hin is preferred. The trivial propagation of Eq. (13)
isolates the estimate of hin from errors in ω(hsc).

V. Filter and Smoother Results for SIERRA Flight Data

Data Preparation

Several data pre-processing tasks were carried out before applying the new estimation algorithm to the
SIERRA flight data. The raw 1 kHz magnetometer measurements from the TAMs onboard the SIERRA
subpayloads were interpolated and undersampled at 120 Hz. The data was further processed to remove the
effects of magnetometer non-orthogonality, scale factor errors, and biases. Obvious measurement outliers
were also removed. Biases in the inertial sensors onboard the primary SIERRA payload were calibrated
post-launch using magnetic field data. Rate measurements from these inertial sensors were used to calculate
an initial estimate of hin for each subpayload at separation. This estimate is denoted by ĥin(0).

The remaining estimator state elements, α1,2 and θ, were initialized as follows: Elements α1,2 assumed
their a priori value of 0. Rotation θ was chosen such that initial transients in the estimate of hin were as
smooth as possible. This is equivalent to the hypothesis testing approach used in Ref. 9, where selection of
the initial θ is driven by the size of the resulting innovations process.

The size of the error in ĥin(0) may be inferred from the corrections applied to ĥin(0) by the filter and the
smoother. For the fore subpayload, the direction of the smoothed estimate of hin differs from that of the
initial estimate by 3.35 degrees. The discrepancy for the aft subpayload is more severe: 10.5 degrees. This
implies that aft results may be less accurate.

Results

Filter and smoother results using telemetered data from the fore subpayload are presented in Figs. 7-
9. Figure 7 shows that the angular momentum estimate remains relatively constant over the data capture
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Figure 7. Components of the filtered and smoothed estimates of hin using data from the SIERRA fore
subpayload.

interval. Thus, the initial angular momentum estimate agrees well with the 700 seconds of magnetometer
data. In Fig. 8, the root-sum-square sequence of the half angles α1 and α2 is plotted for the smoother.
These are similar to filter innovations, giving a measure of how well the smoother fits the magnetometer
data. Their small size, corresponding to a root-sum-square magnetometer error angle less than 1.2 degrees,
indicates a close fit to the data. Closer inspection reveals strong time correlation among the innovations.
This correlation is probably an artifact of the time-correlated errors in the spacecraft dynamics model and in
the magnetic field model errors. Further error modeling might reduce correlation in the innovations sequence,
but this was not considered necessary given the satisfactory estimator performance.

In Fig. 9 the smoothed estimate of the out-of-plane boom angle φ1 is presented as representative of
estimates for all four booms. Its profile shows the effect of the increasing nutation angle on out-of-plane
boom displacement.

An Independent Check

An independent measure of estimator performance may be formulated from natural ionospheric phe-
nomena. The booms of the SIERRA subpayloads were set up to make electric field measurements between
opposite probes. The electric field sensed by the wire probes is the sum of two components. One is an
induced electric field Ev×b = v × b generated by the spacecraft moving in the magnetic field. The other is
the ambient electric field present in the ionosphere. For both sources, the electric field is null in the direction
of the magnetic field. This is evident for the first source from the cross product operation. For the ambient
field, it is a consequence of the high plasma conductivity along magnetic field lines. In practice, however,
when opposite booms are aligned along the magnetic field, the body of the spacecraft blocks plasma move-
ment from the region of one probe to the other. This gives rise to a difference in plasma population, and
hence a voltage potential, between the probes. This plasma “shadowing” effect manifests itself in voltage
spikes in the electric potential measurements. The situation is illustrated in Fig. 10.

If performing properly, the present estimator should be able to predict boom alignments with the magnetic
field, and thereby predict the occurrence of the voltage spikes. This test was carried out, and the estimator
was able to accurately predict the voltage spikes. Results for the aft payload are presented in Fig. 11. The
marked regions of Fig. 11 are those where predictions of boom and magnetic field alignment to within 5
degrees coincide with the small voltage spikes resulting from the plasma shadowing effect. This coincidence
provides an independent verification of the boom angle estimates.

It should be noted that the voltage spikes can also be predicted, though less successfully, using only
magnetometer data while assuming boom angles φi = γi = 0. The added predictive accuracy of the estimator
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Figure 8. Root-sum-square of the residual measurement error sequence for the smoother applied to flight
data.
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Figure 10. The plasma shadowing effect.
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Figure 11. Electric field measurements between opposite probes of the aft SIERRA subpayload.

suggests that estimates of boom angles are fairly accurate.

VI. Broadened Scope of Application of the Estimation Algorithms

Modeling errors, time varying and otherwise, are common to the general problem of Euler-based
spacecraft attitude estimation. When they are significant, errors can quickly accumulate to the point of
destabilizing an estimator that has weak state observability. The present estimator is designed to accom-
modate time-varying model uncertainty and weak state observability. It does this by directly including hin

in the estimator state and by allowing random error in the relationship between ω and hsc. This technique
is useful for spacecraft with modest attitude knowledge requirements where flexible appendages, uncertain
inertia parameters, or both, could foul a traditional Euler-based Kalman filter. It is also useful as a backup
estimator should sensors (e.g. gyros) fail, and Euler-based estimation become a last resort.

VII. Conclusions

A magnetometer-based attitude estimation filter and smoother have been developed for a spinning
spacecraft with wire booms. The new estimator overcomes two principal challenges: significant time-varying
modeling errors and weak state observability. This is done by including the inertially-referenced angular
momentum vector directly as a state element and by expressly accounting for modeling errors within the
spacecraft kinematics. These random modeling errors enter the algebraic relationship whereby the spacecraft-
referenced angular velocity is determined as a function of the spacecraft-referenced angular momentum. An
additional feature of the estimator is that an approximation has been used for this relationship, one that is
useful when the spacecraft is undergoing its principal mode of motion–an unstable flexible-body nutation.

The estimator is initialized with an estimate of the system angular momentum and thereafter uses
magnetic field measurements to accurately estimate the spacecraft attitude, the angular momentum, and
the relative positions of the wire booms. Testing has been carried out using a full-order nonlinear truth
model. Under realistic error and noise conditions, the estimator converged to within 2 degrees of the true
spacecraft attitude. Relative boom orientation estimates remained within 1 degree of the true orientations.

The estimator has also been tested using flight data telemetered from the subpayloads of a recent sounding
rocket mission. In this case, the estimator for each subpayload is initialized with an angular momentum
estimate based on measurements from inertial sensors onboard the primary payload taken immediately before
the deployment of each subpayload. Measurement residuals from the estimator indicate that it is able to fit
the subpayloads’ magnetometer measurements to within 1.2 degrees. An independent test of the estimator
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performance using electric field measurements has demonstrated the estimator’s ability to accurately predict
relative boom positions. The estimator is recommended for use on spacecraft whose Euler dynamics models
contain significant uncertainties due to parameter errors or due to the approximate treatment of flexible-body
dynamics effects.
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