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Abstract: A real-time method for detecting GPS spoofing in a
narrow-bandwidth civilian GPS receiver is being developed. It is
needed in order to detect malicious spoofed signals that seek to
deceive a C/A-code civilian GPS receiver regarding its position or
time. The ability to detect a spoofing attack is important to the
reliability of systems ranging from cell-phone towers, the power grid,
and commercial fishing monitors. The spoofing detector mixes and
accumulates base-band quadrature channel samples from two
receivers, one a secure reference receiver, and the other the
defended User Equipment (UE) receiver. The resulting statistic
detects the presence or absence of the encrypted P(Y) code that
should be present in both signals in the absence of spoofing.

Results & Conclusions

• Narrow-band-filtered P(Y) code useful for spoofing

detection

• 20-25% of P(Y) power suffices to detect spoofing

• Spoofing detection threshold analysis requires

characterization of power loss

• W-bits semi-codeless detection requires distortion

model

• Codeless & semi-codeless techniques both work

• Successful codeless detection of real spoofing

attack (first ever demonstration) with 1.2 sec

detection interval

• Semi-codeless detection intervals as short as 0.1

sec possible.

• Needed Efforts

• Modest UE receiver modifications for after-the-fact

detection

• Significant modifications for real-time detection

• Establishment of reference station network or

intermittent after-the-fact W-bits declassification

Challenges
• Encrypted military P(Y) signal necessitates squaring

operations and SNR loss

• Wide bandwidth of P(Y) code causes 75-80% power

loss, further degrading SNR, and significant

waveform distortions in narrow-band civilian receiver

• Bandwidth of communications link from trusted

reference receiver to defended UE receiver

• Constrained real-time signal processing capabilities

in low-power UE receiver

Figure 1. Spoofing detection receiver architecture.
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Solutions
• Use known, tracked civilian C/A code and known relationships

between C/A and P(Y) code to guide correlation times and

expected signal levels

• Analyze narrow-band filter power losses and distortion

• Develop signal detection statistical analysis to design reasonable

accumulation intervals

• Use semi-codeless detection techniques by estimating W anti-

spoofing bits in reference receiver and transmitting only those to

UE

• Broadcast spoofing detection data over internet in real-time

Codeless Detection Statistical Analysis

• Normalized detection statistic:

• Predicted mean and variance absent spoofing:

• Detection threshold and probability of detection:
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Figure 2. Hardware & profile of a spoofing attack.
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Figure 3. Codeless verification of no spoofing.

Figure 4. Codeless detection of a spoofing attack.
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Figure 5. Comparison of 2 semi-codeless detection 

statistics, case of no spoofing.
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