Centimeter Positioning with a Smartphone-Quality GNSS Antenna

Kenneth M. Pesyna, Jr., Robert W. Heath, Jr., and Todd E. Humphreys
The University of Texas at Austin

BIOGRAPHIES

Kenneth M. Pesyna Jr. is a Ph.D. candidate in the Department of Electrical and Computer Engineering at The University of Texas at Austin. He is a member of the University of Texas Radionavigation Laboratory and the Wireless Networking and Communications Group. His research interests are in estimation and GNSS signal processing with a focus on precise and low-power mobile positioning.

Robert W. Heath Jr. is a Cullen Trust Endowed Professor in the department of Electrical and Computer Engineering at The University of Texas at Austin, and Director of the Wireless Networking and Communications Group. He received his Ph.D. in Electrical Engineering from Stanford University. He specializes in signal processing for communications with recent emphasis on millimeter wave communication systems.

Todd E. Humphreys is an assistant professor in the department of Aerospace Engineering and Engineering Mechanics at the University of Texas at Austin, and Director of the UT Radionavigation Laboratory. He received a B.S. and M.S. in Electrical and Computer Engineering from Utah State University and a Ph.D. in Aerospace Engineering from Cornell University. He specializes in applying optimal estimation and signal processing techniques to problems in radionavigation. His recent focus is on radionavigation robustness and security.

ABSTRACT

This paper demonstrates for the first time that centimeter-accurate positioning is possible based on data sampled from a smartphone-quality Global Navigation Satellite System (GNSS) antenna. Centimeter-accurate smartphone positioning will enable a host of new applications such as globally-registered fiduciary-marker-free augmented reality and location-based contextual advertising, both of which have been hampered by the several-meter-level errors in traditional GNSS positioning. An empirical analysis of data collected from a smartphone-grade GNSS antenna reveals the antenna to be the primary impediment to fast and reliable resolution of the integer ambiguities which arise when solving for a centimeter-accurate carrier-phase differential position. The antenna’s poor multipath suppression and irregular gain pattern result in large time-correlated phase errors which significantly increase the time to integer ambiguity resolution as compared to even a low-quality stand-alone patch antenna. The time to integer resolution—and to a centimeter-accurate fix—is significantly reduced when more GNSS signals are tracked or when the smartphone experiences gentle wavelength-scale random motion.

I. Introduction

GNSS chipsets are now ubiquitous in smartphones and tablets. Yet the underlying positioning accuracy of these consumer-grade GNSS receivers has stagnated over the past decade. The latest clock, orbit, and atmospheric models have improved ranging accuracy to a meter or so [1], leaving receiver-dependent multipath- and front-end-noise-induced variations as the dominant sources of error in current consumer devices [2]. Under good multipath conditions, 2-to-3-meter-accurate positioning is typical; under adverse multipath, accuracy degrades to 10 meters or worse.

Yet outside the mainstream of consumer GNSS receivers, centimeter—even millimeter—accurate GNSS receivers can be found. These high-precision receivers are used routinely in geodesy, agriculture, and surveying. Their exquisite accuracy results from replacing standard code-phase positioning techniques with carrier-phase differential GNSS (CDGNSS) techniques [3], [4]. Currently, the primary impediment to performing CDGNSS positioning on smartphones lies not in the commodity GNSS chipset, which actually outperforms survey-grade chipsets in some respects [5], but in the antenna, whose chief failing is its poor multipath suppression. Multipath, caused by direct signals reflecting off the ground and nearby objects, induces centimeter-level phase measurement errors, which, for static receivers, have decorrelation times of hundreds of seconds. The large size and strong time correlation of these errors significantly increases the initialization period—the so-called time-to-ambiguity-resolution (TAR)—of GNSS receivers employing CDGNSS to obtain centimeter-level positioning accuracy [6], [7].

Prior work on centimeter-accurate positioning with low-cost mobile devices has focused on external devices, or “pucks,” which contain a GNSS antenna and chipset. These devices interface with the smartphone via Bluetooth or a wired connection [8], [9], [10]. Such solutions, which enjoy the better sensitivity and multipath suppression offered by their comparatively large, high-quality GNSS
antennas, do not provide insight into the feasibility of CDGNSS on a stand-alone smartphone platform.

This paper makes three primary contributions. First, it demonstrates for the first time that centimeter-accurate CDGNSS positioning is indeed possible based on data sampled from a smartphone-quality GNSS antenna. This result has far-reaching significance for precise mass market positioning. Second, it offers an empirical analysis of the average gain and carrier phase multipath error susceptibility of smartphone-grade GNSS antennas. Third, it demonstrates that, for low-quality GNSS antennas such as those in smartphones, wavelength-scale random antenna motion substantially improves the time to integer ambiguity resolution.

This paper focuses on single-frequency CDGNSS rather than multiple-frequency CDGNSS or other carrier-phase-based techniques, such as precise-point positioning (PPP), for three reasons. First, virtually all smartphones are equipped with single-frequency GNSS antennas tuned to the L1 band centered at 1575.42 MHz, and single-frequency CDGNSS will likely forever remain the cheapest option [11]. Second, as compared to PPP, CDGNSS converges much faster to centimeter accuracy [12], which will be important for impatient smartphone users. Finally, as centimeter-accurate GNSS moves into the mass market, GNSS reference stations will proliferate so that the vast majority of users can expect to be within a few kilometers of one [13]. In this so-called short baseline regime, the differential ionospheric delay between the reference and mobile receivers becomes insignificant, obviating differential delay estimation via multi-frequency measurements [14]. Of course, the additional signal measurements produced by multiple-frequency receivers would lead to faster convergence times and improved robustness, but for many applications, single-frequency measurements will be adequate.

II. Test Architecture

This section describes the test architecture used to (1) collect data from a smartphone-grade antenna and higher-quality antennas, (2) process these data through a software-defined GNSS receiver, and (3) compute a CDGNSS solution on the basis of the carrier phase measurements output by the GNSS receiver.

Fig. 1 illustrates the test architecture as configured for an in situ study of a smartphone-grade GNSS antenna. The architecture has been designed such that the antenna is left undisturbed within the phone; data are collected by tapping off the analog signal immediately after the phone’s internal bandpass filter and low-noise amplifier. This analog signal is directed to an external radio frequency (RF) frontend and GNSS receiver. Use of an external receiver permits well-defined GNSS signal processing unencumbered by the limitations of the phone’s internal chipset and clock.

The clock attached to the external front-end was an oven-controlled crystal oscillator (OCXO), which has much greater stability than the low-cost oscillators used to drive GNSS signal sampling within smartphones. However, it was found that reliable cycle-slip-free GNSS carrier tracking only required a 40-ms coherent integration (pre-detection) interval, which is within the coherence time of a low-cost temperature-compensated crystal oscillator (TCXO) at the GPS L1 frequency [15].

Although only a single model of smartphone was tested using this architecture—a popular mass-market phone—the results are assumed representative of all smartphones from the same manufacturer.

Using this architecture, many hours of raw high-rate (~6 MHz) digitized intermediate frequency samples were collected and stored to disk for post processing. Also stored to disk were high-rate data from a survey-grade antenna, which served as the reference antenna for CDGNSS processing. An in-house software-defined GNSS receiver, known as GRID [16], [17], [18], was used to generate, from these samples, high-quality carrier phase measurements. GRID is a flexible receiver that can be easily adapted to maintain carrier lock despite severe fading. Complex baseband accumulations output from GRID allowed detailed analysis of the signal and tracking loop behavior to ensure that no cycle slips occurred. The generated carrier phase measurements were subsequently passed to a CDGNSS filter, a model for which is described in the next section.

III. CDGNSS Processing

The CDGNSS filter described in this section ingests double-differenced carrier phase measurements output
from GRID and processes them to produce (1) the centimeter-accurate trajectory estimate of the mobile antenna, (2) a time history of phase residuals, (3) the carrier-phase integer ambiguities, (4) theoretical integer ambiguity resolution success bounds, and (5) empirical integer ambiguity resolution success rates. These outputs are used to analyze the performance of the smartphone-grade antenna and compare its performance to higher-quality antennas.

A. CDGNSS Filter Model

A.1 State

The filter’s state has a real-valued component that models the relative antenna position and velocity, and an integer-valued component that models phase ambiguities. Such integer ambiguities are inherent to carrier phase differential positioning techniques; their resolution has been the topic of much past research \[3\], \[19\] and is required to produce a CDGNSS positioning solution.

The filter’s state evolves as

$$x_{k+1} = \Phi x_k + \Gamma w_k$$

with the following definitions:
Φ the state transition matrix,
Γ the process noise influence matrix,
w_k the process noise at time t_k, modeled as a discrete-time zero-mean white Gaussian random sequence with covariance matrix Q, i.e., $w_k \sim \mathcal{N}(0, Q)$, $E[w_k w_j^T] = Q \delta_{kj}$.

A.2 Dynamics Model

The real-valued state evolves as

$$x_{k+1} = \Phi x_k + \Gamma w_k$$

for the real-valued state is that of a discrete-time mean-reverting second-order Gauss-Markov process from t_k to t_{k+1}:

$$\Phi = \begin{bmatrix} I_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\ 0_{3 \times 3} & f \cdot I_{3 \times 3} & \frac{1-f^2}{\sqrt{1+f^2}} \cdot I_{3 \times 3} \\ 0_{3 \times 3} & 0_{3 \times 3} & f \cdot I_{3 \times 3} \end{bmatrix}$$

is the correlation coefficient for the state elements r_k and \dot{r}_k, with τ_0 being the average decorrelation time of the antenna motion. The process noise influence matrix is defined as

$$\Gamma = \begin{bmatrix} \frac{1-f^2}{\sqrt{1+f^2}} \cdot I_{3 \times 3} \\ \sqrt{1-f^2} \cdot I_{3 \times 3} \end{bmatrix}$$

where

$$f = e^{-T/\tau_0} \tag{5}$$

δ_{kj} the process noise covariance matrix is defined as

$$Q = \sigma^2 \begin{bmatrix} I_{3 \times 3} \end{bmatrix}$$

A.3 Measurement Model

The filter ingests measurement vectors y_k for $k = 1, \ldots, K$, each populated with a single epoch of double-differenced carrier phase measurements. The filter’s measurement model relates y_k to the real- and integer-valued state components x_k and n_k through the following adaptation of the linearized GNSS carrier phase measurement model given in [4]:

$$y_k \triangleq \begin{bmatrix} \varphi_{AB,k}^{21} \\ \varphi_{AB,k}^{31} \\ \vdots \\ \varphi_{AB,k}^{N_{SV}1} \end{bmatrix} = r_{\infty} + H_{\infty} (x_k - \bar{x}_k) + H_n n_k + v_k \tag{8}$$

with the following definitions:

$$x_k = [r_0, r_k, \dot{r}_k]^T \tag{1}$$

$$n_k = [N_1, N_2, \ldots, N_{N_{SV}-1}]^T \tag{2}$$

with the following definitions:

The state transition matrix for the real-valued state is modeled as a discrete-time mean-reverting second-order Gauss-Markov process from t_k to t_{k+1}:

$$\Phi = \begin{bmatrix} I_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\ 0_{3 \times 3} & f \cdot I_{3 \times 3} & \frac{1-f^2}{\sqrt{1+f^2}} \cdot I_{3 \times 3} \\ 0_{3 \times 3} & 0_{3 \times 3} & f \cdot I_{3 \times 3} \end{bmatrix}$$

is the correlation coefficient for the state elements r_k and \dot{r}_k, with τ_0 being the average decorrelation time of the antenna motion. The process noise influence matrix is defined as

$$\Gamma = \begin{bmatrix} \frac{1-f^2}{\sqrt{1+f^2}} \cdot I_{3 \times 3} \\ \sqrt{1-f^2} \cdot I_{3 \times 3} \end{bmatrix}$$

where

$$f = e^{-T/\tau_0} \tag{5}$$

δ_{kj} the process noise covariance matrix is defined as

$$Q = \sigma^2 \begin{bmatrix} I_{3 \times 3} \end{bmatrix}$$

To adapt the dynamics model to a static antenna constraint, one sets the decorrelation time of the antenna motion to infinity, i.e., $\tau_0 = \infty$, and sets the process noise to zero, i.e., $Q = 0_{3 \times 3}$.

The real-valued state component x_k is assumed to evolve as a mean-reverting second-order Gauss-Markov process. This process models the time-correlated and mean-reverting motion a smartphone experiences when moved in the extended hand of an otherwise stationary user. The integer-valued state component n_k is modeled as constant, since the phase ambiguities remain fixed so long as the receiver retains phase lock on each signal.
with the following definitions:
\(\delta_{AB,k}^{1} \) the double-differenced phase measurement between
the reference receiver A, the mobile receiver B, satellite \(i \),
and satellite 1, the reference satellite, at time \(t_k \).
\(\mathbf{r}_{nk} \) the vector of double-differenced modeled ranges based
on the filter’s real-valued state prior \(\mathbf{x}_k \).
\(\mathbf{H}_k \) the measurement sensitivity matrix for the real-valued
state components.
\(\mathbf{H}_n \) the measurement sensitivity matrix for the integer-
valued state components at time \(t_k \).
\(\mathbf{v}_k \) the discrete-time double-differenced measurement
noise vector. Each element of \(\mathbf{v}_k \) is modeled as a zero-
mean discrete-time Gaussian white noise process, i.e.,
\(\mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}) \), \(\mathbf{E} [\mathbf{v}_k \mathbf{v}_k^T] = \mathbf{R} \delta_{kj} \), where \(\mathbf{R} \) is the
\(N_{SV-1} \times N_{SV-1} \) measurement noise covariance matrix.

The measurement noise covariance matrix is

\[
\mathbf{R} = \sigma^2_{\phi} \begin{bmatrix}
4 & 2 & \ldots & 2 \\
2 & 4 & & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
2 & \ldots & & 4
\end{bmatrix}
\]

(9)

where \(\sigma^2_{\phi} \) is the standard deviation of the undifferenced
phase measurement noise, which, for simplicity, is mod-
eled as equivalent for all antenna-to-satellite pairs. The
measurement sensitivity matrices are

\[
\mathbf{H}_{nk} = \begin{bmatrix}
\rho_{B,1}^{1} & \rho_{B,1}^{2} & 0_{1 \times 3} \\
\rho_{B,1}^{3} & \rho_{B,1}^{4} & 0_{1 \times 3} \\
\vdots & \vdots & \vdots \\
\rho_{B,1}^{N_{SV-1}} & \rho_{B,1}^{N_{SV-1}} & 0_{1 \times 3}
\end{bmatrix}
\]

(10)

\[
\mathbf{H}_n = \begin{bmatrix}
\lambda & 0 & \ldots & 0 \\
0 & \lambda & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \lambda
\end{bmatrix}
\]

(12)

where \(\rho_{B,1}^{1} \) is the \(1 \times 3 \) single difference of the unit position
vectors between the mobile receiver’s antenna position esti-
mate, satellite \(i \), and satellite 1, the reference satellite at
time \(t_k \). \(\lambda \) is the GNSS signal wavelength.

B. Phase Residuals

After processing data through the CDGNSS filter, the filter
outputs, in addition to a time history of centimeter-
accurate position estimates, a time history of phase resid-
uals \(\tilde{\mathbf{y}}_k \), which can be thought of as departures of each
double-differenced phase measurement from phase align-
ment at the phase center of the antenna. These residuals
can be modeled as

\[
\tilde{\mathbf{y}}_k = \mathbf{y}_k - \mathbf{r}_{nk} - \mathbf{H}_n \mathbf{n}_k
\]

(13)

where \(\mathbf{r}_{nk} \) is now based on the filter’s real-valued state esti-
mate \(\mathbf{x}_k \) at time \(t_k \), and \(\mathbf{n}_k \) represents the filter’s estimate
of the integer ambiguities based on all measurements up
to \(t_k \).

Phase residuals have been produced for batches of data col-
lected from four different grades of antennas, as described
next. These residuals will be used to analyze the suitabil-
ity of each antenna for CDGNSS positioning.

IV. Antenna Performance Analysis

This section describes four antennas from which data were
captured and processed using the test architecture and
CDGNSS filter described previously. It also quantifies the
characteristics that make low-quality smartphone-grade
antennas poorly suited to CDGNSS.

Table I describes a range of antenna grades of decreasing
quality, noting properties relevant to CDGNSS. The loss numbers
in the rightmost column represent the average loss in gain
relative to a survey-grade antenna, where
the average is taken over elevation angles above 15 de-
grees. Table II shows four antennas, one of each grade,
from which many hours of data have been collected us-
ing the test architecture. Survey-grade antennas, whose
properties are described in the first row of Table I, have a
uniform quasi-hemispherical gain pattern, right-hand cir-
cular polarization, a stable phase center, and a low axial
ratio. These are all desirable properties for CDGNSS. Un-
fortunately, these properties inhere in the antennas’ large
size; the laws of physics dictate that smaller antennas will
typically be worse in each property. Also listed in Table
I are properties for three other antenna grades. The sec-
ond and third rows list properties for high- and low-quality
patch antennas. These antennas have similar properties to
a survey-grade antenna and lose, on average, less than 0.5
dB and 1 dB respectively in sensitivity as compared to the
survey-grade antenna [21], [22].
The last row of Table I lists the properties for a smartphone-grade antenna. As shown subsequently, this antenna loses between 5 and 15 dB in sensitivity as compared to the survey-grade antenna. Such a loss makes it difficult to retain lock on GNSS signals. In addition, this antenna’s linear polarization leads to extremely poor multipath suppression.

A. Antenna Gain Analysis

Fig. 2 quantifies one of the obvious drawbacks of a smartphone-grade antenna, namely, its low gain. The rightmost histogram, in green, shows that the decrease in carrier-to-noise ratio as compared to a survey-grade antenna is on average 11 dB, such that the smartphone-grade antenna only captures approximately 8% of the signal power as compared its survey-grade counterpart. For comparison, shown on the left, in blue, is a histogram of the decrease in carrier-to-noise ratio for the low-quality patch antenna. This antenna only suffers about a 0.6 dB drop in power on average relative to the survey-grade antenna. Each histogram was generated from 2 hours of data with 9 tracked satellites ranging in elevation from 15 to 90 degrees. The antennas remained stationary. The variation in signal power around the means is due to the multipath-induced power variations in the signal as well as to the different gain patterns between each antenna and the survey-grade antenna.

B. Phase Residual Analysis

Shown in Figs. 3, 4, and 5 are 2000-second segments of double-differenced phase residual time histories for data collected from a survey-grade, a low-quality patch, and a smartphone-grade antenna, respectively. To produce these residuals, the antenna position was locked to its estimated value within the CDGNSS filter. The residuals represent departures of the carrier phase measurements from perfect alignment at the average phase center of the antenna. Each different colored trace corresponds to a different satellite pair. While the data segments were not captured at the same time of day, they were captured at the same location, and thus the multipath environment was similar.

The ensemble average residual standard deviations increase with decreasing antenna quality. The residuals for the survey-grade, low-quality patch, and smartphone-grade antennas have ensemble average standard deviations...
of 3.4, 5.5, and 11.4 millimeters, respectively. This increase is due to the lower gain and less effective multipath suppression of the lower-quality antennas.

Fig. 5 shows the presence of outlier residuals in the data collected from the smartphone-grade antenna. These outliers, one of which persists for over 1000 seconds, are likely caused by either large and irregular azimuth- and elevation-dependent antenna phase center variations or a combination of poor antenna gain in the direction of the non-reference satellite coupled with ample gain in the direction of a multipath signal such that the multipath signal is received with more power than the direct-path signal. Obvious outliers such as these can be automatically excluded by the CDGNSS filter via an innovations test. However, the standard deviation of the remaining residuals still remains large compared to that of the other antennas; the ensemble average standard deviation decreases from 11.4 to 8.6 millimeters upon exclusion of the two large outliers.

For antennas with a large ensemble average standard deviation in their double-differenced phase errors, the time correlation in the phase errors becomes more important. This time correlation, which persists for 100-200 seconds, is a well-studied phenomenon caused by slowly-varying carrier phase multipath [23], [6]. While correlation is present in the residuals of all antenna types, and manifests approximately the same decorrelation time, its effect is more of a problem for low-quality antennas because the phase errors are larger. Such correlation, coupled with a large deviation, ultimately leads to a longer time to ambiguity resolution, as will be shown subsequently.

Given a smartphone antenna’s extremely poor gain and multipath suppression as compared to even a low-quality stand-alone patch antenna, one might question the wisdom of attempting a CDGNSS solution using such an antenna. However, the next section reveals that it is indeed possible to achieve a centimeter-accurate positioning solution using a smartphone GNSS antenna despite its poor properties.

V. CDGNSS Performance using a Smartphone Antenna

This section discusses the results of performing a CDGNSS solution using data collected from a smartphone-grade antenna and presents two strategies for improving the performance of CDGNSS on smartphones.

Fig. 6 shows the result of an early attempt to compute a CDGNSS solution using data collected from the GNSS antenna of a smartphone. The cluster of red near the lower left-hand corner of the phone represents 500 CDGNSS solutions over an 8-minute interval, superimposed on the photo and properly scaled. The integer ambiguities were resolved correctly, as verified through analysis of the phase residuals and by physical measurement. Although early experiments were done with the large conductive backplane shown here, later experiments revealed the backplane to be unnecessary. Also, whereas the phone was oriented face down in early testing, it was later discovered that the phone’s irregular gain pattern is better oriented when the phone is face up. Accordingly, all other smartphone results presented in this paper are for data collected with the phone oriented face up and supported only by a plastic box as shown in Fig. 1. Furthermore, although this scenario enjoyed a very short baseline to a reference antenna (less than 10 meters), similar ambiguity resolution performance is to be expected for baselines...
shorter than approximately 5 kilometers, as differential ionospheric and tropospheric delays are negligible in this short-baseline regime [14].

The possibility of CDGNSS-enabled centimeter positioning using a smartphone antenna has been previously conjectured [24], but—to the authors’ knowledge—Fig. 6 represents the first published demonstration that this is indeed possible. This significant result portends a vast expansion of centimeter-accurate positioning into the mass market. However, serious challenges must be overcome before mass-market CDGNSS can become practical, as described below.

A. CDGNSS Performance in a Static Scenario

Fig. 7 shows the empirical probability of successful ambiguity resolution for data collected from four antennas, one of each of the different grades discussed earlier. For each antenna, 7 satellites were tracked at approximately the same location and time of day. Each trace was computed from 12 batches of double-differenced carrier phase data. Code-phase (pseudorange) measurements were assumed to be distilled into a single a priori position estimate modeled as a Gaussian vector with a 70-meter deviation along each axis. With such a highly uncertain prior, filter performance is dominated by the carrier phase measurements, which were modeled as having undifferenced deviations of $\sigma_\phi = 2$ cm. Each separate batch of data was treated as a Monte Carlo run with the prior position estimate randomly generated as modeled. For the traces corresponding to the low-quality patch, high-quality patch, and survey-grade antennas, there were at least 100 seconds separating the start of each batch with no overlap between batches. For the trace derived from batches collected from the smartphone-grade antenna, due to the difficulty in recording long segments of data, there were only 70 seconds separating the start of each batch, resulting in significant overlap between batches.

Each trace represents an empirically-derived success rate computed from 12 batches of phase data as follows:

1. For a given batch, at each epoch, the filter outputs its best estimate of the integer ambiguities on the basis of the data ingested thus far.
2. The estimate from step 1 is compared against the true set of integer ambiguities which were acquired in advance by processing a much longer batch of data. If correct, a flag is set at that epoch to “1”; if incorrect, the flag is set to 0.
3. For each epoch, the flags produced in step 2 are averaged across all 12 batches to generate each trace.

As shown by the green trace in Fig. 7, the smartphone-grade antenna required 400 seconds to achieve a 90% ambiguity resolution success rate; in other words, it manifested a 400-second TAR at 90%. This would surely exceed the patience of most smartphone users. Also shown are traces for the other three antenna grades. The higher-quality antennas yield shorter TARs for a given success rate, primarily due to their superior multipath suppression.

Note that the loss in received signal power due to the smartphone antenna’s poor gain turns out to be tolerable—the signals arriving from the smartphone-grade antenna can be tracked without cycle slipping. Therefore, the outstanding challenge preventing fast ambiguity resolution for data collected from smartphone-grade antennas is the severe time-correlated multipath errors in the double-differenced carrier phase data.

B. Decreasing TAR via More Signals

There are ways to mitigate the impact of multipath on the CDGNSS TAR—even the severe multipath experienced by low-quality antennas. It has been shown that the volume of the integer ambiguity search space, and thus TAR, decreases as a function of the number of double-differenced phase time histories available, which, for single-frequency CDGNSS, is one less than the number of satellites tracked [25]. Consequently, an acceptable TAR can always be achieved with enough satellites tracked.

Fig. 8 shows the reduction in TAR for an increasing number of satellites. Each trace was computed from 720 non-overlapping 2-minute batches of data taken from a survey-grade antenna over a 24-hour interval. A decreasing elevation mask angle was used to allow an increasing number of SVs to participate in the CDGNSS solution. In other words, for a given 2-minute batch of data, an elevation mask was first applied to all but the highest 5 satellites. Double-differenced phase data from these satellites were then processed by the CDGNSS filter to compute an em-
Fig. 8. Probability of successful ambiguity resolution vs. time as a function of the total number of satellite vehicles (SVs) tracked. Each trace is computed from 720 non-overlapping 2-minute batches of double-differenced carrier-phase data taken from a survey-grade antenna over a 24-hour interval. A decreasing elevation mask angle was used to allow an increasing number of SVs to participate in the CDGNSS solution.

C. Decreasing TAR via Random Receiver Motion

There is a second way to reduce TAR under severe multipath conditions. Unlike TAR reduction via additional signals, the theory and practice of this second technique have not been previously treated in the literature. Moreover, the technique is well-suited for smartphones, which are typically hand-held and mobile. This simple technique consists of gently moving the smartphone in a quasi-random manner within a wavelength-scale volume. The key to this technique’s effectiveness is that, whereas multipath-induced phase measurement errors are typically time-correlated on the order of hundreds of seconds for a static receiving antenna [23], their spatial correlation is on the order of one wavelength, or approximately 19 centimeters at the GPS L1 frequency [26]. As a result, random wavelength-scale antenna motion transforms the phase residuals from slowly-varying when the antenna is static, as shown in Fig. 9, to quickly-varying when the antenna is dynamic, as shown in Fig. 10. Put another way, the autocorrelation time of the phase residuals decreases from hundreds of seconds when the antenna is static, as shown in Fig. 11, to less than a second when the antenna is moved even slowly (a few centimeters per second), as shown in Fig. 12. More vigorous antenna motion would be possible if the phone’s inertial devices were used to aid the phase tracking loops [27].

The shorter phase error decorrelation time resulting from random antenna motion effectively increases the information content per unit time that each double-differenced phase measurement provides to the CDGNSS filter, thus decreasing the time to ambiguity resolution. Fig. 13 compares empirical success rates for three different antennas under static and dynamic scenarios. As expected, motion
Fig. 10. Time histories of phase residuals for a batch of data captured from the smartphone-grade antenna as it experienced wavelength-scale random motion of 2-5 centimeters per second. Each trace represents a double-differenced phase residual history for a different satellite pair.

results in a reduced TAR for the smartphone-grade and low-quality patch antenna. But, somewhat counterintuitively, motion results in an increased TAR for the survey-grade antenna. This discrepancy reflects a tradeoff within the CDGNSS filter. While it is true that the phase measurement errors decorrelate much faster when the antenna is moving—increasing the per-epoch information provided to the filter—it is also the case that the filter can no longer employ a hard motion constraint. For the high-quality antennas, the increased information per epoch due to faster phase error decorrelation is completely counteracted by a loss in information per epoch due to uncertainty (lack of constraint) in the motion model. Also, for the high-quality antennas, multipath in the reference antenna’s phase measurements is not insignificant compared to multipath in the mobile antenna, and this reference multipath exhibits the usual 100-200 second correlation time for a static antenna. On the other hand, phase error decorrelation via random antenna motion offers the lower-quality antennas a larger net information gain because their multipath-induced phase errors are so large. Consequently, for the smartphone-grade antenna, motion substantially reduces the 90% success TAR, which drops from 400 to 215 seconds.

VI. Conclusions and Future Work

Centimeter-accurate positioning was demonstrated based on data sampled from a smartphone-quality GNSS antenna. An empirical analysis revealed that the extremely
poor multipath suppression of these antennas is the primary impediment to fast resolution of the integer ambiguities that arise in the carrier-phase differential processing used to obtain centimeter accuracy. It was shown that, for low-quality smartphone-grade GNSS antennas, wavelength-scale random antenna motion substantially reduces the ambiguity resolution time.

Future work will study the effectiveness of combining antenna motion with a motion trajectory estimate derived from non-GNSS smartphone sensors to further reduce the integer ambiguity resolution time. This technique, which is a type of synthetic aperture processing applied to the double-differenced GNSS phase measurements, effectively points antenna gain enhancements in the direction of the overhead GNSS satellites, thereby suppressing multipath arriving from other directions. Preliminary results show that this technique offers modest benefit beyond the unaided random motion technique discussed herein.

References