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Abstract

The theory and practice of unmanned aerial vehicle (UAV) capture and control via Global
Positioning System (GPS) signal spoofing are analyzed and demonstrated. The goal of this
work is to explore UAV vulnerability to deceptive GPS signals. Specifically, this paper (1)
establishes the necessary conditions for UAV capture via GPS spoofing, and (2) explores the
spoofer’s range of possible post-capture control over the UAV. A UAV is considered cap-
tured when a spoofer gains the ability to eventually specify the UAV’s position and velocity
estimates. During post-capture control, the spoofer manipulates the true state of the UAV,
potentially resulting in the UAV flying far from its flight plan without raising alarms. Both
overt and covert spoofing strategies are considered, as distinguished by the spoofer’s at-
tempts to evade detection by the target GPS receiver and by the target navigation system’s
state estimator, which is presumed to have access to non-GPS navigation sensor data. GPS
receiver tracking loops are analyzed and tested to assess the spoofer’s capability for covert
capture of a mobile target. The coupled dynamics of a UAV and spoofer are analyzed and
simulated to explore practical post-capture control scenarios. A field test demonstrates cap-
ture and rudimentary control of a rotorcraft UAV, which results in unrecoverable navigation
errors that cause the UAV to crash.
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1 Introduction

For autonomous or semi-autonomous operation, unmanned aerial vehicles (UAVs) demand reliable naviga-
tion. By far the most common historical approach to ensuring reliable UAV navigation has been to build
a state estimator around a sensor core consisting of an inertial measurement unit (IMU) and a Global
Positioning System (GPS) receiver (Kendoul, 2012). But given the fragility of GPS and other Global Nav-
igation Satellite System (GNSS) signals under conditions of signal blockage or jamming, there is currently



great interest in developing UAV navigation and control systems that can operate in GNSS-denied environ-
ments (Kendoul, 2012, Bachrach et al., 2011, Weiss et al., 2011, Garratt and Chahl, 2008). Promising recent
results demonstrate that vision-aided navigation is a practical alternative to GNSS for closed-loop UAV
control in an unmapped environment (Chowdhary et al., 2013). Nonetheless, as opposed to GNSS-aided
navigation, vision-aided techniques inevitably drift during long-range exploration unless an a priori feature
map is available, and they are only appropriate in benign weather and lighting conditions. Consequently,
one can expect most UAV navigation systems to rely on GNSS receivers for years to come, with vision and
other non-GNSS sensors serving to fill gaps in GNSS signal availability.

GNSS vulnerability extends beyond signal blockage and jamming. Spoofing attacks, in which counterfeit
GNSS signals are generated for the purpose of manipulating a target receiver’s reported position, velocity, and
time, have been demonstrated with low-cost equipment against a wide variety of GPS receivers (Humphreys
et al., 2008, Shepard and Humphreys, 2011, Shepard et al., 2012a, Shepard et al., 2012b). Whereas the
military GPS waveform is by design unpredictable and therefore resistant to spoofing (Spilker, 1996), civil
GPS waveforms—and those of other civil GNSS—are unencrypted, unauthenticated, and openly specified in
publicly-available documents (Global Positioning System Directorate, 2012, European Union, 2010). Also,
although not entirely constrained by the signal specifications, the navigation data messages modulating these
civil waveforms are highly predictable. The combination of known signal structure and data bit predictability
makes civil GNSS signals an easy target for spoofing attacks.

A number of promising methods are currently being developed to defend against civil GNSS spoofing attacks.
These can be categorized as (1) receiver-autonomous signal-processing-oriented techniques, which require no
antenna motion or specialized antenna hardware (Ledvina et al., 2010, Wesson et al., 2011, Dehghanian et al.,
2012, Wesson et al., 2013); (2) receiver-autonomous antenna-oriented techniques, which require antenna mo-
tion or specialized antenna hardware (De Lorenzo et al., 2005, Montgomery et al., 2009, Broumandan et al.,
2012); (3) cryptographic techniques that require signal specification modifications to overlay unpredictable
but verifiable modulations on existing or future civil GNSS signals (Wesson et al., 2012, Humphreys, 2013);
and (4) techniques that exploit the existing encrypted military signals to offer civil GPS signal authentica-
tion for networked GPS receivers (Lo et al., 2009, Psiaki et al., 2011, Psiaki et al., 2013, O’Hanlon et al.,
2012). Unfortunately, it will take years before these technologies mature and are implemented on a wide
scale. Meanwhile, there are no off-the-shelf defenses against GNSS spoofing.

This paper explores the extent of unmanned aerial vehicle (UAV) vulnerability to deceptive GNSS signals
by (1) establishing the necessary conditions for UAV capture via GPS spoofing, (2) investigating a spoofer’s
range of possible post-capture control over the UAV, and (3) demonstrating in field tests the capture and
rudimentary control of a UAV via GPS spoofing. These contributions are novel within the open literature,
and may well be novel in the classified domain.

This paper’s focus is on civil GPS signal spoofing, and only civil GPS signals will be considered hereafter.
Nonetheless, the claims made regarding civil GPS signal vulnerability apply broadly to current and planned
civil GNSS signals whose specifications have been made public, including the modernized GPS L2C and L5
signals and the Galileo open service signals.

For both capture and post-capture control, two broad spoofing strategies are considered: overt (the spoofer
makes no attempt to conceal the attack), and covert (the spoofer seeks to evade detection by the target
GPS receiver and by the target UAV navigation system as a whole). As one might expect, covert capture
requirements are much more stringent, and covert control authority is much more limited, than their overt
counterparts.

The next section gives an overview of the components involved in a spoofing attack and explains how
a spoofer compensates for the signal propagation and processing delays. Navigation system capture via
GPS spoofing is then defined and necessary conditions are presented for both overt and covert capture.
This is followed by a detailed theoretical analysis of overt and covert post-capture control, accompanied by
illustrative simulations. This paper concludes with the results of a field test in which a GPS spoofer captures



a rotorcraft UAV and causes it to crash.

2 System Components, Geometry, and Delays

By contrast to the so-called proximity spoofing attacks treated in (Humphreys et al., 2008) and (Shepard
et al., 2012b), where the spoofer is effectively co-located with the target receiver, the current paper considers
spoofing from a distance, as illustrated in Fig. 1. Through its receive antenna, marked RX, the spoofer
receives authentic signals from all visible GPS satellites. The vectors ∆rTX and ∆rt represent, respectively,
the 3-dimensional coordinates of the spoofer’s transmit antenna, marked TX, and the target aircraft’s GPS
antenna, both relative to the spoofer’s receive antenna. The spoofer and target antennas are assumed to be
located at respective distances rsi and rti from the ith GPS satellite.
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dRX dTX

ds

TXRX
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rti

∆rTX
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∆rt −∆rTX

True Location
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Target
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Figure 1: Illustration of the components, geometry, and delays involved in a GPS spoofing attack targeting
a GPS-guided aircraft.

The spoofer generates a counterfeit signal for each authentic signal received. In the case of an initially-aligned
attack, the spoofer’s counterfeit signal ensemble arrives at the target antenna in such a way that each signal
is approximately spreading-code-phase aligned (within a few meters) with its authentic counterpart. After
capture of the target receiver’s carrier- and code-phase tracking loops, the spoofer adjusts the relative code
phases of its spoofing signals to induce the target receiver to report the simulated (false) location ∆r relative
to its true location; the target receiver’s apparent time offset from true time can also be adjusted by a common
displacement of the counterfeit code phases.

An aligned attack is only possible if the spoofer (1) measures all relevant system delays to within a few
nanoseconds, and (2) compensates for these delays by generating a slightly advanced (predicted) version of
the signals it receives. For civil GPS signals, reliable prediction is trivial because the spreading codes are
unencrypted and openly documented, the satellites follow regular orbits, and the modulating navigation data
follow regular patterns. Military GPS signals, by contrast, enjoy strong encryption of the spreading code;
indeed, spreading code unpredictability is the very basis of their security.

For the ith GPS satellite, the total distance-equivalent system delay that must be compensated is given by

cdi = rsi − rti + c(dRX + dTX + ds) + ||∆rt −∆rTX||



where dRX and dTX are, respectively, the receive and transmit cable delays, ds is the spoofer signal processing
delay, and c is the speed of light. The ranges rsi and rti are readily calculated from the broadcast satellite
ephemerides so long as the spoofer knows its own receive antenna location and the relative coordinates ∆rt
of the target. Delays dRX and dTX are easily calculated to nanosecond-accuracy for cables of known lengths
and standard type. For the spoofer discussed here (the only one capable of all-in-view aligned GPS spoofing
that has been reported in the open literature), measuring ds is somewhat more challenging as there arises
a non-deterministic buffering delay at turn-on. To overcome this, a one-time calibration is performed at
turn-on whereby a reference spoofing signal is fed back internally from the spoofer’s radio frequency (RF)
output to its RF input and is subsequently tracked by the spoofer’s GPS tracking engine. By comparing
the code phase of the transmitted and received versions of the reference signal, the spoofer can measure its
end-to-end delay ds, which amounts to approximately 5 ms, to within a few nanoseconds.

To generate an aligned counterfeit version of the ith satellite’s signals, the spoofer forecasts, for each signal,
three quantities to an instant di seconds into the future: the modulated navigation data symbol value, the
Doppler frequency offset, and the code phase offset. Forecasts are based on the predicted satellite position
and velocity and on measured trends in the spoofer’s internal clock. Note that typical target aircraft velocities
and accelerations are small enough that there is no need to forecast target motion by di; a current estimate
of ∆r and its time derivative will suffice to enable meter- and deci-Hertz-accurate signal alignment at the
target antenna.

3 Navigation System Capture

A target aircraft’s navigation system is said to be captured by a GPS spoofer when the spoofer can exert
control over the system’s top-level 6-dimensional position and velocity (PV) estimate x̂ = [r̂T , v̂T ]T . Control
of the system’s receiver clock offset estimate δt is implicit in navigation system capture, but focus here will rest
only on control of r̂ and v̂. In the current context, “exert control” means that the spoofer can eventually
force x̂ to match a spoofer-prescribed value x⋆ to within the precision of the GPS standard positioning
service (SPS), which is currently better than 3 m in position and 10 cm/s in velocity when a receiver has
access to corrections from a satellite augmentation system, such as the Wide Area Augmentation System
(WAAS) (Misra and Enge, 2012).

One can think of the capture condition as analogous to nonlinear controllability of the PV estimator in
steady-state (Hermann and Krener, 1977): from an initial estimate x̂(t0) at the onset of spoofing, there
exists t1 ≥ t0 such that x̂(t1) ≈ x⋆. The value of t1 is lower bounded by the dynamics of the PV estimator,
which performs a weighted fusion of the GPS-provided PV measurements and measurements from non-GPS
navigation sensors. Navigation system capture implies that the spoofer has obtained control over a sufficient
number of the target GPS receiver’s active code and carrier tracking loops so that, within the constraints
imposed by each loop’s update interval and finite bandwidth, the spoofer can dictate the receiver’s reported
PV solution via adjustments to the simulated code phase and carrier phase rate values.

A limited variant of full capture, called manifold capture, occurs when the spoofer can only control x̂ within
an m < 6-dimensional submanifold of the PV state space. For example, a particular UAV’s navigation
system may ignore GPS position and velocity measurements in the vertical direction, relying solely on an
altimeter. Manifold capture is analogous to controllability of a subsystem of a larger uncontrollable system.

Full or manifold capture requires that at least a submanifold of the target aircraft’s state estimate x̂ be
controllable from the GPS receiver’s PV output. This condition holds for most unmanned aircraft equipped
with a GPS receiver when operated in the active GPS mode because the navigation state estimator typi-
cally models non-GPS navigation sensors as subject to disturbances or drifts that get corrected using GPS
measurements. Such models are appropriate for inertial sensors (Flenniken IV et al., 2005), magnetome-
ters (Wendel et al., 2006), barometric altimeters (Kim and Sukkarieh, 2003), and electro-optical navigation
systems based on exploratory simultaneous localization and mapping (SLAM) (Durrant-Whyte and Bailey,



2006, Nuetzi et al., 2011, Chowdhary et al., 2013). Only SLAM-type navigational systems that strictly limit
exploration, or systems that perform map-matching with a high-resolution a priori map, have been shown
to deliver position and velocity estimates with similar accuracy and long-term stability to those of a GPS
receiver (Castle et al., 2011). Thus, it is reasonable to expect that most UAV systems will remain at least
manifold capturable for some years hence.

3.1 Overt Capture

In overt capture, the spoofer makes no attempt to conceal its attempt to subjugate the target system. Hence,
the spoofer need not align its simulated signals with their authentic counterparts at the target receiver’s
antenna at the beginning of the attack; it may instead simply jam the target GPS frequency bands, causing
the target receiver to lose lock and attempt re-acquisition of all signals. Following such a jamming prelude,
the spoofer will successfully gain control of the target GPS receiver’s tracking loops if its simulated signals
arrive with sufficient power that (1) they comfortably exceed the target receiver’s acquisition detection
threshold, and (2) the authentic signals are forced below the detection threshold by action of the RF front-
end’s automatic gain controller. Let η = Ps/Pa be the spoofer power advantage, or the ratio of received
spoofing signal power Ps to authentic signal power Pa, for a particular authentic signal. Experiments with
various receiver types indicate that η = 10 dB is adequate to satisfy these conditions.

Nor is the spoofer strictly required to align its simulated PV state x⋆ with the true state x or with the
PV state estimate x̂s ≈ x for overt capture. The spoofer may wish to ensure a smooth transition to post-
capture control by setting x⋆ ≈ x, but an abrupt transition may be acceptable—or even desirable—for an
overt spoofer’s purposes.

3.2 Covert Capture

In covert capture, the target aircraft’s navigation system is assumed to be equipped with spoofing detection
measures that the spoofer must avoid triggering. As noted in the introduction, ongoing development of several
sophisticated spoofing detection methods has been reported in the literature. However, these techniques are
all years away from widespread implementation, and some are too costly or heavy for practical use on
small UAVs. Therefore, this paper will define covert capture in terms of avoidance of simpler near-term-
implementable spoofing detection techniques. Navigation system capture will be considered covert if the
spoofer (1) satisfies all the conditions for overt capture, and (2) evades the following detection techniques:
(a) jamming-to-noise (J/N) monitoring within the GPS receiver, (b) frequency unlock monitoring within the
GPS receiver, and (c) innovations testing within the navigation system’s state estimator. These techniques
are briefly described below. Avoidance of even simpler spoofing detection strategies such as data bit latency
monitoring (Humphreys et al., 2008), carrier-to-noise ratio monitoring (Warner and Johnston, 2003), and
standard receiver autonomous integrity monitoring (RAIM) (Brown, 1996) will also be assumed for covert
capture, but these are only mentioned in passing given that they do not pose a challenge for a sophisticated
spoofer (Shepard et al., 2012b, Psiaki et al., 2013).

J/N Monitoring A GPS J/N monitor triggers an alarm when the power received in a given bandwidth
significantly exceeds the power in that bandwidth under quiescent conditions (Ward, 1994). A few commercial
receivers, including the ublox Lea-6N, are now being offered with J/N monitoring. A J/N monitor can serve
as a spoofing detector if (1) the power received from a spoofer exceeds the triggering threshold, and (2) the
receiver continues to track GPS signals at high carrier-to-noise ratios despite the apparent jamming (Akos,
2012). Thus, from a spoofer’s point of view, avoidance of a J/N monitor entails limiting the spoofer power
advantage η. For the ublox Lea-6N in its default configuration, laboratory tests have shown that maintaining
η ≤ 12 dB on all spoofed signals is sufficient to avoid triggering the J/N monitor.

Use of a J/N monitor also prevents the jam-then-spoof style attack mentioned in the previous section.
Without this option, a spoofer must resort to the more difficult signal-aligned attack to wrest control of the



target receiver’s tracking loops.

Frequency Unlock Monitoring Frequency unlock monitoring within a GPS receiver can be an effective
spoofing detection strategy because (1) under non-spoofed conditions, frequency unlock is unusual except in
cases of signal blockage or severe ionospheric scintillation (Humphreys et al., 2010), and (2) it is challenging
for a spoofer to prevent frequency unlock in initial tracking loop capture because this requires precise
knowledge of the target aircraft’s velocity, as will be described in following sections. Phase unlock, a more
sensitive tracking anomaly, is also an effective indicator of spoofing (Humphreys et al., 2012) but is ignored
here because it occurs far too commonly in unspoofed conditions.

Innovations Testing Innovations testing within the target aircraft’s navigation state estimator is a
readily-implementable defense against spoofing. Spoofing is declared upon capture if the PV output from
the spoofed GPS receiver is inconsistent with the navigation state estimator’s PV estimate. This tech-
nique’s spoofing detection sensitivity depends on the quality of the non-GPS sensors feeding data to the
state estimator. A more stable IMU, for example, leads to improved sensitivity.

In following subsections, covert capture of the target GPS receiver’s tracking loops—which entails avoiding
both J/N and frequency unlock monitors—and covert capture of the navigation state estimator—which
entails avoiding innovations test violations—are described in further detail.

3.2.1 GPS Receiver Tracking Loop Architecture

From a signal tracking perspective, an aligned GPS spoofing attack presents a unique problem that has
not been previously addressed. Extensive prior literature explores signal pull-in ranges for phase-lock
loops (PLLs) and delay-lock loops (DLLs) under the typical code-division multiple-access scenario where
the input consists of an admixture of signals each having a unique spreading code with negligible cross-
correlation (Zhuang, 1996, Lee and Un, 1982, Gupta, 1975, Lindsey and Chie, 1981). These results apply
directly to signal tracking within a GPS receiver under normal circumstances. During a spoofing attack,
however, each spoofing signal competes against its counterpart authentic signal for control of the tracking
loops, and both signals have identical spreading codes. This is similar to the case of severe multipath except
that the spoofing signal can be made more powerful than the authentic signal and can present itself as either
a delayed or advanced version of the authentic signal.

For the analysis of GPS tracking loop capture presented in this paper, it is assumed that each signal is
tracked by a phase-rate feedback PLL and a carrier-aided early-late DLL. This is a standard configuration
for commercial and military GPS receivers (Van Dierendonck, 1996, Misra and Enge, 2012, Braasch and Van
Dierendonck, 1999, Stephens and Thomas, 1995). Let the portion of the received signal corresponding to a
unique spreading code (a single signal from a particular satellite) under a spoofing attack be represented by
a complex baseband model as

s(t) =C [t− τa(t)] exp (jφa(t))

+
√
ηC[t− τs(t)] exp (jφs(t)) + n(t)

where C(t) is the spreading code, τa(t) is the authentic signal’s code phase, φa(t) is the authentic signal’s
carrier phase, η is the spoofer power advantage, τs(t) is the spoofing signal’s code phase, φs(t) is spoofing
signal’s carrier phase, and n(t) is a zero-mean complex white Gaussian noise process that models the com-
bined target receiver thermal noise and noise embedded in the received spoofing signal (e.g., due to output
amplitude quantization within the spoofer). This model neglects the low-rate GPS binary navigation data
modulation because it does not affect loop dynamics and is assumed to be perfectly replicated by the spoofer.

The received signal s(t) is first multiplied by three local spreading code replicas separated in code phase by
TEML/2 to produce the early, prompt, and late code-correlated signals based on the DLL’s estimate of τ(t).
Next, the code-correlated signals are multiplied by the local carrier replica, which is based on the PLL’s



estimate of φ(t). The resulting signals are then integrated over the accumulation interval Ta to produce
discrete accumulations modeled as

SX(k) =R (∆τX,a(k)) sinc

(

∆fD,a(k)

2π

Ta

2

)

exp(j∆φ̄a(k))

+
√
ηR (∆τX,s(k)) sinc

(

∆fD,s(k)

2π

Ta

2

)

exp(j∆φ̄s(k)) +N(k)

where SX(k) is the accumulation at lag X ∈ {E,P, L} (for early, prompt, and late); ∆τX,a(k) and ∆τX,s(k)
are the code phase differences between the local replica at lag X and the authentic and spoofed signals,
respectively; R(∆τ(k)) is the autocorrelation function of the spreading code; ∆fD,a(k) and ∆fD,s(k) are the
differences between the Doppler frequency of the local replica and the Doppler frequency of the authentic
and spoofed signals, respectively; ∆φ̄a(k) and ∆φ̄s(k) are the differences between the carrier phase of the
local replica and the carrier-phase of the authentic and spoofed signals, respectively, at the midpoint of
the accumulation interval; and N(k) is the accumulated noise, modeled as an uncorrelated discrete-time
zero-mean complex Gaussian noise sequence.

The DLL delay discriminator ingests the early and late accumulations SE(k) and SL(k) and produces the
delay feedback signal eτ (k); the PLL phase discriminator ingests the prompt accumulation SP (k) and pro-
duces the carrier-phase feedback signal eφ(k). The delay discriminator is typically either coherent or non-
coherent; the phase discriminator is typically either a two-quadrant or a four-quadrant inverse tangent
function (Braasch and Van Dierendonck, 1999).

The feedback signals from the delay and phase discriminators are filtered before they are passed to the code
generator and number-controlled oscillator (NCO), respectively. For carrier-aided DLLs, a first-order DLL
filter is adequate, with filtered feedback given by

yDLL(k) = 4BDLLeτ (k)

where BDLL is the DLL bandwidth. The PLL filter is typically of the form

yPLL(k) =
G1

Ta

eφ(k) +
G2

Ta

k
∑

i=0

eφ(i) +
G3

Ta

k
∑

i=0

i
∑

j=0

eφ(j).

Assignment of coefficients Gi is based on the filter order and on the product of the PLL bandwidth BPLL

and the accumulation interval Ta (Stephens and Thomas, 1995).

3.2.2 Covert Capture of GPS Receiver Tracking Loops

Covert capture of GPS receiver tracking loops has been briefly addressed in a previous experimental study
(Tippenhauer et al., 2011). However, the cited study only tested a single receiver type and did not consider
Doppler frequency alignment errors, which must be small to enable covert receiver capture. The simulation,
live spoofing tests, and analysis in this section form the first complete study on covert capture of mobile
GPS receiver tracking loops. To covertly capture the target GPS receiver’s tracking loops, the spoofer must
not cause frequency unlock in any PLL. For this, the spoofer must ensure that, within the target receiver, all
spoofing signals are closely aligned with their authentic counterparts in both code phase τ(t) and Doppler
frequency fD(t). Once aligned, the spoofing signals can be raised above the power of the authentic signals
to assume control of SE , SP and SL. Alignment between spoofing and authentic signals requires that all
systematic and geometric delays and their time rates of change are known and accounted for in the production
of the spoofing signals, as detailed in Sec. 2. While a properly-designed spoofer is capable of almost perfectly
accounting for cable delays and internal delays, accurately compensating for the geometric delays and rates
requires precise knowledge of the position and velocity of the spoofer and target aircraft. If the spoofer’s
receive antenna is properly isolated from its transmit antenna, then the spoofer has continuous access to



uncontaminated authentic GPS signals and can thus continuously track the position and velocity of its own
receive and transmit antennas to SPS precision, assuming the vector ∆rTX in Fig. 1 is known. However, the
spoofer may not know the target aircraft’s position and velocity to such precision. The spoofer could obtain
precise target position and velocity data by intercepting the target UAV’s automatic dependent surveillance-
broadcast (ADS-B) messages (provided the target is ADS-B equipped), but it should be noted that ADS-B
data are only useful for covert capture, not for post-capture control, as they are themselves GPS-dependent
and would thus be corrupted post-capture by the spoofer’s signals. Thus, an alternative target tracking
solution such as radar or visual tracking would be of more general utility to the spoofer.

Errors in the spoofer’s estimate of the target aircraft’s position get mapped into the length-equivalent differ-
ential code phase ∆ρ , c(τa − τs); likewise, errors in estimated target velocity get mapped into differential
Doppler ∆fD , (φ̇a − φ̇s)/2π. Let Pp, Pv ∈ R

3×3 represent the position and velocity error covariance ma-
trices of the spoofer’s target tracking estimator. For practical values of Pp and Pv, the dominant causes
of signal alignment errors ∆ρ and ∆fD are uncertainty in target position and velocity, respectively. The
spoofer’s estimate r̂s of target position r results in a linearized differential code phase ∆ρ ≈ H (r − r̂s)
where

H =

[

∂

∂r
∆ρ

]

r=r̂
s

=
r̂s − rTX

||r̂s − rTX||
− r̂s − rSV

||r̂s − rSV||
,

and rTX and rSV are the spoofer and satellite transmitter positions, respectively. Worst-case errors in ∆ρ for
a specific signal occur when H is aligned with the eigenvector of Pp corresponding to the largest eigenvalue;
the same relationship holds for ∆fD and Pv when considering velocity tracking errors.

If ∆ρ or ∆fD is too large, then the spoofer will be unable to assume control of SE , SP and SL, or will
cause frequency unlock in the attempt. Capture, if successful, is overt. Determining the acceptable range of
∆ρ, ∆fD, and η for covert capture begins with the general observation that covert capture is only possible
for η > 0 dB and within a small neighborhood about ∆ρ = 0, ∆fD = 0. Further study reveals that as η
increases, the neighborhood about ∆ρ = 0, ∆fD = 0 expands somewhat, but in no case is the admissible ∆ρ
greater than twice the distance-equivalent spreading code chip interval (600 m for GPS L1 C/A). In fact,
GPS tracking loops are fairly forgiving as regards ∆ρ: simulations have shown that for |∆ρ| ≤ 50 m identical
acceptable ranges for ∆fD are obtained provided η ≥ 6 dB. As |∆ρ| ≤ 50 m is easily achieved in practice,
subsequent analysis will assume as much and will focus on ∆fD, acceptable values of which are much harder
for the spoofer to achieve.

Whether the target PLL loses lock for a given ∆fD depends on its frequency pull-in range under a spoofing
attack scenario for different values of η. Analytical study of frequency pull-in is complicated by the stochastic,
discrete-time, and nonlinear nature of the PLL. Indeed, even analysis of frequency pull-in for discrete-time
PLLs in the absence of competing spoofing signals is challenging (Lee and Un, 1982, Bernstein et al., 1989), as
manifest by the latest research in (Sarkar and Chattopadhyay, 1994), which resorts to numerical simulation.
Likewise, the analysis presented here is based on numerical simulation of the foregoing tracking loop models.
In all cases, it was assumed that the PLL and DLL are initially perfectly locked to the authentic signal and
that the spoofer injects noise into its output to maintain a constant nominal carrier-to-noise ratio throughout
the attack. The simulation also assumed that ∆fD is constant during the capture attempt.

Three PLL parameters affect the frequency pull-in range, with the most significant being the type of phase
discriminator (PD) used. Due to its wider linear range, the four-quadrant discriminator is more forgiving
of nonzero ∆fD than the two-quadrant discriminator. Therefore, the simulation analysis made the conser-
vative assumption that the target receiver employs a two-quadrant discriminator. The next most important
parameter is TaBPLL, with higher values leading to a wider pull-in range. The analysis assumed a typical Ta

of 10 ms and considered values of BPLL of 5, 10, and 20 Hz. A BPLL of 5 Hz is lower than is recommended
for a mobile platform and is expected to perform poorly during normal operation, but was included for com-
pleteness. Dynamic platforms may apply even lower PLL bandwidths (and thus achieve better resistance
against spoofing) if IMU aiding information is provided directly to the PLLs (deep coupling), but this prac-
tice is still uncommon among commercial GPS receivers. The final parameter of consequence is the order of
the closed-loop PLL. Table 1 summarizes the PLL configuration test grid that was explored by simulation



Table 1: PLL pull-in simulation analysis test grid

Config. PD Ta (ms) BPLL [Hz] Order

1 atan 10 10 3
2 atan 10 10 2
3 atan 10 20 3
4 atan 10 20 2
5 atan 10 5 3
6 atan 10 5 2

−30 −20 −10 0 10 20 30

0

0.2

0.4

0.6

0.8

1

∆fD [Hz]

P
ro

b
ab

il
it

y
 o

f 
L

o
ck

in
g

 

 

spoofed
authentic
loss of lock

Figure 2: Probability of locking to the spoofed signal (blue) or authentic signal (red) or losing frequency
lock (green) for simulation configuration 1 and a spoofer power advantage of η = 5 dB.

analysis.

Figure 2 shows example simulation results for configuration 1 with a spoofer power advantage η = 5 dB.
For the results presented, 1000 Monte-Carlo simulations were run at each value of ∆fD with randomized
spoofing signal carrier phase. The results show that in this scenario the spoofing signal reliably captures the
PLL for |∆fD| ≤ 11 Hz. For |∆fD| > 11 Hz, the capture probability falls off drastically: the target PLL
tends to lose frequency lock instead of settling on the spoofing or authentic signals.

Table 2 summarizes the results of many tests like the one reported in Fig. 2. The table shows the maximum
|∆fD| for high reliability capture, defined as the highest |∆fD| that yields > 90% probability of locking to
the spoofing signal, over a range of spoofer power advantages η. The optimal spoofer power advantage for
these configurations is approximately 8 dB. For η = 8 dB, all configurations except 6 (which suffers from
a low BPLL) have a maximum |∆fD| ≥ 9.75 Hz. These Doppler frequency error ranges can be converted
to velocity estimate errors in the direction of the corresponding GPS satellite by scaling them by the GPS
carrier wavelength (≈ 0.1903 m for GPS L1). This suggests that target velocity estimates are required to be
accurate to about 2 m/s for covert tracking loop capture.

It is interesting to note that the maximum |∆fD| does not increase monotonically with η, as one might
expect. This counter-intuitive result is due to the non-linear transient response of the PLL and occurs
because the presence of the authentic signals aids the PLL in smoothly transitioning to tracking the spoofing
signal. Higher values of η cause the authentic signal to become buried in the noise and, thus, prevents the
authentic signal from aiding in this transition.



Table 2: Maximum |∆fD| for reliable capture [Hz]

Config. Spoofer power advantage η

2 dB 3 dB 5 dB 8 dB 10 dB 12 dB lim
η→∞

1 2.25 5.25 11.00 11.00 9.75 9.25 7.25
2 2.25 4.75 6.75 9.75 10.25 9.75 7.75
3 3.75 6.25 12.25 12.25 10.75 10.5 7.75
4 4.75 6.75 11.25 12.75 11.25 10.5 8.75
5 1.75 3.25 7.75 10.25 9.75 8.25 6.75
6 1.75 2.75 3.75 6.25 7.25 8.25 6.75

Table 3: PLL capture probability from live spoofing tests against the CASES receiver under configuration
1. In parentheses, the maximum Doppler offset |∆fDmax| corresponding to each velocity offset is provided.
For each signal, the maximum Doppler offset is achieved when the velocity offset is along the line-of-sight
vector between the target receiver and the corresponding GPS satellite.

η (dB) Velocity offset (corresponding |∆fDmax|)
1 m/s 2 m/s 3 m/s 5 m/s

(5.3 Hz) (10.5 Hz) (15.8 Hz) (26.3 Hz)

2 0 1 0.7 0
3 1 1 0.6 0
5 1 1 0.8 0
10 1 1 0.9 0.5

To further explore pull-in behavior under spoofing, the CASES receiver, a real-time software-defined GPS
receiver developed jointly by the University of Texas at Austin and Cornell University (O’Hanlon et al.,
2011), was tested in live spoofing attacks under configurations nearly identical to those tested in simulation,
with the only difference being that the CASES receiver uses a PLL design with both phase and phase rate
feedback. CASES testing revealed slightly wider pull-in ranges compared to simulation. The results for the
first configuration from Table 1 are shown in Table 3. These results give the percent of all active PLLs that
were captured by the spoofer at various η values and at various velocity offsets from the true velocity. Note
that the 0 entry under a 1 m/s velocity offset indicates that for small η frequency unlock can be declared
even at a low velocity offset as a result of the sustained interaction between nearly-equal phasors. Also
note that, as a conservatively-designed science-grade receiver, CASES tends to declare frequency unlock far
sooner than commercial receivers. Overall, the CASES results agree well with the simulations.

Three commercial receivers representative of those used in UAVs were also tested in their default configu-
ration: the Javad Delta, the Trimble Juno SB, and the ublox Lea-6N. Results for these receivers, given in
Table 4, indicate that commercial receivers are much more forgiving of large ∆fD values than the numerical
simulations or CASES receiver. Indeed, all three receivers are capable of locking to spoofing signals with
|∆fD| = 53 Hz (velocity errors of 10 m/s) at spoofer power advantages as low as 1 dB. This robust behav-
ior is explained by the fact that commercial receivers typically implement various layers of carrier tracking
(e.g., frequency-lock loop fallback for a failing PLL) to withstand the rigors of carrier tracking on dynamic
platforms. Ironically, the commercial receivers’ robust tracking makes them more vulnerable to spoofing.

3.2.3 Covert Capture of the Navigation State Estimator

Covert capture of the target GPS receiver’s tracking loops is only a necessary condition of overall covert
capture—the spoofer must also evade detection by innovations testing within the navigation state estimator,



Table 4: Results from live spoofing tests against various commercial GPS receivers. Note that a velocity
offset of 10 m/s corresponds to a maximum Doppler offset |∆fDmax| = 53 Hz and that an offset of 15 m/s
corresponds to |∆fDmax| = 79 Hz. For each signal, the maximum Doppler offset is achieved when the velocity
offset is along the line-of-sight vector between the receiver and satellite.

η (dB) Maximum velocity offset [m/s]

Javad Delta Trimble Juno SB ublox Lea-6N

1 10 10 10
2 10 10 15
3 15 10 15

which presumably has access to several non-GPS navigation sensors, including an IMU, barometric altimeter,
magnetometer, etc. Capture is covert if innovations testing during and immediately following capture of the
GPS receiver tracking loops does not trigger alarms. A focus on this narrow time interval avoids any feedback
effects of spoofer outputs on the captured UAV. Feedback effects will be considered in the discussion of post-
capture innovations testing in Sec. 4.1.5. This section simply establishes requirements on the accuracy of
the spoofer’s estimate of UAV position and velocity for covert capture.

Let the normalized innovation squared (NIS) be defined as NIS = νTS−1ν, where ν ∈ R
nz is the mea-

surement innovation and S ∈ R
nz×nz is the innovation covariance matrix (Bar-Shalom et al., 2001). Under

spoof-free conditions, the NIS at each measurement update of the navigation system state estimator will have
a chi-squared distribution with nz degrees of freedom. Avoiding detection by innovations testing requires
much higher accuracy in the spoofer’s estimate of the position and velocity of the target aircraft than was
required for capturing the GPS receiver. Consider a target UAV with a state estimator that only employs
GPS measurements (no non-GPS navigation sensors). The estimator’s position and velocity measurement
covariance will be within GPS SPS precision, which is currently better than 3 m in position and 10 cm/s
in velocity (Misra and Enge, 2012). Assume that the state estimator experiences no filtering benefit so
that its state estimate covariance is equal to the GPS measurement covariance. Even under such favorable
conditions, the spoofer will find it difficult to estimate a UAV’s position and velocity with sufficient accuracy
to generate simulated signals consistent with SPS precision: for 2-σ covert capture reliability with a UAV
that performs 8-σ innovations testing on uncorrelated Gaussian innovations, the covariance of the spoofer’s
estimate of UAV position and velocity required for covert navigation state estimator capture is smaller than
that required for covert GPS receiver tracking loop capture by a factor of at least seven.

Clearly, innovations testing within the navigation state estimator offers a powerful near-term solution for
spoofing detection because it forces the spoofer to perform precise (costly) tracking of the target UAV.
Even if the threshold values are inflated to limit false alarms due to multipath and poor visible satellite
geometry, the detection test will trigger unless a spoofer is capable of high-accuracy tracking of the mobile
target. Conventional tracking systems, such as ground-based radar, are unlikely to meet these thresholds
for covert capture. However, it should be noted that by intercepting the target UAV’s ADS-B broadcasts,
which contain accurate position and velocity data, the spoofer could substantially improve its chances of
covert capture.

4 Post-Capture Control

This section explores post-capture control under both covert and overt scenarios. To simplify the analysis,
the target UAV is assumed to be a rotorcraft and the target navigation system is assumed to be based on a
conventional GPS-aided IMU configuration.



4.1 Theoretical Analysis of Post-Capture Control

This subsection constructs a continuous-time linear system model to explore the dynamics of post-capture
control. The model consists of an interconnection of plants, estimators, and controllers for the UAV and
spoofer.

Rotorcraft UAVs (RUAVs) typically employ a nonlinear estimator such as an extended Kalman filter to
estimate their position, velocity, attitude, and IMU biases from high-rate IMU and low-rate GPS mea-
surements (Kendoul, 2012, Christophersen et al., 2006). The state estimate is fed to a controller whose
function is typically divided between an outer and inner loop, with some time-scale separation between
the two (Kendoul, 2012). The outer loop generates attitude and thrust commands using a proportional-
derivative (PD) controller to track a reference position and velocity trajectory. The inner loop generates
control surface commands to track the attitude commanded by the outer loop. Given the loose coupling
between GPS position and velocity measurements and RUAV attitude, one would not expect GPS spoofing
to affect the performance of the inner loop, and this has been confirmed in field testing. Therefore, the
abstract UAV model introduced in the following analysis represents only the UAV’s translational dynamics,
which are assumed to be uncoupled from the attitude dynamics. It is further assumed that the RUAV
can directly and perfectly command translational accelerations. Unmodeled disturbances are addressed by
integrator or adaptive elements (Christophersen et al., 2006), but the control action from these elements
is assumed to be small. Without loss of generality, only one of the three mutually-uncoupled translational
dimensions is considered. Despite its simplicity, the model captures the essential elements of RUAV control
via GPS spoofing.

4.1.1 UAV Model

A one-dimensional linear model for the UAV’s plant, estimator, and controller is developed as follows. The
UAV’s position r, velocity v, and acceleration a are governed by double-integrator dynamics so that given
matrices

A =

[

0 1
0 0

]

, B =

[

0
1

]

and state vector x = [r, v]T , the plant dynamics model is ẋ = Ax+Ba. The UAV makes biased acceleration
measurements am = a− b, with b the measurement bias, and potentially-spoofed GPS position and velocity
measurements x⋆ = [r⋆, v⋆]T . The UAV’s state estimator is modeled as a steady-state linear quadratic
estimator

d

dt

[

x̂

b̂

]

= Ae

[

x̂

b̂

]

+ L (x⋆ − x̂) +

[

B
0

]

am

with Kalman gain matrix L = [LT
x , L

T
b ]

T and

Ae =

[

A B
0 0

]

.

Let the estimation error be
[

x̃

b̃

]

=

[

x̂− x

b̂− b

]

and let C =
[

I 0
]

. Then the UAV estimation error dynamics are described by

d

dt

[

x̃

b̃

]

= (Ae − LC)

[

x̃

b̃

]

+ L (x⋆ − x) .

Since (Ae, C) is an observable pair, the eigenvalues of Ae − LC can be placed anywhere in the left half-
plane. Let σ2

x and σ2
v be the GPS position and velocity measurement noise variance, respectively, and let
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Figure 3: Block diagram of the closed-loop UAV system showing the interconnections between the UAV
controller Gc, plant P , and estimator Ge. Thick lines represent vector data paths.

σ2
xv be the GPS position and velocity measurement noise covariance. Let σ2

a and σ2
b be the IMU acceleration

measurement noise and bias process noise variances, respectively. The measurement and process noise
matrices for the UAV estimator are then given respectively by

R =

[

σ2
x σ2

xv

σ2
xv σ2

v

]

Q =





0 0 0
0 σ2

a 0
0 0 σ2

b



 .

The steady-state estimation error covariance P is the solution to the continuous algebraic Riccati equation
(CARE)

AeP + PAT
e +Q− PCTR−1CP = 0

and the steady-state Kalman gain is L = PCTR−1.

The UAV’s control objective is to track a prescribed reference position r̄ and velocity v̄ trajectory having
double-integrator dynamics ˙̄x = Ax̄ + Bā and state x̄ = [r̄, v̄]T , driven by a reference acceleration ā. The
UAV’s controller can be reasonably modeled as a PD compensator a = −K (x̂− x̄). The gain matrix
K =

[

Kp Kd

]

> 0 is designed so that the closed-loop system is stable and the effect of actuator saturation
is negligible. Since (A,B) is a controllable pair, the eigenvalues of A − BK can be placed anywhere in the
left-half plane.

The complete dynamics of the UAV system are then

d

dt
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+
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0 B









[

x⋆

ā

]

.

The UAV controller, plant, and estimator interconnections are represented as a block diagram in Fig. 3.

4.1.2 Spoofer Controller Design

The spoofer’s control objective is to force the UAV to track some reference position r̄s and velocity v̄s

trajectory having double-integrator dynamics ˙̄xs = Ax̄s + Bās, where x̄s = [r̄s, v̄s]T , driven by a reference
acceleration ās. If the UAV states could be estimated, then the spoofer could implement a full-state feedback
controller. However, with typical parameters for Q and R, the state b̃ is nearly unobservable. Therefore, a
reduced-order estimator and controller based only on estimates of the UAV’s position, velocity, and acceler-
ation is implemented to achieve the spoofer’s control objective. In a later section, an estimate of ā will also
be incorporated into the spoofing strategy. Alternative designs to accomplish the spoofer’s objectives are
possible, but, to facilitate analysis, a single spoofer design is considered in this paper.



The spoofer estimates the UAV’s position, velocity, and acceleration from low-rate noisy position and velocity
measurements. The estimator uses a third-order model to track UAV maneuvers without bias and provide
acceleration feedback. The spoofer’s estimator is modeled as a steady-state linear quadratic estimator

d

dt

[

x̂s

âs

]

= Ae

[

x̂s

âs

]

+ Ls (x− x̂s) ,

where the spoofer Kalman gain matrix Ls = [(Ls
x)

T , (Ls
b)

T ]T is the solution to a CARE with appropriate
process and measurement noise matrices as in the UAV model. Let σ̄2

x and σ̄2
v be the position and velocity

measurement noise variance, respectively, and let σ̄2
xv be the position and velocity measurement noise co-

variance. Let σ̄2
a be the acceleration process noise variance. The measurement and process noise matrices

for the spoofer estimator are then given by

R̄ =

[

σ̄2
x σ̄2

xv

σ̄2
xv σ̄2

v

]

, Q̄ =





0 0 0
0 0 0
0 0 σ̄2

a



 .

The steady-state spoofer estimation error covariance P s is the solution to the CARE

AeP
s + P sAT

e + Q̄− P sCT R̄−1CP s = 0

and the steady-state Kalman gain is Ls = P sCT R̄−1.

To constrain the dynamics of the spoofer, it is assumed that the spoofer generates physically-realizable GPS
position and velocity trajectories r⋆ and v⋆ governed by double-integrator dynamics ẋ⋆ = Ax⋆ +Ba⋆. The
spoofer’s controller can be designed as a modified PD compensator

a⋆ = âs +Ks (x̂s − x̄s)

where Ks =
[

Ks
p Ks

d

]

. Although not the most general control architecture, a PD compensator is adequate
and allows for a straightforward stability analysis. Unlike with the UAV controller, arbitrary choices for
Ks > 0 will not yield a stable UAV-spoofer system. To increase the stability of the UAV-spoofer system,
the measured acceleration âs is added to a⋆ within the spoofer’s controller, making the spoofer-simulated
accelerations better match the dynamics assumed by the UAV estimator.

The complete dynamics of the spoofer system are

d

dt
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.

The foregoing spoofer system model assumes accurate knowledge of UAV parameters and implies a post-
capture spoofing strategy that does not guarantee covertness. A more sophisticated strategy for post-capture
control would be to perform online system identification to infer the parameters of the UAV’s guidance,
navigation, and control systems. However, for tractability, this paper only considers the aforementioned
architecture, leaving more advanced attack models as an open problem.
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âs

]

x⋆

Figure 4: Block diagram of the closed-loop UAV-spoofer system showing the interconnections between the
UAV controller Gc, plant P , and estimator Ge; and the spoofer controller Gs

c, plant P s and estimator
Gs

e. The spoofer plant P s embodies the double integrator dynamics that generate x⋆ from a⋆. Thick lines
represent vector data paths.

4.1.3 Stability Analysis

The coupled dynamics of the UAV and spoofer systems are given by

d

dt
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which can be written compactly as ż = Mz+Nu. The interconnections between the UAV controller, plant,
and estimator and the spoofer controller, plant, and estimator are represented as a block diagram in Fig. 4.
Note that poles at the origin associated with states x̄ and x̄s do not affect the stability of the closed-loop
system. To see this, consider a state transformation
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.

The dynamics of the transformed system are

˙̄z = TMT−1z̄ + TNu

= M̄ z̄ + N̄u
(1)



where
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.

As is evident in the structure of M̄ , the transformed system can be decoupled into dynamics governing the
evolution of the reference trajectories and error states. The subsystem associated with the error states must
be stable for effective UAV control. A brute-force grid search has been used to find spoofer gain matrices
Ks that yield stable systems (system for which all poles of the error state subsystem are in the left-half
plane). The stable region changes with different system parameters (L, K, Ls) as shown in Figs. 5 and 6.
Increasing the IMU bias process noise variance σb generally decreases the dominant time constant of the
system. For robust control, the spoofer gain should be chosen so that the system is stable over a range of
expected parameter values.

Figure 5: Decreasing the accelerometer measurement noise standard deviation σa increases the size of the
stable region, represented in gray. Other parameters are fixed to Kp = 1 Hz2, Kd = 2 Hz, σx = 2 m,
σv = 0.3 m/s, σxv = 0, σb = 1.24× 10−5 m/s3, σ̄x = 2 m, σ̄v = 0.3 m/s, σ̄xv = 0, and σ̄a = 0.5 m/s2.

4.1.4 Steady-State Performance

Using the previously-derived closed-loop dynamics, the steady-state behavior of the UAV-spoofer system can
be summarized by the spoofer’s position tracking error, defined as er(t) = r(t) − r̄s(t). If āL = limt→∞ ā(t)



Figure 6: Increasing the spoofer velocity measurement noise standard deviation σ̄v decreases the size of the
stable region, represented in gray. Other parameters are fixed to Kp = 1 Hz2, Kd = 2 Hz, σx = 2 m,
σv = 0.3 m/s, σxv = 0, σa = 0.05 m/s2, σb = 1.24× 10−5 m/s3, σ̄x = 2 m, σ̄xv = 0, and σ̄a = 0.5 m/s2.

and āsL = limt→∞ ās(t), then the steady-state performance of the spoofer is

lim
t→∞

er(t) =
1

Ks
p

(āsL − āL) .

Thus, in steady-state, the tracking error is proportional to the relative acceleration of the spoofer and UAV
reference trajectories. Furthermore, if ā is predictable to the spoofer, ās may be adjusted to minimize ā− ās

and thereby reduce the spoofer’s tracking error. It is worth noting that, although this result only explicitly
includes Ks

p, it assumes that other system parameters are known to the spoofer.

4.1.5 Covertness Test

It is assumed that, during post-capture control, the tracking loops of the target GPS receiver have been
captured and have sufficient bandwidth to handle the dynamics imposed. In this case, the spoofer can
covertly retain control over the tracking loops by introducing a common time offset in the simulated signals,
which ensures there is negligible autocorrelation distortion due to interaction with the authentic signals.
Thus, covertness during post-capture control is solely determined by innovations testing within the UAV’s
navigation state estimator.

As in Sec. 3.2.3, NIS is the metric used in innovations testing and is defined as NIS , νTS−1ν, where
ν ∈ R

nz is the measurement innovation and S ∈ R
nz×nz is the innovation covariance (Bar-Shalom et al.,

2001). Under spoof-free conditions, the NIS at each filter iteration has a chi-squared distribution with nz

degrees of freedom.

The following section will perform innovations testing on the entire measurement vector. But to simplify
analysis, this section will make claims using a simplified single-input, single-output (SISO) system. Consider
NISv, the normalized innovation squared for a scalar velocity measurement only:

NISv , νTv S
−1

v νv =
ν2v
Sv

,

where νv ∈ R is the velocity measurement innovation and Sv ∈ R is the element of the innovation covariance
matrix corresponding to the velocity innovation. For the nominal system parameters considered in this
section, the UAV state estimator has low covariance on the velocity state, leading to innovations testing



that is more sensitive to velocity innovations than position innovations. Since in this case NIS ≈ NISv,
velocity-only innovations testing provides a reasonable approximation of the full covertness test.

In this subsection, the attack is presumed covert if NISv remains below the hypothesis testing threshold λv,
that is, if NIS⋆v , supt NISv(t) < λv. Since the measurement innovation under test has only a single element,
the threshold can be set as λv = F−1(1−Pfa), where F (·) is the cumulative distribution function (CDF) of
a chi-squared distribution with one degree of freedom and Pfa is the desired false alarm probability. For a
5-σ hypothesis test, λv ≈ 26.3.

To facilitate analysis, the transformed coupled dynamics of the UAV spoofer in Eq. 1 will be modified
by ignoring various inputs and outputs in order to yield a tractable SISO version of the system. Two
representative cases for the spoofer’s control objective will be considered in order to define corresponding
bounds on NISv, the output of the SISO system. A stable spoofer controller Ks = [0.01 0.1] is chosen and
the remaining parameters are set to the same values used in Sec. 4.1.3: Kp = 1 Hz2, Kd = 2 Hz, σx = 2 m,
σv = 0.3 m/s, σxv = 0, σb = 1.24 × 10−5 m/s3, σa = 0.05 m/s2, σ̄x = 2 m, σ̄v = 0.3 m/s, σ̄xv = 0, and
σ̄a = 0.5 m/s2.

One input-output bound for a LTI system is (Fadali and Visioli, 2013)

||y||∞ ≤ ||H ||∞||u||∞

for input u, output y, and impulse response matrix H . Applying this input-output bound,

NIS⋆v ≤ 1

Sv

||H ||2
∞
||ā||2

∞
.

Case 1: Let ās be zero, so that the spoofer’s control objective is constant-velocity. Denote the resulting
simplified SISO system as Hν,1. In order to guarantee covertness, the following condition must be satisfied:
1

Sv

||Hν,1||2∞||ā||2
∞

< λv. For the nominal system parameters considered in this section, 1

Sv

||Hν,1||2∞ ≈ 479.

Thus, ||ā||∞ < 0.23 m/s2 implies covertness against a 5-σ hypothesis test.

Case 2: A so-called acceleration-matched (AM) control objective can be implemented such that the spoofer
controller tracks only the constant-velocity portion of the original objective. To achieve an AM trajectory,
let ās = ā, so that the spoofer’s reference acceleration matches that of the UAV. Denote the resulting
simplified SISO system as Hν,2. In order to guarantee covertness, the following condition must be satisfied:
1

Sv

||Hν,2||2∞||ā||2
∞

< λv. For the nominal system parameters considered in this section, 1

Sv

||Hν,2||2∞ ≈ 104.

Thus, ||ā||∞ < 0.50 m/s2 implies covertness against a 5-σ hypothesis test.

The stated limits on ||ā||∞ which guarantee covertness are quite low, but they follow from that strict
policy that an attack in which NIS exceeds the 5-σ detection threshold very briefly is declared overt. Any
parameter values, including the spoofer’s controller gains, that are selected in this section can be modified
and the resulting values of Sv, ||Hν,1||∞, and ||Hν,2||∞ used to determine new ||ā||∞ limits.

4.2 Simulation of Post-Capture Control

Discrete-time simulation of post-capture UAV control has been performed at an update rate of 10 Hz to
analyze the coupled dynamics of the UAV and spoofer in the presence of noise. Simple models are used
with realistic noise variances for microelectromechanical (MEMS) accelerometers and modern commercial
GPS receivers. Importantly, the spoofer is assumed to make position and velocity measurements of the UAV
with the same position and velocity accuracy as the UAV’s GPS receiver. The simulation assumes that the
UAV operates in a horizontal plane and that the two horizontal directions have independent dynamics. The
simulation closely follows the system model in Sec. 4.1 except that the simulated spoofer employs a more
sophisticated UAV tracking filter. Parameter values are the same as those in Sec. 4.1 where applicable.



4.2.1 UAV Implementation

The simulated UAV state estimator is a Kalman filter that ingests GPS measurements and biased accelerome-
ter measurements and estimates the state vector x = [rT ,vT , bT ]T , where r is the two-dimensional positions,
v is the two-dimensional velocity, and b is the accelerometer bias state. The position, velocity, and accelera-
tion measurements are each corrupted by zero-mean Gaussian noise with intensities σx = 2 m, σv = 0.3 m/s,
and σa = 0.05 m/s2, respectively. The simulated UAV controller is the PD compensator K = [1 2] in each
dimension and tracks a reference trajectory by issuing acceleration commands u. It is assumed that the
UAV controller internally compensates for the actuator dynamics so that the acceleration commands are
perfectly achieved. The UAV’s position and velocity states evolve as a discrete-time double integrator on
the acceleration input from the actuators. The accelerometer bias is simulated as a discrete-time Wiener
process with independent increment intensity σb = 1.24 · 10−5 m/s2.

4.2.2 Spoofer Implementation

The spoofer tracks the UAV position, velocity, and acceleration with a generalized pseudo-Bayesian estimator
of the second order (GPB2), a multiple-model filter that is well-suited for tracking maneuvering targets (Bar-
Shalom et al., 2001). The GPB2 estimator assumes two modes for the UAV: (1) non-maneuvering, wherein
the UAV process model is driven by white acceleration noise, and (2) maneuvering, wherein the UAV process
model is driven by Wiener acceleration noise. GPS spoofing causes the UAV’s estimator to produce an
erroneous estimate of accelerometer bias, an effect that can be approximately modeled as a Wiener process.
The GPB2 estimator uses two models for the UAV motion that reflect the cumulative effect of maneuvering
and erroneous bias estimates. These models are both driven by Wiener process accelerations, but with
different intensities.

The spoofer controller that produces a⋆ is implemented as a PD compensator with chosen gain Ks =
[0.01 0.1], which is within the stability region found in Sec. 4.1.3. The spoofer plant is implemented as a
discrete-time double integrator on the output of the spoofer controller. It is assumed that the spoofer can
produce simulated signals that result in GPS measurements at the UAV equal to the output of the spoofer
plant. The processing delay within the spoofer is presumed to be zero and the 10 Hz spoofer updates are
synchronized with the 10 Hz controller updates in the UAV.

4.2.3 Post-Capture Control Simulation Results

Let the acceleration driving the UAV reference trajectory ā(t) be such that a square trajectory is formed
with 100 m sides. On each side, the resulting reference trajectory velocity ramps from zero to a maximum
velocity of 5 m/s, remains at a constant velocity, and then ramps down to zero. Let the acceleration driving
the spoofer reference trajectory ās(t) be an impulse that causes the spoofer reference trajectory to move at
a constant velocity of 2 m/s in the east-southeast direction. This trajectory will be referred to as the raw
spoofer reference trajectory.

Figure 7 shows the two-dimensional position of the UAV, the estimate from the UAV’s estimator, and the two
reference trajectories. The spoofer is able to quickly move the UAV away from the UAV reference trajectory.
Note that the output of the UAV’s estimator remains near the UAV reference trajectory. The acceleration of
the UAV reference trajectory appears to the spoofer as a disturbance which prevents the spoofer’s controller
from driving its tracking error to zero.

Figure 8 compares the NIS at each sample to the 2-σ and 5-σ thresholds. Since many samples are well above
the 5-σ threshold, it is expected that a fault detection algorithm, even if very conservative, would trigger
upon this type of attack. Thus, the dynamics of Fig. 7 lead to overt post-capture control.

In the foregoing simulation, the spoofer controller attempts to drive x − x̄s to zero. However, the spoofer
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trajectory. Thresholds for 2-sigma and 5-sigma hypothesis testing are drawn. Since the NIS exceeds the
thresholds, the attack is declared overt.



may wish to relax this control objective to improve covertness. As introduced in Sec. 4.1.5, an acceleration-
matched control objective can be implemented such that the spoofer controller tracks only the large-scale
behavior of x̄s whereas on a smaller scale it mimics the UAV reference trajectory. Specifically, an AM
reference trajectory is defined as ās

AM
(t) , ās(t) + āe(t) where āe(t) is the spoofer’s estimate of the UAV

reference trajectory by either (1) observing one or more cycles of a repeating trajectory, or (2) on-the-fly
learning.

The same simulation reported in Figs. 7-8 has been repeated with the AM reference trajectory, assuming
that the spoofer has a perfect estimate āe(t) = ā(t) of the UAV reference trajectory. As seen in Fig. 9,
the spoofer is able to force the UAV to closely track the AM reference trajectory. Importantly, this change
in spoofer reference trajectory allows post-capture control to proceed covertly. In Fig. 10, none of the NIS
samples exceed the 5-σ threshold.
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Figure 9: Position during post-capture control for square UAV reference trajectory and AM spoofer reference
trajectory. The UAV tracks the AM spoofer reference trajectory with small position tracking errors.
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not exceed the 5-sigma threshold, the attack is declared covert.



5 Field Demonstration

It would be challenging to perform an experiment validating all results in Sec. 4. Such an experiment would
require real-time UAV PV tracking, a heavy burden for researchers and potential attackers alike. Further,
the hypothetical experiment would require over-the-air transmission in protected frequency bands and thus
would violate the regulations pertaining to those frequency bands unless government permission was granted.
Due to these limitations, the field demonstration reported herein does not validate all of the modeling and
analysis in this paper; rather, this section reports an overt spoofing attack against a UAV in which the spoofer
briefly exerted control authority over the target using an open-loop control strategy, without any feedback
on the true position and velocity of the UAV. The demonstration is a simple special case of the capture
scenarios that were investigated analytically and via simulation in the foregoing sections. Importantly, the
demonstration proves that navigation system capture and control sufficient to cause a UAV to crash is in
fact possible in the field.

The GPS spoofing experiment reported briefly in (Shepard et al., 2012a), which used the same spoofer and
target UAV as this paper’s experiment, demonstrated an effective over-the-air spoofing attack. The trial
occurred in June 2012 at White Sands Missile Range during an exercise overseen by the U.S. Department
of Homeland Security. In that test, simulated GPS signals were transmitted over the air from a distance of
approximately 620 m. The target aircraft was hovering approximately 12 m above ground level when the
spoofer captured its navigation system. The spoofer then induced the captured GPS receiver to produce
position and velocity solutions that falsely indicated the UAV was moving upward. As a result, the UAV
moved downward to correct for its apparent deviation from the commanded hover position. Since the spoofer
was performing open-loop control of the captured UAV, the UAV’s downward motion was only arrested
when a safety pilot took over manual control of the aircraft. A video of the over-the-air test is available at
http://radionavlab.ae.utexas.edu/spoofing/drone-capture-testimony-video.

Although it offered a valuable and unprecedented demonstration, the over-the-air spoofing experiment at
White Sands failed to capture any other than video data. Thus, to experimentally validate portions of this
paper’s modeling and analysis, a new experiment was conducted in June 2013 near Austin, Texas. In the
new experiment, data were continuously recorded from the target UAV’s GPS receiver and state estimator
during the spoofing attack. To avoid unauthorized radio transmission in the protected GPS band, the
spoofing signals were directly injected via a lightweight coaxial cable into the UAV’s GPS antenna, where
they combined with authentic GPS signals from overhead satellites. In both the former over-the-air trial
and in this paper’s cabled experiment, the UAV behaved as the foregoing analysis would predict for capture
and open-loop control.

5.1 Setup

The target aircraft, a Hornet Mini UAV from Adaptive Flight Incorporated, is a 4.5-kg helicopter with
an advanced avionics system. The Hornet Mini’s navigation sensor suite comprises an IMU, magnetometer,
baro-altimeter, and ublox GPS receiver. Its navigation state estimator is implemented as an extended Kalman
filter (EKF). The EKF ignores direct GPS altitude measurements, relying instead on the baro-altimeter, but
the GPS receiver still influences the altitude estimate through its vertical velocity measurements.

The portable software-defined GPS spoofer used for the experiment was reported originally in (Humphreys
et al., 2008). Further development has been reported in (Shepard et al., 2012b, Shepard et al., 2012a)
and (Humphreys et al., 2012). In the limit of a perfectly-known ∆rt (cf. Fig. 1) the spoofer is capable of
generating simulated GPS signals that align to meter and deci-Hz levels with the authentic signals at the
antenna of the target receiver. The spoofer hardware and target RUAV are shown in Fig. 11.

During normal operation, the Hornet Mini accepts high-level input from a human operator in the form of
velocity commands that modify the reference trajectory on-the-fly. The Hornet Mini has a special operating
mode in which a human operator assists the UAV so that prolonged operation is possible without GPS



Figure 11: Spoofer hardware and target RUAV.

measurements (e.g., during GPS signal blockage). In this mode, referred to as GPS-denied mode, two
significant changes occur with respect to the normal operating mode. First, the Hornet Mini’s EKF entirely
ignores GPS measurements for estimating the vehicle’s state. Second, the Hornet Mini changes how it accepts
high-level control input from the human operator so that the operator can counteract the drift that occurs
in the navigation system during GPS-denied operation: whereas the UAV accepts velocity commands during
GPS-based navigation, it accepts acceleration commands while in GPS-denied mode.

In the field demonstration, a human operator overseeing the Hornet Mini via video feed and visual line-of-
sight instructed the UAV to maintain hover at a specified waypoint and then waited until the spoofing attack
began. Once the operator witnessed the spoofer-induced maneuver, he swiftly took the corrective action of
placing the Hornet Mini in GPS-denied mode. Thus, this experiment tested GPS-denied mode as a spoofing
defense against an overt attacker.

5.2 Results

The attack began with the target aircraft hovering at a waypoint 8.8 m above ground level. The spoofer
then began transmitting simulated GPS signals with a power level chosen such that η = 10 dB. The spoofer’s
initial induced position coincided with the UAV’s hover position, which was known to the spoofer. Upon
transmitting these signals, the spoofer captured the target GPS receiver, gaining control of its reported
position and velocity measurements, but did not immediately attempt to alter these measurements from the
nominal hovering position. Therefore, the condition x⋆ ≈ x held during, and immediately after, receiver
capture.

Post-capture, the spoofer controlled the UAV by inducing the captured GPS receiver to produce position and
velocity solutions that indicated the UAV was moving southward. The UAV responded rapidly by moving
northward. The effect of the attack is summarized in Fig. 12, which shows the north position from four
sources: the spoofer’s output, the GPS receiver on the UAV, the EKF on the UAV, and the truth trajectory,
as reconstructed from pre- and post-attack onboard GPS measurements and observed movement during the
experiment.

At t = 0, the spoofer begins transmission of simulated GPS signals to induce x⋆ ≈ x. The spoofer output
is expressed in a north-east-down coordinate frame with origin at the UAV hover point x(0), with non-zero
output only in the north direction. The spoofer’s open-loop control law was x⋆(t) = [r⋆N (t) 0 0 v⋆N (t) 0 0]T



Figure 12: North position and velocity during the cabled test of UAV capture and open-loop control; where
pre- and post-attack GPS data are unavailable, dotted lines indicate an interpolation based on measurement
boundary constraints and observed movement during the experiment. The shaded region, 0 ≤ t ≤ 3.6,
indicates when the spoofer was transmitting simulated signals and the UAV was using GPS measurements
for navigation.

for 0 ≤ t ≤ 3.8, where
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At t = 0.3 seconds, the spoofer begins to modulate x⋆, moving it due south within an acceleration limit of
5 m/s2 and a velocity limit of 5 m/s. As seen in Fig. 12, the EKF output follows the GPS measurements from
the captured receiver and begins to move south at 5 m/s. Due to the apparent deviation of the UAV’s position
and velocity from the desired flight plan, the UAV controller commands a powerful northward movement.
The spoofer’s capture and control actions were overt according to the definitions in Secs. 3.2 and 4.1.5.
Nonetheless, the the attack went undetected because the UAV’s GPS receiver and navigation system were
not designed with even rudimentary checks against spoofing.

At t = 3.6 seconds, action to wrest control from the spoofer is taken: the UAV is commanded by the human
operator to enter GPS-denied mode, where GPS measurements are ignored by the UAV’s EKF. After this
point, the spoofer no longer has any control authority over the UAV; however, the effects of previous false
measurements persist because the existing, erroneous UAV state estimate continues to propagate in the EKF
according to its dynamics model. In an approximate sense, the dynamics model assumes constant-velocity
motion. Thus, the velocity estimate injected by the spoofer persists, as clearly observed in the EKF output
continuing south at nearly 5 m/s. Since at this point the UAV is moving north rapidly while the velocity
estimate remains approximately constant, the absolute error of the velocity estimate exceeds 5 m/s and is
quickly increasing.

Upon entering GPS-denied mode, the operator immediately commands the Hornet Mini to accelerate south-
ward. However, since GPS-denied mode was only designed to counteract natural drift in the navigation
system, the operator does not have sufficient control authority to halt the lingering effects of the spoofing



attack, which are far more severe than natural drift. At the moment GPS-denied mode is entered, the
absolute error in the UAV’s north velocity estimate is |v̂N − v| ≈ 8 m/s and growing rapidly. Given enough
unobstructed airspace, the operator could have brought even this large velocity error to zero by commanding
a counteracting acceleration, but the close experimental conditions required by the cabled attack did not
afford sufficient airspace.

At t = 3.8 seconds, the UAV’s true northward motion causes the cable to separate from the UAV. From
t = 3.8 to t = 6.5 seconds, the UAV’s GPS receiver undergoes trauma owing to the sudden switch from
tracking spoofer-generated GPS signals to authentic GPS signals. The position reported during this transient
period is omitted in Fig. 12. After t = 6.5 seconds, the UAV’s GPS receiver begins accurately reporting the
UAV’s true position. But at this point, the UAV is moving rapidly northward and losing altitude because
the lack of proper velocity feedback gives rise to an extreme true velocity—approximately 17 m/s—that
violates the assumptions of the UAV’s attitude control loop. Shortly thereafter, the UAV crashes.

As a result of the state estimation errors forced by the spoofer, the UAV’s accelerometer bias estimates
change significantly during the experiment, commensurate with the UAV model in Sec. 4.1.1. However,
the erroneous estimate of accelerometer drift is not large enough to explain the surprisingly attenuated
evolution of the UAV’s velocity estimate v̂N between t = 4 seconds and t = 6 seconds, which, in the absence
of accelerometer bias errors, would assume the shape of the actual velocity trajectory. The answer to this
puzzle may lie in the UAV’s attitude estimation errors, which misdirect a large fraction of the true northward
acceleration to the UAV’s vertical coordinate, which is strongly constrained by the baro-altimeter.

6 Discussion

The preceding analysis and demonstration show that overt methods for UAV capture and control are practical
to implement today while covert methods are significantly more challenging for a potential attacker. It is
worth noting that for the vast majority of currently-available commercial GPS receivers and UAV navigation
systems, covert capture is synonymous with overt capture. For example, the post-capture control of the UAV
in the field demonstration of Sec. 5 was overt by the standards of this paper; however, the attack was not
detected by the victim GPS receiver or UAV.

One additional challenge of covert capture was ignored in Sec. 3, where it was presumed that the spoofer can
control the received simulated signal power at the target by setting its own transmit power. In practice, the
effect of body shadowing on the signal power received by an aircraft-mounted GPS antenna is significant for
large aircraft (Rao et al., 2006). For small aircraft and certain antenna mounting positions, body shadowing
becomes negligible, but the effect of the antenna gain pattern remains significant. If the spoofer is operated
from a low elevation angle as seen by the target platform, typical GPS antennas will attenuate the simulated
signals. A low-elevation spoofer can increase its transmit power to compensate for this attenuation, but
without a priori knowledge of the antenna gain pattern, which is specific to the antenna model and mounting
location, the spoofer must accept a large uncertainty in the low-elevation attenuation. And even with such
knowledge, the attenuation is highly sensitive to changes in elevation angle, resulting in significant residual
uncertainty. These effects ensure that a ground-based spoofer will find it difficult to precisely specify the
power advantage η of the received spoofing signals.

To the knowledge of the authors, all modern commercial civil GPS receivers, even those which provide high-
integrity measurements, are vulnerable to civil GPS spoofing. Thus, the techniques presented in this paper
are broadly applicable to unmanned aircraft that are operating autonomously or semi-autonomously and are
dependent on civil GPS signals for navigation. Aircraft navigation systems may employ high-performance
inertial sensors, but for flights of significant duration, GPS measurements are necessary to avoid drift in
a navigation solution dependent on strictly non-GPS measurements. Thus, low-but-nonzero drift sensors
weaken the control authority possible with a GPS spoofing attack, but do not prevent such an attack.



7 Conclusions

An attacker who controls critical sensor measurements made by an autonomous system has great authority
over that system. In this paper, the capability of an attacker transmitting falsified GPS signals to influence
the behavior of an autonomous UAV was explored.

The requirements for overt and covert capture of a UAV’s navigation system have been presented together
with results from live tests of spoofing attacks against several commercial GPS receivers. By subjecting
these commercial receivers to repeated spoofing attacks at various spoofing power advantage factors η, it
was concluded that if the spoofer’s estimation errors of the UAV position and velocity are below 50 m and
10 m/s, respectively, the spoofer is capable of reliable and covert capture of the target receiver’s tracking
loops.

A spoofer’s post-capture control authority over a target UAV was explored using simplistic models for the
UAV state estimator, plant, and controller dynamics. By analysis of the coupled dynamics of the UAV and
spoofer, it was shown that a GPS spoofing attack can force a UAV to unknowingly follow a trajectory imposed
by the spoofer. A strict upper bound on the magnitude of the UAV’s reference acceleration trajectory was
shown to result in the example spoofer design passing a covertness test based on innovations testing.

Finally, a field test showed that a destructive GPS spoofing attack against a rotorcraft UAV is both technically
and operationally feasible. The demonstration is a proof-of-concept for a simple special case within the broad
class of GPS spoofing attacks against mobile targets.
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