Advances in GNSS Equipment

Todd Humphreys
With Input From:
Thomas Pany, Bernhard Riedl IFEN, Carsten Stroeber UFAF
Larry Young, JPL
David Munton, UT/ARL
2010 IGS Workshop, Newcastle Upon Tyne
Q: What advances in GNSS receiver technology can the IGS exploit to improve its network and products?
Outline

- Review conclusions from Miami 2008
- A look at commercial receiver state-of-the-art
- Advances in software receiver technology
 - DFE: The final front-end
 - The CASES receiver
 - The IFEN/UFAF SX-NSR receiver: Performance evaluation
- Not all observables are created equal
- Summary
Conclusions from Miami 2008

- Many excellent commercial RXs to choose from
- All major manufacturers have road maps toward all-in-view capability
- Pseudorange and phase measurement error statistics are heterogeneous and ill-defined, impairing IGS products
- Software receivers show promise but have not been vetted
The Super Receiver

- Tracks all open signals, all satellites
- Tracks encrypted signals where possible
- Well-defined, publicly disclosed measurement characteristics (phase, pseudorange, C/No)
- RINEX 3.00 compliant
- Completely user reconfigurable, from correlations to tracking loops to navigation solution
- Internal cycle slip mitigation/detection
- Up to 50 Hz measurements
- Internet ready; signal processing strategy reconfigurable via internet
- Low cost
The Ultra Receiver

Digital Storage Rx

RF Front-End
ADC
Mass Storag

Software Post-Processing

FFT-based Acquisition
Tracking Loops, Data Decoding, Observables Calculations

Digital Storage Rx

RF Front-End
ADC
Mass Storag

Digital Storage Rx

RF Front-End
ADC
Mass Storag

Digital Storage Rx

RF Front-End
ADC
Mass Storag

Referenc e Oscillator
Sample Clock
Commercial Receiver Offerings (2008)

- Septentrio PolaRx3
- Trimble NetRS/NetR5
- Leica GRX1200
- Topcon NET-G3
Commercial Receiver Offerings (2010)

- Septentrio GeNeRx1
- Trimble NetRS/NetR5/NetR8
- Javad G3T
- Leica GRX1200+GNSS
- Topcon NET-G3
Approaching the Super Receiver

Example Commercial Receiver: Javad G3T

- Tracks all open signals, all satellites
- Tracks encrypted signals where possible
- Well-defined, publicly disclosed measurement statistics (phase, pseudorange, C/No)
- RINEX 3.00 compliant
- Completely user reconfigurable, from correlations to tracking loops to navigation solution
- Internal cycle slip mitigation/detection
- Up to 50 Hz measurements
- Internet ready; signal processing strategy reconfigurable via internet
- Low cost
- ~$8k

Except E5B, 216 channels

Loop BW, update rate configurable

Only one G3T in IGS network (BOGI, Poland)

Performance appears good
Outline

- Review conclusions from Miami 2008
- A look at commercial state-of-the-art
- Advances in software receiver technology
 - DFE: The final front-end
 - The CASES receiver
 - The IFEN/UFAF SX-NSR receiver: Performance evaluation
- Not all observables are created equal
- Summary
Recall: The Ultra Receiver

Digital Storage Rx

RF Front-End
ADC
Mass Storag

Software Post-Processing

FFT-based Acquisition
Tracking Loops, Data Decoding, Observables Calculations

Software Correlators

Digital Storage Rx

RF Front-End
ADC
Mass Storag

Digital Storage Rx

RF Front-End
ADC
Mass Storag

Digital Storage Rx

RF Front-End
ADC
Mass Storag

Referenc Oscillator
Sample Clock
The ARL:UT Digitizing Front End

Variable Gain: 23 to 53 dB
Single anti-aliasing bandpass filter
* 6dB passband: 1110 to 1630 MHz

8-bit samples at up to 3GHz

CIC and FIR filters
* 30 MHz passband
Decimate by 48

Reconfigurable on reccompilation

Amplify And Filter → Digitize

Tuning → Filter And Decimate

Filter And Decimate

2 bit complex I and Q
40.912 MSPS

FPGA
The ARL:UT Digitizing Front End

(Fig. 1 of Wallner et al., “Interference Computations Between GPS and Galileo,” Proc. ION GNSS 2005)
The ARL:UT Digitizing Front End

- 500 MHz bandwidth
- Single RF signal path and ADC substantially eliminates inter-signal instrument biases
- Temperature-stabilized signal conditioning chain
- Open-source design, as with GPSTk
- Debut at ION GNSS 2010
UT/Cornell/ASTRA CASES SwRx
UT/Cornell/ASTRA CASES SwRx

- Dual-frequency narrowband
- Completely software reconfigurable
- Antarctic deployment 2010
- Space deployment 2012 (as occultation sensor)
CASES Multi-System Receiver Bank

- Data Buffer: q_1, q_2, \ldots, q_n buffer
- Channel:
 - PLL
 - FLL
 - DLL
 - Estimated State
 - Carrier Generator
 - Code Generator
- Observables:
 - Time of measurements
 - Pseudorange Vector
 - Carrier Phase Vector
- Configuration Object
- Nav. and Timing Fusion Module:
 - Position
 - Velocity
 - δt_{RX}
Approaching the Ultra Receiver

Digital Storage Rx

RF Front-End
ADC
Mass Storage

Software Post-Processing

FFT-based Acquisition
Tracking Loops, Data Decoding, Observables Calculations

Software Correlators
Approaching the Ultra Receiver

Variable Gain: 23 to 53 dB
Single anti-aliasing bandpass filter
* 6 dB passband: 1110 to 1630 MHz
CIC and FIR filters
* 30 MHz passband
Decimate by 48

8-bit samples at up to 3GHz

Tuning
Filter and Decimate
FPGA

2 bit complex I and Q
40.912 MSPS

Reconfigurable on recompilation

Data Buffer
q_1 buffer
q_n buffer

Bank

Observables
Time of measurements
Pseudorange Vector
Carrier Phase Vector
Configuration Object

Channel
PLL
FLL
DLL
Estimated State
Carrier Generator
Code Generator

Nav. and Timing Fusion Module
Position
Velocity
δt_{RX}
δt_{RX}

Mass Storage
Multicore GNSS Processing

- **Signal-type level**
 - Low comm/sync overhead
 - Poor load balancing

- **Channel level**
 - Low comm/sync overhead
 - Good load balancing
 - Favors shared memory architecture

- **Correlation level**
 - Higher comm/sync overhead
 - Good load balancing

- **Sub-correlation level**
 - Very high comm/sync overhead
 - Good load balancing

- **Demonstrated 3.4x speedup on 4-core machine with OpenMP**
- **CASES post-processing now 25x real-time**
- **Bodes well for reanalysis**
UFAF SwRx Evaluation (Carsten Stroeber)

<table>
<thead>
<tr>
<th>Running since</th>
<th>End 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Signals</td>
<td>GPS L1 C/A, L2C (CM+CL), L5 Giove A+B SBAS</td>
</tr>
<tr>
<td>Frontend</td>
<td>Fraunhofer, (IFEN possible)</td>
</tr>
<tr>
<td>Longest running time without external reset</td>
<td>>10 days</td>
</tr>
<tr>
<td>Longest running time with external reset</td>
<td>>1 month</td>
</tr>
</tbody>
</table>

Annotations:
- External reset denotes automatic restart of the receiver via script program
- Reference station was on a productive system simultaneously employing monitoring algorithms -> priority was not only given to long time stability
- Currently Glonass is in test mode
- Dedicated software receiver reference station (GPS L1, L2 only) intended for long run stability is in test phase

Advantages

- Extensive data analysis possible at measurement time
 - e.g. instantaneous monitoring for signal distortions with access to “low” level measurements i.e. signal sample data
- Software receiver is “independent” from utilized hardware

http://www.unibw.de/lrt9_3
Horizontal scatter plot of final PDGPS adjustment at highest temporal resolution with bounding box (upward: north; right: eastward).

<table>
<thead>
<tr>
<th>Date</th>
<th>DoY 170, Year 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Software</td>
<td>PrePos GNSS Suite</td>
</tr>
<tr>
<td>Measurements</td>
<td>GPS L1</td>
</tr>
<tr>
<td>Number observations</td>
<td>128614</td>
</tr>
<tr>
<td>(double differences)</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>405 min</td>
</tr>
<tr>
<td>Data deleted due to</td>
<td>2%</td>
</tr>
<tr>
<td>cycle slips</td>
<td>(for OEM 4 receiver 1%)</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>X 5.2mm</td>
</tr>
<tr>
<td>position</td>
<td>Y 3.7mm</td>
</tr>
<tr>
<td></td>
<td>Z 6.1mm</td>
</tr>
</tbody>
</table>
Operational performance comparable to NovAtel OEM 4

Coordinate time series of final PDGPS adjustment. Software receiver at top, OEM IV at bottom.
UFAF SwRx Evaluation

Drawbacks, suggested directions

• Complex interaction between PC hardware, working system, additional applications and software receiver e.g.:
 – USB access is controlled by working system (drivers ...) -> buffering needed
 – Additional applications starts unmeant, process time consuming action e.g. disk defrag -> additional applications must be deleted or configured too

• Short-time internal processing load peaks due to frequently simultaneous execution of extensive tasks -> 2 strategies:
 – For reference station no “real” real-time needed -> use already existing buffering
 – Adapt configuration to PC hardware and use high power hardware

• Free configurability leads to a big error source given by non optimal or wrong configuration -> in reference station mode this is relaxed due to fixed configuration
Outline

- Review conclusions from Miami 2008
- A look at commercial state-of-the-art
- Advances in software receiver technology
 - DFE: The final front-end
 - The CASES receiver
 - The IFEN/UFAF SX-NSR receiver: Performance evaluation
- Not all observables are created equal
- Summary
Implementing a Pseudorange Reading Standard with the SX-NSR

Thomas Pany, Bernhard Riedl

IFEN GmbH
Toward a Standardized Carrier Phase and Pseudorange Measurement Technique

- Different receiver manufacturers use proprietary (code/cARRIER) measurement definitions
- Standard proposed by L. Young at last IGS workshop based on the US patent no. 4,821,294 (Thomas, Jr., Caltech)
- Goal: to have stochastically independent code/cARRIER observations with a well understood observation principle
- Use SX-NSR software receivers API for a prototype implementation
Illustration (Carrier Phase)

- ‘Verification’ that correlator based observations are truly independent
- Download: C++ source code and exemplary data (GPS L1, Galileo E1/E5a) at www.ifen.com
Illustration (Pseudorange)

GPS C/A PRN13
Week 1570, sec ~ 234179, NavPort-2
Frontend with OCXO
Evaluating the Example

- Code minus carrier analysis shows that data is statistically independent.
- Discriminators cancel time correlation caused by the low bandwidth (0.1 -0.25 Hz) tracking loops.
- Phase discriminator unwrapping together with FLL tracking gives valid carrier ranges.
Summary

Q: What advances in GNSS receiver technology can the IGS exploit to improve its network and products?

A1: Commercial receivers are approaching the “Super Receiver”: nearing all-GNSS-signals tracking, reconfigurable, low-cost

A2: 500-MHz digitizing open-design front-end captures all current and planned GNSS signals, substantially eliminates inter-signal RX biases

A3: 500-MHz front-end + Multi-system SwRx + Multi-core processing + data buffering → Ultra Receiver

A4: SwRx performance comparable to commercial geodetic RXs (but not yet as reliable)

A5: Receiver APIs offer path for measurement standardization (e.g., IFEN SX-NSR)