Opportunistic Frequency Stability Transfer for Extending the Coherence Time of GNSS Receiver Clocks

Kyle D. Wesson, Kenneth M. Pesyna, Jr., Jahshan A. Bhatti, and Todd E. Humphreys

The University of Texas at Austin

ION GNSS 2010
Portland, OR
24 September 2010
The Problem

GNSS signals attenuate 30–50 dB in indoor environments

GNSS receivers can’t acquire or track indoors with a $C/N_0 \approx 7$ dB-Hz
A Possible Solution

Coherently integrate long enough to recover signal power!
How long do we have to wait to acquire?

Rule-of-thumb from detection theory:

$$\text{SNR} = \frac{C}{N_0} \cdot T \geq 14 \text{ dB}$$

for fixed $P_d = 0.95$ and $P_{fa} = 0.001$
How long do we have to wait to acquire?

Rule-of-thumb from detection theory:

$$\text{SNR} = \frac{C}{N_0} \cdot T \geq 14 \text{ dB}$$

for fixed $P_d = 0.95$ and $P_{fa} = 0.001$
"Now's the time, the time is now"
-Led Zeppelin
What Are Our Options?

1. Carry an atomic clock →
2. Use chip-scale atomic clocks in RX
3. Use small, portable OCXOs

leapsecond.com/pages/atomic-bill
What Are Our Options?

1. Carry an atomic clock →

2. Use chip-scale atomic clocks in RX

3. Use small, portable OCXOs

4. Pull a clock out of thin air
What Are Our Options?

4. Pull a clock out of thin air

leapsecond.com/pages/atomic-bill
Oscillator Model

Oscillator generates **sinusoidal output** voltage:

\[v(t) = \cos(2\pi \nu_0 t + \phi(t)) \]

where \(\nu_0 \) is nominal frequency and \(\phi(t) \) is time-varying phase.

Ideal oscillators are deterministic:

\[V(t) = \cos(2\pi \nu_0 t) \quad \text{(no offset)} \]
\[V(t) = \cos(2\pi \nu_0 t + \Phi) \quad \text{(constant offset)} \]
Oscillator Comparison Experiment

- Estimated phase using receiver driven by TCXO and OCXO

- Removed deterministic component due to satellite orbit leaving:
 1. ionospheric errors
 2. ephemeris errors
 3. timing errors in range computation
 4. receiver position errors

- Linear fit removes 2, 3, and 4

- Remaining phase represents phase history of the driving oscillator
TCXO Referenced Carrier Phase Observable

\[\lambda \phi(t) = r(t) + c [\delta t_R(t) - \delta t_S(t)] + \lambda (\gamma_0 - \psi_0) + \epsilon_{\text{atmo}}(t) + \lambda n_\phi \]
TCXO & OCXO Referenced Carrier Phase Observables

\[\lambda \phi(t) = r(t) + c [\delta t_R(t) - \delta t_S(t)] + \lambda (\gamma_0 - \psi_0) + \epsilon_{\text{atmo}}(t) + \lambda n_{\phi} \]
OCXO Referenced Carrier Phase Observable

\[\lambda \phi(t) = r(t) + c \left[\delta t_R(t) - \delta t_S(t) \right] + \lambda (\gamma_0 - \psi_0) + \epsilon_{\text{atmo}}(t) + \lambda n_\phi \]
TCXO vs. OCXO

![Graph showing SNR vs. time for TCXO and OCXO]

- **SNR [dB]**
 - Acquisition level: 15 dB
 - Tracking level: 0 dB

- **Time [sec]**: From 10^{-1} to 10^2

THE UNIVERSITY OF TEXAS AT AUSTIN

What Starts Here Changes the World

Wireless Networking & Communications Group (WNCG)

Radionavigation Laboratory
TCXO vs. OCXO

![Graph showing SNR vs. time for TCXO and OCXO]

- Acquisition
- Tracking

Phasor Rotation
Stable Oscillator

Phasor Rotation
Unstable Oscillator
Frequency Stability Transfer Model

Rotate GNSS phase by the change in aiding signal’s phase relative to local oscillator over \(j \)th intermediate accumulation interval:

\[
\Delta \phi = \left(\frac{f_{\text{GNSS}}}{f_{\text{AID}}} \right) \cdot (\phi_{\text{AID}}[n_j] - \phi_{\text{AID}}[n_{j-1}] + n_\phi)
\]
Frequency Stability Transfer Phasor “Fix-Up”

Phasor Rotation Corrected

$\Delta \hat{\phi}_1$, $\Delta \hat{\phi}_2$, $\Delta \hat{\phi}_3$, $\Delta \hat{\phi}_4$
Synthetic Oscillator Phase History

Create synthetic oscillator via single differencing: \(\Delta \hat{\phi}_{AID} = \phi_{PRN\ 22} \)
Ambient Stable Signals

1. WWVB
 - broadcast from NIST in Colorado
 - designed to synchronize time
 - only stable locally due to ground wave propagation
 - 60 kHz broadcast

2. High-Definition TV (HDTV)
 - available in major metropolitan areas
 - signal is designed to penetrate buildings
 - approx. 700 MHz broadcast

3. Cellular Code Division Multiple Access (CDMA)
Why CDMA?

- CDMA is similar to GPS from receiver standpoint
- Widely available in U.S.
- Base station clocks very stable and synched to GPS
- UHF Band 1930–1990 MHz (tends to attenuate phase noise)
- Dataless pilot channel allows direct computation of phase

Verizon Wireless Coverage Map, 2010
CDMA Laboratory Setup
Frequency Stability Transfer Block Diagram

Despread

Intermediate Accumulation

Rotate

Final Accumulation

Aiding Signal
Code & Carrier
Tracking Loops

$r_{GNSS}[n]$
$C_{GNSS}[n]e^{j\hat{\Theta}[n]}$

$\Sigma(\cdot)$

S

$\Delta\hat{\phi}$

$k_m = \arg\max_k |F[k]|$

$F' = \text{FFT}[S_1', S_2', ..., S_N']$

$S'' = F[k_m]$

$Aiding signal phase change due to local clock$

over jth intermediate accumulation interval

$\Delta\hat{\phi}_{CDMA}[j] = \hat{\phi}_{CDMA}[n_j] - \hat{\phi}_{CDMA}[n_{j-1}] + n_{\phi}$
Oscillator Coherence

\[\langle C_{coh}^2 \rangle \]

- TCXO
- OCXO

Time [sec]
Oscillator Coherence

\[\left< C^2_{coh} \right> \]

- TCXO
- OCXO
- SYXO

\begin{align*}
\text{time [sec]} & \quad 10^{-1} & \quad 10^0 & \quad 10^1 & \quad 10^2 \\
\text{values} & \quad 1 & \quad 0.75 & \quad 0.5 & \quad 0.25 \\
\end{align*}
Oscillator Coherence

\[\langle C^2_{\text{coh}} \rangle \]

- TCXO
- OCXO
- SYXO
- CDMA2
Oscillator Coherence

The figure shows the coherence time ($<C^2_{coh}>$) as a function of time (in seconds) for different oscillators:

- TCXO
- OCXO
- SYXO
- CDMA1
- CDMA2

The data is plotted on a log-log scale, indicating the coherence time decreases significantly over time for all oscillators.
Coherence and SNR Relation

\[\text{SNR}(t) = \langle C_{\text{coh}}^2(t) \rangle \cdot t \cdot (C/N_0) \text{ for fixed } C/N_0 \]
Indoor GNSS tracking and acquisition is possible with commercial GNSS receivers using stable signals of opportunity if you’re willing to hold still for a few seconds!