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A Micro-Mobility Analysis System (µMAS) is developed to character-

ize drivers based on their driving habits. This is achieved by solving a pattern

recognition problem, which can be divided into four phases: data collection,

data pre-processing, parameter extraction, and classification. These phases are

discussed in detail and the habits used to distinguish between drivers are vari-

ous parameters associated with their general characteristics, turning behavior,

and lane change mentality. A cross-validation simulation is implemented to

gauge the performance of µMAS. The results indicate that the system was

successful in identifying one of the three drivers, but not the other two. The

various factors contributing to this performance are discussed. The techniques

developed in this study can be used to measure distance between drivers and

place them into clusters, which can then be used to assess whether they drive

in a safe or unsafe manner.
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Chapter 1

Introduction

Quantitatively analyzing humans can be an arduous task, but techniques have

been developed to characterize and even predict human mobility [1]. In their

study, Sadilek and Krumm were successful in predicting the most likely loca-

tion for an individual at some specified time in the future. Mobility analysis

can also take form in characterizing the driving styles of individuals [2], which

would be particularly beneficial to companies operating fleets of vehicles, such

as those involved in public transit systems.

While travel time and reliability are of primary importance to riders

in public transit systems, safety and comfort are also factors that need to be

considered. Even if the transit system is fully optimized for travel time and

reliability, the ridership base can be increased by offering safe and comfort-

able rides. However, due to the low frequency of reported traffic incidents, it

would require a long time to develop safety profiles for drivers, thus making it

difficult to quantitatively characterize their performance. Furthermore, fleets

of vehicles are generally equipped with standard-precision GPS receivers, but

a large volume of information is lost due to the sparse temporal resolution

and imprecise spatial resolution due to the nature of standard GNSS tracking
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systems. For instance, these systems are capable enough to determine the

road and heading, but cannot distinguish between lanes. Much of this lost

information can be recovered with precise GNSS, which offers decimeter-level

accuracy and can be used to distinguish between lanes.

Development of the quantitative tools necessary to construct safety

profiles of drivers would allow for the comparison of drivers relative to one

another based on their distance from each other. The distance between drivers

represents the norm between vectors describing the location of the drivers in

a vector space. The coordinates of drivers in this vector space are associated

with their driving microbehavior. In order to develop these tools and determine

the distance between drivers, a Micro-Mobility Analysis System (µMAS) was

designed to address the related and interesting issue of whether a driver can

be identified based on his or her driving habits. It was designed to collect

large amounts of driving traces from multiple drivers and construct a database

describing the typical driving behaviors of the subjects by extracting certain

parameters of interest. If a driving trace of an unknown driver is then obtained,

µMAS can be used to extract the same parameters and compare them to the

database in order to determine the identity of the mystery driver.

The setup of µMAS is similar to that of biometric identification systems,

which utilize an individual’s unique physiological and behavioral traits such as

the face, fingerprint, retina, voice, and electrocardiogram [3]. These systems

are commonly used for systems requiring authentication since systems based

passwords and secret codes can be breached with a certain amount of effort.
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The architectures of these systems are similar since they all attempt to solve

a pattern recognition problem.

The issues regarding resolution were accounted for by incorporating the

post-processing technique of Precise Point Positioning, which is discussed in

Chapter 2. The specific approach to the system design is discussed in Chapter

3, while the methods for extracting the parameters of interest are discussed in

Chapter 4. Finally, the performance of µMAS is analyzed in Chapter 5.
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Chapter 2

Precise Point Positioning

In 2000, the United States government ended the practice of Selective Avail-

ability (SA), which was an intentional degradation of civil GPS signals that

led to position errors of up to 100 meters [4]. Removal of SA reduced errors

to within 10 meters and this error can be further reduced by accounting for

the sources of these errors. The major causes for errors in the position solu-

tion are due to ionospheric delay, tropospheric delay, satellite clock, satellite

orbit, receiver noise, and multipath. Precise Point Positioning (PPP) can be

used to obtain deciimeter-level accurate position solutions by incorporating

data products made available by the International GNSS Service (IGS). In

this study, a single-frequency pseudorange-based position solution algorithm

was augmented with precise ephemeris and ionospheric maps from IGS. Im-

plementation of PPP was used to achieve the lane-level resolution desired for

this study.

2.1 Implementation

The pseudorange between a receiver and satellite can be modeled by

ρ = ||rS − rR||+ c (δtR − δtS) + Iρ + T + ωρ, (2.1)
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where Iρ is ionospheric delay, T is tropospheric delay, ωρ is noise, and r and δt

are the position and clock offset, respectively, of either the satellite or receiver.

In a pseudorange-based position solution, if at least four satellites are tracked,

and the pseudorange between each satellite and the receiver is known, then a

system of equations can be constructed. The nonlinear least squares estimation

method can then be used to solve for rR and δtR.

2.1.1 Precise Ephemeris

The precise ephemeris from IGS contains the satellite orbit and clock infor-

mation. The sample interval for the data is 15 minutes and interpolation

can be used to determine the satellite position and clock state at the desired

time. The satellite positions given are accurate to within 2.5 cm and are be

considered to be the true positions in this study. The difference between the

satellite positions obtained from precise and broadcast ephemeris, which is

used in Standard Positioning Service (SPS), are depicted in Figure 2.1 for a

two hour period. The broadcast ephemeris is updated every two hours, and

it can be observed that during this period, the error in the satellite positions

increase. Since Equation 2.1 depends on the satellite position, errors in rS can

significantly affect ρ and therefore, the position solution as well.

The ionosphere is essentially a shell of electrons and electrically charged

molecules, and exists primarily due to ultraviolet radiation from the Sun. The

interaction between these electrons and electromagnetic signals, such as GPS

signals, affects the signal’s propagation path through the ionosphere, which in
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Figure 2.1: Satellite position error between precise and broadcast ephemeris

turn causes an error in the measured time of flight. Therefore, accounting for

the ionosphere yields a better measurement for the time of flight, thus leading

to an improved position solution. The delay is dependent on the total electron

content (TEC), which characterizes the electron density in the signal’s path.

TEC is expressed in terms of TEC Units (TECU), where 1 TECU corresponds

to an electron concentration of 1016 e−/m2. For the GPS L1 frequency, fL1 of

1575.42 MHz, the ionospheric delay experienced is

Iρ =
(40.308× 1016)TEC

f 2
L1

. (2.2)

So, 1 TECU represents 16.24 cm of delay.

IGS provides a TEC map of the Earth every four hours. In each map,
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the Earth is divided into a 71 (latitude) by 73 (longitude) grid and the TEC

above each of the grid points is given. Since the data represents TEC di-

rectly above a point on Earth, it represents the electron density a signal would

face if it was traveling vertically, and is therefore referred to as vertical TEC

(VTEC). These maps are low resolution, but with interpolation, high resolu-

tion maps can be obtained. A high resolution VTEC map of the Earth taken

at a previous time is shown in Figure 2.2. It is unlikely that a signal’s path

through the ionosphere would be vertical. Thus, it is necessary to to properly

characterize the electron density faced by GPS signals. This can be achieved

by incorporating mapping functions, which transform vertical TEC into slant

TEC (STEC). Replacing TEC with STEC in Equation 2.2 can then be used

to determine Iρ.

The mapping function commonly used is the Single Layer Model (SLM).

The ionosphere is composed of multiple layers that affect signals differently,

but SLM assumes that the ionosphere is compressed into a thin shell at an

altitude of 450 km. The point at which the signal crosses this thin shell is

referred to as the ionospheric pierce point (IPP). The relationship between

vertical and slant TEC is depicted in Figure 2.3 [5]. If the zenith angle at the

receiver, z, and VTEC at the receiver are known, then the zenith angle at IPP

can be defined as

z′ = sin−1
(

Re

Re + h
sin z

)
. (2.3)

Then, STEC can be obtained from

STEC =
V TEC

cos z′
, (2.4)
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Figure 2.2: Vertical TEC map at a given epoch

As shown above, SLM relates VTEC at the receiver to STEC using

the zenith angle at IPP. For low elevation satellites, converting VTEC at

the receiver to STEC might not be an accurate representation of the TEC

experienced by the signal. A proposed modification to the SLM (modSLM) is

to first determine the location of IPP and find VTEC at this location. The

procedure for finding Iρ, would remain the same except for using VTEC at

IPP instead of at the receiver. The location of IPP can be found from

rIPP = rR +

(
h

cos z

)(
rS − rR
||rS − rR||

)
. (2.5)
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Figure 2.3: Geometry of the Single Layer Model

2.2 Results

Static data from an IGS reference site was used to test the performance of

the SPS and PPP algorithms and were compared to post-processed results

from National Resources Canada’s online PPP service (CSRS-PPP). CSRS-

PPP provides centimeter-level accuracy and for single-frequency recordings,

uses both code and carrier phase measurements. It also accounts for satellite

antenna offsets, phase wind-up, and the effects of solid earth tide and ocean

loading [6]. In this study, the solutions obtained from CSRS-PPP are con-

sidered to be the “true” solutions. The horizontal and vertical errors for the

SPS, PPP with SLM, and PPP with modSLM methods are shown in Figures

2.4 and 2.5, respectively. The errors of the average position solution for each
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method compared to CSRS-PPP are shown in Table 2.1. The data shown was

collected with a Javad Delta receiver connected to an Antcom antenna and

averaged over 6 hours.

−5 0 5
−10

−5

0

5

∆ East (m)

∆ 
N

or
th

 (
m

)

 

 

SPS
SPS Avg
PPP SLM
PPP SLM Avg
PPP modSLM
PPP modSLM Avg
True

Figure 2.4: Horizontal offset from true position for each method

Table 2.1: Average error compared with CSRS-PPP for each method

Method
Horizontal
Error (m)

Vertical
Error (m)

Total
Error (m)

SPS 1.295 1.561 2.028
PPP with SLM 0.971 0.622 1.153
PPP with modSLM 0.968 0.524 1.101

It can be observed visually that both PPP solutions are more precise

than the SPS solution. However, they are still inaccurate compared to CSRS-
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Figure 2.5: Vertical offset from true position for each method

PPP. This is expected since the implementation here was only pseudorange-

based and only accounted for errors in the epehemeris and ionospheric delay.

Although small, the proposed modification to SLM did reduce the error in the

position solution by 5.2 cm and increased the precision of the PPP solution

based on SLM.

While the PPP algorithm did improve the existing SPS algorithm, it is

still not perfect. Instead of implementing all the corrections accounted for by

CSRS-PPP, this study utilized their kinematic tool to post-process recorded

GPS traces.
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Chapter 3

Mobility Analysis Approach

As discussed earlier, µMAS was setup in a similar manner as biometric iden-

tification systems. It was designed to determine the identity of a driver from

a test trace by extracting certain parameters from the trace and comparing

them to a database consisting of the parameters of various drivers. Since the

route affects the driving behaviors of individuals, prior knowledge of the route

driven by the mystery driver is required for this system. The parameters from

the test trace are then compared with parameters corresponding to the same

route. This pattern recognition problem can be divided into the following

four phases: data collection, data pre-processing, parameter extraction, and

classification. The following sections discuss each of these phases in detail.

3.1 Data Collection

Constructing a database for this pattern recognition problem requires a large

volume of data. For µMAS, recordings of many traces for multiple drivers

were desired around various routes to construct an accurate driver profile.

However, for the purposes of initial system verification, only sixteen recordings

from three drivers were collected around one route in Austin, Texas. This

12



route was chosen to include residential and highway segments in order to fully

characterize the drivers and is shown in Figure 3.1. All traces were recorded

with the same vehicle, and used a Javad Delta GPS receiver connected to an

Antcom antenna.

Figure 3.1: Data collection setup
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3.2 Data Pre-Processing

Once data was collected, it was first processed through CSRS-PPP to obtain

the precise traces. A speed and rate of change of speed profile was then

developed for each trace. The existing high frequency noise in these profiles

were removed by applying a moving-average filter of span 5, which replaced

each point in the profile with the average of the 5 neighboring points on both

sides. This filter eliminated the effects of thermal and vibration noise, and

the result of applying it to a speed profile is shown in Figure 3.2. During the

database construction stage, the precise traces were also used to determine the

mean trace and velocity profile for each driver, which was subsequently used

to determine the mean overall trace for all drivers. However, no additional

analysis was conducted after applying the filter in the driver identification

stage.

During the trace, the vehicle’s position is expressed as a 3-dimensional

curve in the Earth-Centered, Earth-Fixed (ECEF) reference frame. Although

there are elevation changes in the route, a vehicle’s movement along the route

could be considered to be in a 2-dimensional plane. Thus, the ECEF coor-

dinates of each trace were transformed into a local East, North, Up (ENU)

reference frame.

3.2.1 Alignment

It was not possible to directly compare traces along the same route since the

time required to complete each trace is different and the drivers would be

14
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Figure 3.2: Effects of applying a moving-average filter on a velocity profile

at different locations at any specified time. A position alignment tool was

developed to address this issue. Given a reference trace and time vector, and

a candidate trace and time vector, the alignment routine manipulated the

candidate time vector so that the reference and candidate traces occupied the

same locations at a given time. The results of applying this tool are shown in

Figure 3.3.

The positions represented in this plot are the offsets from the mean

position for the reference trace in the ECEF reference frame. The blue and

green traces represent the actual recordings that were collected. These traces

exhibit the same pattern, and aside from the beginning, occupy different po-

sitions at any given time. Application of this routine results in the red trace,

15



Figure 3.3: Effects of applying the position alignment routine

which “occupies” the same positions as the reference trace, at the same times.

The reference trace was randomly chosen and the alignment routine was ap-

plied to all other traces, thus allowing for direct comparison between them.

Application of this routine allowed for the computation of the mean trace for

each driver and the mean overall trace for the route.

3.3 Parameter Extraction

The majority of the work in developing µMAS was devoted to this phase.

In order to properly characterize drivers, it is necessary that each parameter

chosen be invariant with driver and conditions. These parameters were cho-

sen because it is believed that they play an important role in distinguishing

between drivers and include the following:

• Mean and standard deviation of speed

16



• Mean and standard deviation of the rate of change of speed when speed-

ing up and when slowing down

• Trace repeatability

• Radius of curvature for each turn

• Average lateral acceleration for each turn

• Maximum lateral acceleration for each turn

• Frequency of lane changes

• Turning angle during lane maneuvers

• Lane preference in 2-lane environment

• Lane preference in 3-lane environment

These parameters can be decomposed into three classes and are discussed in

further detail below.

3.3.1 General Characteristics

The general characteristics that describe drivers include the mean and stan-

dard deviation of speed, rate of change of speed when speeding up, and rate

of change of speed when slowing down. Since drivers speed up and down dif-

ferently, and interpret the speed limits in different ways, these characteristics

can be used to describe the aggressiveness and the general mental state of

the driver. Lastly, the trace repeatability of a driver was also computed. In

general, drivers tend to drive in a similar manner when traversing the same

route. The deviation of trace with respect to the mean overall trace, found

during the data pre-processing phase, was used to define the trace repeatability

17



parameter.

3.3.2 Turning Behavior

It is assumed that the manner in which individuals make turns can be used

to distinguish them. Thus, the radius of curvature during turns were found

for each trace, in addition to the average and maximum lateral accelerations

experienced during the turns. These parameters indicate the path driven by

the driver, as well as their aggressiveness during turn maneuvers. Since the

geometry of the turn affects driving behavior, these three parameters were

extracted for each turn on the route.

3.3.3 Lane Mentality

Naturally, the lane changing habits of drivers also vary. While some drivers are

passive and are satisfied remaining in a lane for long periods of time, others are

active and tend to change lanes frequently. Thus, the frequency of lane changes

during a trace can be found and expressed as the number of lane changes per

kilometer traversed. Furthermore, the actual lane change maneuver varies from

driver to driver. While some individuals tend to prefer gradual changes, which

generally implies open roads, others are prone to sudden lane changes, which

usually occur during congestion. Therefore, the turning angle during each

lane change maneuver was used to define the aggressiveness of the maneuver.

Lastly, when driving in multi-lane roads, the lane preference of the driver was

also extracted.

18



3.3.4 Post-Extraction Process

After the parameters were extracted, using methods described in the next

chapter, they were compiled into a parameter vector. Since p = 11 + 3t

parameters were extracted, where t is the number of turn segments in the route,

the parameter vectors are elements of Rp. The next steps depended on whether

the system was in the database construction or driver identification stage.

During the database construction stage, the parameter vectors for each trace

used to construct the database were used to determine the mean parameter

vector for each driver. On the other hand, during the driver identification

stage, no further actions were taken and the system proceeded to the next

phase.

3.4 Classification Routine

Suppose that data was recorded for m drivers on a route and that ni traces

were recorded for the ith driver. Let v be the parameter vector for the test

trace and uij be the parameter vector for the jth trace of the ith driver. Then,

the mean parameter vector for ith driver can be denoted as ui. The M -ary

hypothesis test were used to determine the identity of the mystery driver.

In binary hypothesis testing, a parameter takes on one of two discrete

values and each hypothesis is mapped onto a point in the observation space [7].

This can be extended to the general case to contain m different hypotheses.

19



Let Hi denote the hypothesis that v is distributed as pi:

H1 : v ∼ p1

H2 : v ∼ p2 (3.1)

...

Hm : v ∼ pm,

where pi(v) = N(v; ui, Si). Let Si be the sample covariance matrix for the

data set ui1, . . . ,uini
and is defined as

Si =
1

ni − 1

ni∑
j=1

(uij − ui)(uij − ui)
T . (3.2)

Then,

pi(v) =
1√

(2π)np |Si|
exp

[
−1

2
(v− ui)

TS−1i (v− ui)

]
. (3.3)

In this case, v ∈ Rp is mapped onto a point in an observation space Z

through the probabilistic mechanism described above. The observation space

is divided into m regions, indicating the regions where the various hypotheses

are declared. So, if the mapped point resides in Zi, then Hi is declared correct

and the mystery driver is identified as Driver i. The decision criterion for

determining the driver is to maximize the probability of proper identification

[8], which occurs when pi(v) is maximized. Therefore, if pi(v) ∈ Zi and Hi is

declared correct, then the mystery driver will be

i = arg max
i

pi(v), (3.4)

20



Besides serving as a classification routine that can choose optimally

between different hypotheses, this framework can also be used to measure the

distance between two parameter vectors in Rp by using the weighted Euclidean

distance. For the vectors v and ui, this distance is defined as

di =
∣∣∣∣(v− ui)

TS−1i (v− ui)
∣∣∣∣
2
. (3.5)
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Chapter 4

Parameter Extraction Methods

A major focus of this study was to develop the techniques necessary to extract

the parameters discussed in the previous chapters. The extraction process for

each class is discussed below.

4.1 General Parameters

The coarse parameters of mean and standard deviation of velocity, acceler-

ation, and deceleration were computationally simple and extracted directly

from the smoothed speed and rate of change of speed profiles formed in the

data pre-processing phase. The trace repeatability was defined as deviation

of the trace from the overall mean trace. The position alignment routine was

applied to the trace, with the overall mean trace being the reference. The

repeatability parameter was then obtained by determining the average offset

between the two traces.

4.2 Turning Behavior

Given a trace, it was first necessary to identify when a turn occurred. This

process was automated, but did require prior knowledge of the number of turns

22



in the trace. The radius of curvature and lateral accelerations for each turn

were computed after determining the turn segments for each trace.

4.2.1 Identifying Turn Segments

In µMAS, a turn is defined to be a conscientious decision by the driver to

change the vehicle’s heading, not simply a change of heading due to the cur-

vature of the road. If a decision is being made to change directions, it is likely

that a reduction in speed occurred prior to the initiation of the turning maneu-

ver. The first step in identifying turn segments was to identify all local minima

from the velocity profile of the given trace, and treat the immediate neighbor-

hood around each minima as a candidate turn segment. The smoothed speed

profile for the first 100 seconds of a trace is shown in Figure 4.1, along with

the candidate locations for a turn segment.

Suppose that the vehicle has been traveling in a straight line for some

time. Then, the angle between successive velocity vectors on the trace would

be close to 0. Now, suppose that the vehicle has made a turn. Then, the angle

between a position vector right before and right after the turn would fairly

large. This property motivated the construction of an angular profile of the

trace, which represented the rate of change of the vehicle’s heading. The value

at any given time represented the angle between the velocity vector at the time

and the velocity vector 10 seconds into the future. Thus, if a turn occurred

within any 10 second interval, then a spike in the angular profile would be

observed. However, if the heading remained fairly constant during this time

23
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Figure 4.1: Speed profile with candidate turn segment locations

interval, then the angular profile would have no spikes in this interval. If the

route was said to have t turn segments, then the neighborhoods around the

t largest peaks in the angular profile coinciding with the candidate locations

from the speed profile would be considered to be neighborhoods containing

turn segments. Once the neighborhood was identified, a shape was fit to the

peak in order to estimate the spread of the peak, which was then used to define

the beginning and the end of the turn segment. This process is illustrated in

Figure 4.2 and the first 100 seconds of this trace is shown in a local East-North

plane in Figure 4.3. It can be observed that this automated process correctly

identified the turn segment.
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Figure 4.2: Angular profile with beginning and end of turn segment identified
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Figure 4.3: Correct identification of a turn segment during a trace
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4.2.2 Radius of Curvature

Identification of the turn segment yielded measurements of the vehicle’s posi-

tion in the horizontal plane during the turn. Let the ith position of the vehicle

be denoted by (xi, yi) and the state vector x, which needs to be estimated, be

defined as [xc, yc, r]
T . The ith position on the curve can be modeled as

0 = h′i(x, xi, yi) + w′i = (xi − xc)2 + (yi − yc)2 − r2 + w′i, (4.1)

where the noise w′i is modeled as a Gaussian distribution with zero mean and

variance of σ2
p. It is assumed that all measurements are equally noisy with

E[w′i] = σ2
p = 0.1 m2. Multiple measurements can be stacked to form

0 = h′(x, x, y) + w′, (4.2)

where w′ is a multivariate Gaussian distribution with zero mean and covariance

matrix Pw′ = σ2
pI. The state vector can be approximated by minimizing (4.2)

using the nonlinear least squares estimation method, which requires the Taylor

series expansion

h′(x, x, y) ≈ h′(x, x, y) +H ′(x− x). (4.3)

In this equation, x is an approximate guess of x and H ′ is the Jacobian matrix,

whose ith row is given by

H ′i =
∂h′i
∂x

∣∣∣∣
x=x

= [−2(xi − xc), −2(yi − yc), −2r] . (4.4)

The state vector was obtained by minimizing the cost function

JNL = ||h′(x, x, y) +H ′(x− x)||2 . (4.5)
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A Cholesky factorization was then applied to Pw′ to obtain Pw′ = RT
aRa, which

was then used define the following variables:

h(x, x, y) = R−Ta h′(x, x, y), H = R−Ta H ′, n = h(x, x, y) +Hx (4.6)

The resulting cost function,

JNL ≈ JL = ||Hx + n||2 , (4.7)

was then used to solve for x using the standard least squares estimation

method. This yielded the center and radius of curvature for the given turn.

4.2.3 Lateral Acceleration During Turns

The lateral acceleration experienced during a turn, ac is defined as

ac =
v2

r
, (4.8)

where v is velocity and r is the radius of curvature, which can be found using

the method described above. In this study, the average and maximum lateral

accelerations were computed by replacing the velocity in the above equation

with either the average or maximum velocity experienced during the turn,

respectively.

4.3 Lane Mentality

Before extracting the parameters associated with lane mentality, it is necessary

to determine when lane change maneuvers are actually occurring. However,
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in order to determine when lane change maneuvers occur, it is necessary to

determine what lane a driver is traversing at any given location on the route.

This was achieved by first determining the center of each lane at all locations

around the route. This information was subsequently used to extract the

relevant parameters.

4.3.1 Determining Lane Centers

Over short periods of time, the drivers path when not executing turning ma-

neuvers is approximately linear. Therefore, each trace was divided into 10

second non-turning segments and a second-order polynomial was fit through

the segments for each trace in the local East-North reference frame. A similar

polynomial fit was also applied to the corresponding segment on the mean

overall trace.

Consider a particular segment on the route. At each location on this

segment, a line perpendicular to the polynomial fit of the mean overall trace

was computed. The intersection of this perpendicular line and the polynomial

fits for all traces was found. This resulted in a set of collinear points in R2,

which was than transformed onto R. A k-means clustering algorithm was

applied, which determined which cluster each point was a member of. The

number of clusters, k, formed depended on whether the number of lanes the

segment contained. After application of this clustering algorithm, the center

of each lane for each location on the segment was determined.

The results of this process is shown in Figure 4.4 for a segment along
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the route. It can be observed that this segment is a two-lane road and that

Driver 2 executed a lane change maneuver during one of his traces during this

segment. Furthermore, the process correctly identified the center of each lane

in this segment at various locations.

4.3.2 Parameters

In addition to determining the centers of each lane, the k-means clustering al-

gorithm also determined which lane the vehicle was for each trace. By knowing

what lane a vehicle occupied throughout the trace, the segments when a lane

change occurred could be easily extracted. Once the number of lane changes

was known, the frequency was found, which was defined to be the number of

lane change maneuvers per kilometer traversed. Furthermore, the time spent

in each lane during two and three-lane segments was also determined. The

weighted average of the lane and the time spent in each lane was used to com-

pute the two lane preference parameters. The turning angle was determined

by computing angle between the velocity vector at the beginning of the ma-

neuver and the velocity vector in the middle of the maneuver. Since there were

multiple lane change maneuvers during a route, the average turning angle for

all maneuvers was used as the turning angle parameter.
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Figure 4.4: Location of lane centers
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Chapter 5

Results

As stated before, sixteen traces for three drivers were collected around one

route. A simulation was set up to analyze the performance of µMAS.

5.1 Cross-Validation Simulation

In order to test the performance of µMAS, a cross-validation simulation was

set up. In this scenario, each of the sixteen recorded traces took turns being

the test trace while the remaining ones were used to construct the database.

This data was then run through µMAS to determine if the mystery driver was

correctly identified. The performance of this system is summarized in Table

5.1 and indicates the frequency of correct identification for each driver using

the M -ary hypothesis test framework.

It can be observed that this classification routine was not fully success-

ful in correctly identifying the driver. A probable cause can be attributed to

the manner in which the drivers drove during the data collection phase. While

Driver 1 drove consistently throughout and did not have significant changes

in his style, Drivers 2 and 3 drove in a very cautious manner during their first

few traces, but when instructed to drive normally, their style changed. This
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Table 5.1: Performance of µMAS

Driver
Correct

Identification
Traces

Collected
Driver 1 5 5
Driver 2 3 7
Driver 3 1 4
Total 9 16

change was more pronounced for Driver 3 than it was for Driver 2. Since only

a few traces were collected, a change in the driving style for a driver had a sig-

nificant impact on the performance of µMAS. When the driver was consistent,

as in the case of Driver 1, the resulting parameters for each trace were similar

and had a low variability. However, when there was a style change during

data collection, as in the case of Driver 3, the resulting parameters for each

trace had a high variability, which made the system believe that the data came

from different drivers, instead of a single one. This sample size is too small to

properly assess µMAS. More traces are required to properly characterize its

performance and account for the variability in the driver’s style.

Further reasons for the low performance could be due to the inclusion

of non-informative parameters, which leads to noise [9], measurement error

caused during parameter extraction, or unfamiliarity with the vehicle. Data

was collected for all three drivers using the vehicle for Driver 1. Since Drivers

2 and 3 had never driven the vehicle before, they were not accustomed to

its handling characteristics and nuances. The unfamiliarity of Drivers 2 and
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3 with the vehicle served as a confounding variable and the evolving driving

styles of these drivers could be due to their increasing familiarity with the

vehicle as more time was spent driving it.

5.2 Future Work

As discussed before, more data is required to improve the performance of

µMAS. Priority will be placed on collected a large volume of traces for as

many drivers as possible. In this study, the drivers changed their behavior

during the data collection process. Ideally, a recording device would be placed

on top of the vehicle and the driver would not know that they were being

recorded, thus ensuring that their behavior does not change. However, this is

not possible at the moment. Instead, the drivers need to be better informed

about what is expected from them during the data collection process.

The parameters extracted in this study were chosen based on intuition.

It was believed that these parameters would be able to distinguish between

drivers. However, there are more parameters that can be extracted. It would

be beneficial to understand which of the parameters play a significant role in

distinguishing between drivers and isolate non-informative parameters. The

Principal Component Analysis (PCA) method can be used as a data reduction

mechanism to yield this information. This method incorporates an orthogonal

transformation to transform a set of potentially correlated parameters into a

set of linearly uncorrelated ones.

In this study, M -ary hypothesis testing was used for the classification
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routine. However, the data mining field is rich with methods that are com-

monly used for classification purposes. Incorporation of techniques such as

Linear Discriminant Analysis (LDA) and Decision Trees would allow for the

comparison of multiple methods in this application [10].

Hypothesis testing is a statistical process and has the potential for

false driver identification. After more data is collected, the probability of false

identification should be computed for this system to further characterize its

performance and reliability.

With the tools developed in this study, various questions regarding the

driving behaviors of individuals can be answered. Some of them include:

• Is there truth behind the stereotypes regarding the driving behaviors of

individuals from various groups?

• Can a commercial driver be distinguished from a non-commercial driver

when driving the same, non-commercial vehicle?

• Does a person’s driving style depend on the time of day?

• Can drivers driving for different companies with similar vehicles be dis-

tinguished from each other?

• How does a driver’s behavior change if they are driving under the influ-

ence?
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Chapter 6

Conclusion

In order to develop quantitative tools to construct safety and comfort

profiles of drivers, the Micro-Mobility Analysis System was designed to dis-

tinguish between drivers based on their driving habits. This involved solving

a pattern recognition problem, in which certain parameters were extracted

from a test trace, whose driver was unknown, and compared to an existing

database of parameters for various drivers in order to determine the identity

of the mystery driver. Since the resolution of standard GPS tracking devices

were inadequate for this application, Precise Point Positioning was incorpo-

rated as a post-processing tool to yield the desired resolution.

An existing pseudorange-based, single-frequency position solution al-

gorithm was augmented with accurate ionospheric data, in addition to precise

satellite positions and clock states. In this PPP algorithm, a modification

to Single Layer Model was proposed and results indicate that the modifica-

tion led to an improvement of 5.2 cm. An online PPP engine was utilized to

post-process recorded traces.

This post-processed trace was used to extract various parameters re-

lated to a driver’s general characteristics, turning behavior, and lane change
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mentality. Various methods were developed for this extraction process and

resulted in parameter vectors for each trace recorded. In this study, M -ary

hypothesis testing was used as a classification routine to determine the identity

of the mystery driver.

A cross-validation simulation was constructed to measure the perfor-

mance of this system. The results indicated that the system was successful in

identifying one of the three drivers, but not the other ones. Various reasons

were proposed to account for this result and a larger volume of data is required

to fully understand the performance of this system. Due to the small sample

size, no conclusions were made regarding its performance.

The classification routine utilized in µMAS was also used to define

distance between drivers as a weighted Euclidean distance. This distance can

be used to place drivers into clusters. It is conjectured that a correlation exists

between a driver’s safety record and the cluster they belong. If the safety

records of drivers are made available, then this conjecture can be tested. If

a correlation does exist, then µMAS can be used to classify drivers based on

their safety records. Furthermore, µMAS can also be used to answer a wide

range of questions regarding the driving behaviors of individuals.
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