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Abstract—The observability analysis of a collaborative op-
portunistic navigation (COpNav) environment whose statesnay
be partially-known is considered. A COpNav environment can
be thought of as a radio frequency signal landscape within
which one or more radio frequency receivers locate them-

selves in space and time by extracting and possibly sharing

information from ambient signals of opportunity (SOPs). Sich
receivers, whether vehicle-mounted or integrated into had-
held devices, exploit signal diversity to improve navigatn and
timing robustness compared to stand-alone Global Positiang
System (GPS) receivers in deep urban, indoor, or otherwise BS-
hostile environments. Available SOPs may have a fully-know,
partially-known, or unknown characterization. In the present
work, the receivers are assumed to draw only pseudorange{e

measurements from the SOPs. Separate observations are fidse

to produce an estimate of each receiver’s position, velogit and
time (PVT). Since not all SOP states in the COpNav environmen
may be knowna priori, the receivers must estimate the unknown
SOP states of interest simultaneously with their own PVT. Tks
paper establishes the minimal conditions under which a COpksv
environment consisting of multiple receivers and multipleSOPs is
completely observable. Moreover, in scenarios where the QiNav
environment is unobservable, the unobservable directions the
state space are specified. Simulation and experimental relési are
presented to confirm the theoretical observability conditons.

Index Terms—Observability, estimation, GPS, GNSS, radion-
avigation, signals of opportunity, collaborative opportunistic
navigation

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) are insu

cient for reliable anytime, anywhere navigation, paréelyl

in GNSS-challenged environments, such as indoors, d
urban canyon, and GNSS-denied environments experienc
intentional jamming. Several approaches have been prdpo
to address the inherent limitations of GNSS-based nawgati
most notably augmenting GNSS receivers with dead-reckpnin
systems and map-matching algorithms [1]-[5]. Motivated h
the plenitude of ambient radio frequency signals, a ne
paradigm to overcome the limitations of GNSS-based n
igation, termed opportunistic navigation (OpNav), hasrbe
proposed [6]. This paradigm aims to extract positioning arﬁﬂ
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timing information from ambient radio-frequency “signais
opportunity” (SOPSs) to improve navigation and timing robus
ness compared to stand-alone GNSS receivers. OpNav radio
receivers, which may be vehicle-mounted or hand-carried,
continuously search for opportune signals from which to
draw navigation and timing information, employing on-tihe-
signal characterization as necessary. Signals from déseadv
SOPs are downmixed and sampled coherently, yielding a
tight coupling between signal streams that permits carrier
phase-level fusion of observables from the various streams
within a single or distributed state estimator. In colladite
opportunistic navigation (COpNav), multiple OpNav rees/
share information to construct and continuously refine aajlo
signal landscape [7]. In this paper, localization and tognéme
treated in absolute world-centric spatial and temporahé&sa.
This is motivated by the fact that the ultimate objective of
COpNawv is to build a global signal landscape map, which any
receiver can tap into and contribute to.

In its most general form, OpNav treats all ambient radio
signals as potential SOPs, from conventional GNSS sigpals t
communications signals never intended for use as a timing or
positioning source, such as iridium satellites signalsdgjital
television signals [9], and cellular signals [10]. Eachnsils
relative timing and frequency offsets, transmit locatiand
frequency stability, are estimated on-the-fly as necessaity
prior information about these quantities exploited wheailav

fﬁ’;!ble. At this level of generality, the OpNav estimation feob

Is similar to the so-called simultaneous localization arapm

£ g (SLAM) problem in robotics [11], [12]. Both imagine

agent which, starting with incomplete knowledge of its
eation and surroundings, builds a map of its environment
and simultaneously locates itself within that map.
In traditional SLAM, the map that gets constructed as
e agent (typically a robot) moves through the environment
composed of landmarks—walls, corners, posts, etc.—with

a@}§sociated positions. OpNav extends this concept to radio
gignals, with SOPs playing the role of landmarks. In coitras

a SLAM environmental map, which can be extracted from
cluttered, dynamic environment but ultimately must be
composed of fixed landmarks [13], [14], the OpNav “signal
landscape” is dynamic and more complex. For the simple case
of pseudorange-only OpNav, where observables considiysole
of signal time-of-arrival measurements, one must estimate
besides the three-dimensional positionand velocitys, of
each SOP transmitter’s antenna, each SOP’s time offset
from a reference time base, rate of change of time offset



dt,, and a small set of parameters that characterize the SO&bslity analysis utilized nonlinear local weak observipil
reference oscillator stability. Even more SOP parametegs dests, linear time-varying (LTV) observability tests, dPd/CS
required for an OpNav framework in which both pseudorangdservability tests. While the conclusions achieved by the
and carrier phase measurements are ingested into the &stim@rmer two methods agreed, the PWCS observability tests
[6]. Of course, in addition to the SOP parameters, the OpNsgielded contradictory results, similar to the ones encerett
receiver’s own three-dimensional positienp and velocityr,, in the SLAM literature. The paper concluded that PWCS
time offsetdt,, and time offset raté¢, must be estimated. observability theory is inapplicable to systems whose meas
The Global Positioning System (GPS) control segment roment model is nonlinear. Thus, it is improperly applied iB8]}1
tinely solves an instance of the OpNav problem: the locati@nd this explains the contradictory observability resilf21].
and timing offsets of a dozen or more GPS ground stations aree observability analysis was later extended to the case of
simultaneously estimated together with the orbital andalclo multiple receivers in a COpNav environment, and the degree
parameters of the GPS satellites [15]. Compared to the genaf observability, also known as estimability, of the vasou
OpNav problem, the GPS control segment’s problem enjogtates in the environment was quantified, with special atten
the constraints imposed by accurate prior estimates of gitaid to the least and most observable states [27]. Howéeer, t
locations and satellite orbits. Moreover, estimation afc&l observability results in [27] were offered without any nigas
states is aided by the presence of highly-stable atomi&slimc proofs, and only single-run Extended Kalman Filter (EKF)
the satellites and at each ground station. In contrast, ae@p sample path simulations were presented.
receiver entering a new signal landscape may have less prioThis paper extends the work of [27] in three different
information to exploit and typically cannot assume atomivays. First, it analyzes the observability of various sciersa
frequency references, either for itself or for the SOPs. Thieat could be encountered in a typical COpNav environment
GPS control segment example also highlights the essgntialbmprising multiple receivers and multiple SOPs. For each
collaborative nature of COpNav. Like the GPS ground statiorscenario, the following questions are answered and proven
multiple COpNav receivers can share information to comstrwrigorously: ¢) is the environment observable? and) (if
and continuously-refine a global signal landscape. the environment is not completely observable, what are the
The large size of the COpNav estimation problem, whichnobservable directions in the state space? Second, single
may involve hundreds of states, naturally raises the cquesti run and Monte Carlo (MC) based simulations are presented,
state observability. A study of COpNav observability betsefiwhich agree with the theoretical observability analysisird,
from the COpNav-SLAM analogy. Although the question oéxperimental results are presented, which also agree with
observability was not addressed for more than a decade aftex theoretical observability analysis. The experimeméal
SLAM was introduced, the recent SLAM literature has comsults illustrate an important outcome of this paper’s asialy
around to considering fundamental properties of the SLABpecifically that a receiver with known initial state that is
problem, including observability [16]-[24]. The effectd§ omoving according to velocity random walk dynamics and
partial observability in planar SLAM with range and bearingnaking pseudorange observations on unknown SOPs in the
measurements were first analyzed via linearization in [L@&nvironment can estimate the states of such SOPs.
[17]. These papers came to the counterintuitive conclusian ~ The remainder of this paper is organized as follows. Sec-
the two-dimensional planar wold-centric (absolute reiese tion Il gives an overview of the various notions and tools
frame) SLAM problem is fully observable when the locationhat are of relevance in analyzing the observability of COp-
of a single landmark is knowm priori. With a nonlinear Nav environments: nonlinear observability, LTV obserliai
observability analysis, this result was subsequentlyrdisgd PWCS observability, stochastic observability, and esbilitg.
and it was shown that at least two anchor landmarks wigection Il describes the COpNav environment dynamics and
known positions are required for local weak observabilli§][ observation models considered in this paper. Section IV ana
Later analysis of the SLAM problem’s Fisher informationyzes various COpNav scenarios and establishes whethkr eac
matrix (FIM) confirmed the result of the nonlinear analysiscenario is observable. This leads to a set of minimum con-
[20]. However, an apparent discrepancy between linear agitions necessary for complete COpNav observability. iBact
nonlinear SLAM observability re-emerged in [21], where iV presents simulation results on a number of scenarios. Sec-
was shown that a linear analysis based on piecewise const@wn VI presents experimental results illustrating an imaot
system (PWCS) theory [25] again predicted global planautcome of this paper’s observability conclusions. Codiclg
SLAM observability in the case of a single known anchatemarks are given in Section VII.
landmark, whereas a nonlinear analysis in the same paper
indicated that two known anchor landmarks were required
for local weak observability. However, no explanation foe t
reasons behind such discrepancies were offered. The linear
PWCS result appears flawed, since an observability testibaseThis section gives an overview of various observability
on linearization should never predict observability in @eca measures of dynamic systems and their associated testd) whi
where a nonlinear test indicates lack of observability. are of relevance in analyzing the observability of COpNav
An initial OpNav observability analysis was conducted ienvironments.
[26]. It considered an OpNav environment comprising a gingl Conceptually, observability of a dynamic system boils down
receiver and multiple stationary SOPs. This OpNav obserneo the question of solvability of the state from a set of

Il. THEORETICAL BACKGROUND: OBSERVABILITY
MEASURES



observations that are linearly or nonlinearly related te th Linear observability tools may be applied to nonlinear
state, and where the state evolves according to a set of linegstems by expressing the nonlinear system in its linedrize
or nonlinear difference or differential equations. In parfar, error (perturbation) form. In this formulation, the statector
observability is concerned with determining whether thadest Az, control input vectorAw, and observation vectaky, are

of the system can be consistently estimated from a set d#fined as the difference between the true and nominal states

observations taken over a finite period of time. between the true and nominal inputs, and between the true and
N _ nominal observations, respectively. The discretizedivaref
A. Observability of Nonlinear Systems the linearized error form oEyy, in (1) is given by
Various notions of observability exist for continuous-¢m Az (tpsr) = Fty) Az (t) + G(t) Au (1)

(CT) nonlinear dynamic systems. Consider the system (4)
r(t) = t),u(t)|, tg) = . . .
YNL { 58 _ ,J:[[i((t))] u(®)l, @(to) = o (1) whereF, G, andH are the dynamics, input, and observation
’ Jacobian matrices, respectively, evaluated at the norsiatds

wherez € R" is the system state vectar,c R" is the control 54 inputs. The observability results achieved in this case
input vector,y € R™ is the observation vector, anel is an only valid locally.

arbitrary initial condition. This system may be charadedas  |; \vas demonstrated in [27] that thiestep observability
observable, locally observable, weakly o_bservable, oal_l;ac test applied to an error-form COpNav environment yields
weakly observable [28]. A somewhat simple algebraic teg{antical results to those achieved by the more complicated
based on Lie derivatives exists for establishing local weqke_gerivative-based nonlinear local weak observabititgt.
observability of a specific form of the nonlinear syst&i.  Therefore, in this paper’s analysis, observability will dstab-

in (1), known as the control affine form, in which the controfshe( via the-step method. The remaining three observability
inputs affect the dynamics additively [29]. This test Wa§otions introduced here are presented either because they
applied to analyze the observability of SLAM environmentgaye peen misapplied in previous COpNav-like observabilit
in [19], [21] and OpNav environments in [26]. It is worthypayses (PWCS observability), or because they complete th
noting that local observability is a sufficient conditionu{b get of observability notions that could profitably be applie

not necessary) to establish local weak observability. the present analysis (stochastic observability and ebilityd.

Ay(tr) = H(ty)Az (tg),

B. Observability of Linear Systems

Observability of discrete-time (DT) LTV systems is define
as follows [30].

g. Observability of Linear Piecewise Constant Systems

If the matricesF, G, andH in (2) are piecewise constant
o _ _ over every time segment i.e. if F(t,) = F;, G(t) = Gy,
Definition 1.1. Consider the DT LTV dynamic system andH(t,) = H;, for t;, € [tkj , tkj+n71:|u but may vary from

 @(tpy1) = Ftp)z(ty) + G(tr)u(ty), x(ty,) =xzo ©ONE segmentto another, then the LTV systemis said to be
X { y(tr) =H(tp)x(ty), ty € [thy,tr,], @ PWCS. In [25], simple necessary and sufficient conditions
%) to establish observability of CT and DT PWCSs were derived,
whereF € R"*", G € R"*", and H € R™*™, The LTV which are based on the so-called total observability maitnit
systeny, is said to be observable in a time intervigl, , tx,], stripped observability matrix. While the PWCS observapili
if the initial statex is uniquely determined by the zero-inputests are attractive due to their simplicity, they have been
responsey(tx) for tx € [tg,,tr,—1]. If this property holds improperly applied to nonlinear dynamic systems in the SLAM
regardless of the initial timey, or the initial statex,, the literature, leading to the contradictory results in [1&@]. As
system is said to be completely observable. clarified in [26], the reason behind the discrepancies i$ tha

. . . . one cannot simply take the time segmgntio coincide with
Observability of LTV systemsy, is typically established a single discretization instarf,. Rather, each time segment

through studying the rank of either the so-called obselipabi . ; :
Grammian or the observability matrix. The following thewre J TUSF con;(amh-a:] Iehaatg meg_suremeqt sar(r;plesddllinng the
states a necessary and sufficient condition for obsertabii EO ection OIW Ic d tl 3 acobian matric#s G, an can
LTV systems through théstep observability matrix [30]. € accurately modeled as constant.

Theorem II.1. The LTV systeriiy, is [-step observable if and b stochastic Observability via Fisher Information

only if the i-step observability matrix, defined as From an estimation theoretic point of view, the FIM quan-

Hi(ty) tifies the maximum existing information in observations @ho
O (bt N H(tg1)®(trtr, th) 3 the system’s random state. A singular FIM implies that the
(ks tiert) = : () cramer-Rao lower bound does not exist, as the FIM’s inverse
H(be1-1)® (b1, L) has one or more infinite eigenvalues, which means total un-

_ _ ) ~ certainty in a subspace of the state space. This amounts to th
is full-rank, i.e.rank [O (tk, tr11)] = n. The matrix function jnformation being insufficient for the estimation problender
@ is the DT transition matrix, defined as consideration [31]. In [20], the nonlinear SLAM problem was
Bty t;) 2 { F(ti—1)F(tk—2)---F(t;), tx > tj41; recast as a problem of estimating a set of unknown, constant
ki I ty = t;. random variables for which the FIM was derived and analyzed

)



to assess observability. Under Gaussian assumptions and miower spectral density of the fractional frequency deoiati

imum mean squared error estimation, the FIM is the invergét) of an oscillator from nominal frequency, namely(f) =

of the estimation error covariance matrix. Hence, anothgi}2 haf* [33], [34]. It is common to approximate such

assessment of observability can be achieved by analyzing tblationships by considering only the frequency randonkwal

information form of the Kalman Filter (KF). If the systemcoefficienth_» and the white frequency coefficiehg, which

is observable, then the information matrix will eventuallyead toS;,, =~ % and Sy, ~ 2m°h_, [31], [35].

become invertible. This approach to analyzing obserwgbili The receiver's state vector will be defined by augmenting

was adopted for SLAM observability analysis in [22], [23]. the receiver’s planar position and velocity states wittcitek
error states to yield the state space realization

E. Degree of Observability: Estimability &, (t) = A, 2, (t) + D, w0, (), (5)
Whereas the notion of observability is a Boolean property, T

i.e. it specifies whether the system is observable or nathere z, = [TT, Py, Oty 5tr:| e = [y, W, =

for estimation purposes, the question of estimability, fs q;; iy, Wst,, W],

considerable importance. Estimability assesses the égegr

of observability” of the various states. Estimability car b O2x2  Toxz O 094

assessed by the condition number of the FIM, thus measuring A = | O2x2  O2x2 O2x2 |, D, = { I, X4 ]

whether an observable system is poorly estimable due to the O2x2  O2x2  Aci -

gradient vectors comprising the FIM being nearly collinear The receiver's dynamics in (5) is discretized at a constant
[31]. Alternatively, estimability can be assessed by azialy sampling periodl” £ ¢;.; — t; to yield the DT model

the eigenvalues and eigenvectors of the estimation error co

variance matrix of the KF estimating the states of the system % (te1) = Frae (i) +we(te), k=0,12,... (6)

of interest. In particular, the largest eigenvalue comesis to \yhere w, is a DT zero-mean white noise sequence with
the variance of the state or linear combination of statel wigovarianceQ, = diag [Qpv, Qeik.c], With

the poorest observability. On the other hand, the stateneati

combination of states with the most observability is intiéch Ioxz TIaxz Ogxz 1 T
by the smallest eigenvalue. The appropriate linear contibima Fr=1 022 IDno 02 |, Fax= { 0 1 ]
of states yielding the calculated degree of observabibty i O2x2 O2x2  Fo
given by the respective eigenvectors [32]. Estimability of S. T+S- % g T2
" . . Wst, Wsy "3 Wsy, "2
COpNav environments was studied in [27]. Qeik,r = 2t "
S"I’StTT S"I’StTT
I1l. M ODEL DESCRIPTION qm:%?’ 0 quTz 0o
. - 3 ~ 2
A. Dynamics Model Q. — 0 ] qy% 0 qu7
The receiver’'s dynamics will be assumed to evolve accord- P qm% 0 G=T 0
ing to the velocity random walk model. An object moving 0 5 T2 0 6T
. L . . 4y Qyt |
according to such dynamics in a generic coordifateas the

The SOP will be assumed to emanate from a spatially-
é( 1) = @ (t), §tati0nary terr_e_strial transmitter, and its state will sish of
its planar position and clock error states. Hence, the SOP’s
where @, (t) is a zero-mean white noise process with powatynamics can be described by the state space model
spectral densityje, i.e.

dynamics

s(t) = Ag s (t) + Dews(t), @)
Elwe(t)] =0, Ewe(t)we(r)] = ge o(t —7), AT .
. . . . where z, = [,r;l" Ots, §ts} y Ts = [xsa ys] y Ws =
whered(t) is the Dirac delta function. The receiver and SOP —
clock error dynamics will be modeled according to the S({-wétsa wgtj
called two-state model, composed of the clock hiasand 0 0 0
clock drift §t. The clock error states evolve according to A, = { Ozxz Alei } , Ds= [ IQQX; ] 5
X C X
Zei(t) = Acik Te(t) + e (), Discretizing the SOP’s dynamics (7) at a sampling intefal
where yields the DT-equivalent model
P 6.t Dore — Wst A — 0 1 T (tk+1) =F; ms(tk) + ws(tk)a 8
clk — 6t 9 clk — wat K clk — O O Y

where w, is a DT zero-mean white noise sequence with
wherew;s, andw;, are modeled as zero-mean, mutually ineovarianceQ,, and

dependent white noise processes with power spétiraand o L

Sa,,. respectively. The power spect@,, and Sg,, can be F, = diag[Iax2, Fend, Qs = diag [02:2, Qees
related to the power-law coefficient§h, }> which have whereQc s is identical toQci », except thatiz,;, andSg,,

a=-—27

been shown through laboratory experiments to charactivize are now replaced with SOP-specific spectig,,, andSy,,



Defining the augmented state as= [x], mI]T and the to get an observation model faift + §¢,.(t)]. The resulting
augmented process noise vectorwas [w], wz]T yields observation model is delayed Wy, (¢) to get an observation

the system dynamics model for p(t). Assuming the receiver's position to be ap-
proximately stationary within a time interval d¥,(¢), i.e.

z (ti41) = Fa (te) + w(iy), ©) r, [t—6t,(t)] ~ r(t), and using the fact that the SOP’s
whereF = diag [F,, F,], andw is a zero-mean white noisePOsition is stationary, i.er, [t — 6¢,(t) — dtror] = 7s(1),

sequence with covarianc® = diag[Q,,Q,]. While the Yields
model defined in (9) considered only one receiver and one ) (1
SOP, the model can be readily extended to multiple receiverg( )= lre () = s (@l +

and multiple SOPs by augmenting their corresponding states ¢ {0t (t) = 8ty [t = 31, (t) = dtror]} +3,(1). (12)
. Next, it is argued thafit, [t — dt,(t) — dtTor] = dts (t). The
B. Observation Model validity of this argument depends on the sizedof and of

To properly model the pseudorange observations, one mditor and on the rate of change 6t,. For ground-based
consider three different time systems. The first is true tim8OP transmitters up to 1 km away, the time-of-flightor is
denoted byt, which can be considered equivalent to GP®ss than3.34 us. Likewise, the offsebt, can be assumed to
system time. The second time system is that of the receivep® on the order of microseconds. It is reasonable to assuame th
clock and is denoted,. The third time system is that of theSOP clock biasit, to have an approximately constant value
SOP’s clock and is denotet]. The three time systems areover microsecond time intervals. Therefore, the pseudmgan
related to each other according to observation model can be further simplified and expressed as

a nonlinear function of the state as

_ 2 .
wheredt,.(t) anddts(t) are the amount by which the receiverz(t) = p(t) = h ()] +5,(1) ~
and SOP clocks are different from true time, respectively. X lre(t) = rs()ll2 + ¢ - [0t (1) — 6ts(t)] + Dy (2). (13)

The pseudorange observation made by the receiver ofh@cretizing the observation equation (13) at a constamk-sa
particular SOP is made in the receiver time and is modelggl,q interval T yields the DT-equivalent observation model

according to
p(h) = Z(tk) =y(ty) + Up (tk) (14)
170 [t — 860 ()] — 7 [ — 662 (t,) — Stz0g]l]2 + = [7r(tr) = rs(ti)ll2 + ¢ - [0t (tn) — 0ts (k)] + vo(t),
¢ {0to(t,) — 6ty [tr — 0to(t,) — Stror]} + B,(t,), (11) wherg v, is a DT zero-mean, white Gaussian process with
covariancer = 7/T.

wherec is the speed of lighiitror is the time-of-flight of the ¢ js worth noting that the main sources of error affecting

signal from the SOP to the receiver, adlis the error in the pseydorange observations include uncertainties assdaiath

pseudorange measurement due to modeling and measurefibropagation medium (path delay and loss), receiveenois

errors. The errof, is modeled as a zero-mean white GaUSSiG}ﬂumpath propagation, non-line of sight (NLOS) propagati

noise process with power spectral densit{g6]. In (11), the myltiple access interference, and near-far effects. Tfectsf

clock offsetsit,. anddi, were assumed to be small and slowlyf sych error sources and mitigation methods are beyond the

changing, in which casét,(t) = 6t, [t, — dt,(t)] = 6tr(t;). scope of this paper, but relevant discussions can be found in
The first term in (11) is the true range between the receive[’f], [38]-[41] and the references therein.

position at time of reception and the SOP’s position at time-
of-transmission of the signal, while the second term arikes
to the offsets from true time in the receiver and SOP clocks.
The observation model in the form of (11) is inappropriate -~ ) o
for our observability analysis as it suffers from two shorte A~ Observability Analysis Objective
ings: (z) it is in a time system that is different from the one This section establishes the various conditions undertwhic
considered in deriving the system dynamics, &gl the ob- a COpNav environment is observable. The objective of this
servation model is a nonlinear function of the delayed sgsteanalysis is twofold: ) determine whether the environment
states. The first shortcoming can be dealt with by convertiig observable, andi4) if the environment is not completely
the observation model to true time. The second problem abservable, determine the unobservable directions inttte s
commonly referred to as the output delay problem, in whickpace. To this end, thiestep observability matrix defined in
the observations (outputs) are a delayed version, detestisin Theorem 11.1, which only considers the deterministic pdrt o
or otherwise, of the system state. A common approach to déa system, will be utilized. It is worth noting that the risu
with this problem entails discretization and state augwt#gon  achieved in the upcoming analysis are valid only locally, i.
[37]. For simplicity, and in order not to introduce additan within a neighborhood around the system’s initial state. In
states in our model, proper approximations will be invoked farticular, concluding that the system is observable shbal
deal with the second shortcoming. interpreted in the context of the existence of a neighbodhoo
To this end, the pseudorange observation model in (1j)thin which the initial states are distinguishable. Thatowrs
is converted to true time by invoking the relationship (109f this neighborhood depend on the layout of the COpNav

t=t, — &t (1), t=1ts — 0ts(t), (10)

IV. OBSERVABILITY ANALYSIS OF COPNAV
ENVIRONMENTS



environment. For example, a planar environment with two SQthereF,, andF, are the state transition matrices for tiie
transmitters divides into two neighborhoods, one on eid® receiver andjth SOP, respectively.

of the line connecting the two transmitters [26]. Moreover, it can be readily verified that
el —I—kTeHQ, 1=1,2;
B. Receiver Trajectory Singularity e]FF = e] +kTel |, i=5; (16)
In the upcoming analysis, it is assumed that the receiver is eiT, i=3,4,6
not stationary and that its trajectory is not collinear wilie Tk e, 1=1,2,4;
. . : €, FS = Z|- T . (17)
vectors connecting the receiver and any of the SOPs. It is as- e, +kTe; , i=3.

sumgd thafl o € R such thatt, (ts..) = @ [ (bk) — 24 (L] The Jacobian vector of the observation corresponding to the
and ¢, (tx+1) = oly-(tx) — ys(tr)]. This ensures that the

‘ ; . seudorange measurement made by recéiger SOP; will
bearing angle between the receiver and the SOPs is neﬁ 9 y J

. ) . . &le the structure
constant along the receiver trajectory. This assumpticoes

that the observability matrix will not lose rank due to thdI(t;) = [ -0 hbT 5 (t)0---0 hl . (t)0---0]
receiver’'s motion path. [ (th) 0 ¢ 0 }
To illustrate why this case must be excluded, consider a bT“SJ T SJ k) O
simplified scenario in which the receiver and SOP clocks are h, n,sj [ h; r“sj —c 0 } 5 (18)
ideal, i.e. with no bias nor drift, such that the observatiare here LT T @ (), (t) Yo (6) =y (1)
given by y(tx) = |7 (tx) — rs(tx)|2. In this case, the stateWNereh, . ., (tr) = T, (ER)—7s (t,c)sz ||7'7‘i(tk)_7'5j(tk)H2:|.
vector is given byx = |1, T rT} and the corresponding It can be readlly verified that
observability matrix is glven by hy . o (t)FY = hi o (t) (19)
h;rrs( ) 0152 h;zr7 s( ) Crwvsj(tk) = hl’“nsj( k)’ (20)
h' Th t ~h' T AT LT T
(’)(tmtl): ar.s( ) a7:s( 1) u,r.s( ) hd,m,sj-(tk)_[ ha,ri,sj-(tk) kTharl,s ( k) c kT ]
. . h;!—,ri,sj- (tk) L [ _hl—ﬂ‘msj (tk) —c —kT } .

hars(tl 1) T(l_l)h:lrrs(tl—l) _hl-,r,s(tl—l)

(1) N () —s(t) o (te) =y (t2) } D. Scenarios Overview

T A 1 Ys
where h T (b))~ (61 T (b))~ (i) 12

a,r,s

alternative expression foiT _(t4) is given byhT . (tx) = . The vari(_)us scenarios considlered are putlined Taple I. The
[0S Ora(t2), 5in Oy o(t) | (\l/vrhsere by (1) is thea iarswgle be- first scenario corresponds to a single receiver and a sir@ke S
tweenrytshecc-:'slxis a:}:d the’ran o Vegtsor connecting the recewWhose initial states are unknown (a@riori knowledge about

9 9 Shy of the states is available). Subsequent scenariosdansi

and the SOP at time instas. In this representation, it is cases of partial or full knowledge of the initial states. able

obvious thatoL(tO’ 1) has a rank of 3, SAmE?%t iu_((?? I, fully-known means that all the initial states are knowhu,
Oy = —Og, andY>L | o; O; = 0, with oy & Zurllo)+v.(to) o :

p (o) i) =1 o) . #-(to) — a fully-known receiver is one with knowsm,.(to), whereas a
ap = TR ag = ;’T(—to" anday = 1, whereO; is  fully-known SOP is one with known,(to). On the other
theith column ofOy(to, ;). The null-space 0O/ (to, ;) for hand, partially-known means that only the initial position
[ > 3 can be shown to be states are known. Thus, a partially-known receiver is orib wi

known r,.(ty), whereas a partially-known SOP is one with

known r(t). For the cases of multiple SOPs, it is assumed

. . . that SOPs are not colocated at the same position. Moredver, i
a; =ej+es, az =extes, az = Zaiei, is assumed that the receivers identify the SOPs according to

their classification: unknown, partially-known, or fulkrown.

wheree; is the standard basis vector consisting a 1 inithe The results associated with each case are captured in the

element and zeros elsewhere. However, when the receivépowing theorems and corresponding proofs.

motion path is collinear with the SOP, the rank®f; (¢, ¢;)

N[OL(to, t)] = span[ a; as as ] ,

o e TABLE |
drops to 2, since in this cage s(to) = - = O, s(ti—1). COPNAV OBSERVABILITY ANALYSIS SCENARIOS CONSIDERED
C. Preliminary Facts [ Case || Receiver(s) [ SOP(s) |

The following facts will be invoked in the upcoming proofs. L 1 Unknown 1 Unknown
. . <n . 2 1 Unknown m Partially-known
The rank of an arbitrary matriA € R™*" is the maximal 3 1 Unknown T Fully-known
number of linearly independent rows or columns; more specif 4 1 Unknown 1 Fully-known &

ically, rank[A] < min {m,n}. , 1 Partially-known
. .. . n Partially-known | 1 Unknown
In a COpNav environment comprising receivers andn

- - . n Partially-known | m Partially-known
SOPs, the state transition matrix raised to ke power can 1 Partially-known | 1 Fully-known
be shown to be

1 Fully-known 1 Unknown
F* = diag [F¥

SRR

o] | o 01

k k

FF 1, (15)



E. Observability Analysis

Theorem IV.1. A COpNav environment with one unknowr{‘”r’
receiver and one unknown SOP is unobservable. Moreover,

observability matrixOy, (to, t;) is rank-deficient by, V1 > 5.

Proof: The state vector for this case is given ky=

T

s10 ¢

LT

i
il

Knowledge of the SOPs’ positions is

gfivalent to having an observation Jacobian matrix of the

orm

[hy . (te) B () 0 0
b,r,81 c,r,81
Proof The state vector for this case is given by= T (tr) 0 hy . (t) 0
(], z } Invoking (15) and (18)-(20), it can be seen that brs2 ones

the rank of O (to, ;) is one at the first time segment, and : : : :
the rank increments by one as each additional time segm )= hbTHm (tk) 0 0 hlr,sm (tk)

is appended up tdé = 5, since the corresponding additional 0 I2x2 02x2] 0 0

rows are linearly independent. At the fifth time segment, 0 0 Max2 O2x2] - - 0

rank[O/ (to,t5)] = 5, and the rank never increases further, : 0 :

since only©Q;, i = 1,2, 3,5, 6, are linearly independent, i : ' '
0 0 0 - [Tax2 O2x2]]

vl > 5. This can be shown by noting thé?; = —(’)7, O, = -

—0g, O5 = -0y, Og = -0y, andY.-_, a; O, = 0, with  Noting that H(t,) € RE™x*(“4m+6) and invoking (15)-

o 2 *yr(;o)(::ss(t“), a2 ET(?‘(*;)S(%), as 2 myTéZ‘;) and (20), it can be be seen thatnk [Of (to,t1)] = 3m, Vm,
g 21, Thé null-space of’)L(t(;, t;) for I > 5 can be shown since all the rows are linearly independent. Adding a sec-
to be ond time segment results in an observability matrix with

rank [Of (to,t2)] = 4m, Vm, since the firstdm rows are

N[OL(to,t;)] =span| n1 my ng ng mns |, linearly independent, while rows: + 1,. .., 3m are identical

to rows4m + 1,...,6m, respectively. Adding a third time
segment results in an observability matrix with
5m, m < 3;
dm+4, m > 3.

A A A
n) = eg+e10, N2 = es+eg, N3 = ex+eg, Ny =e;+ey

> >

N5 ar1e] + agses + azes + agey. (21)

rank [OL(tQ,tg)] = {

m Form <3, (21) can be shown by noting that rows. .. ,4m
The structure of\ [Of (o, ;)] reveals the following con- and6m + i, wherei = 1,2,...,m are linearly independent,
clusions. First, the absence of a row of zeros in the matiile rowsm+-1,...,3m are identical to rowdm+1,...,6m
of null-space basis vectorgn;}’_, indicates that none of and rows7m + 1,...,9m, respectively. Form > 3, (21)
the states is orthogonal to the unobservable subspacehwtign be shown by noting that columris... 4m + 4 are
means that all the states lie within the unobservable saespdinearly independent, while the Iast 2 columns are linearly
Therefore, none of the states is directly observable. Shcodependent nameDa s = — Sory' Ouivs and O, =
a shift of the receiver and SOP positions by units in the — >.7' Ou;16. Adding a fourth time segment results in an
z-direction ands, units in they-direction, wheres,,, e, € R, observability matrix with
i_s urtobservable, since this shift, denoted\as EyM3 + €M 6, m=1;
lies in the null-space 0®(to,t;). The same interpretation rank [0 (to, 14)] = { s 4, m> 2
For m = 1, (22) can be shown by noting that rows

can be made with respect to a shift in thedt space being
unobservable as a resultaf andn,. Third, a rotation by an / - - -

t2:3,4,7,10 are linearly independent, while rows+ 3i
nd rows3 + 34, for ¢ = 0,1, 2,3 are identical. Forn > 2,

angle¢ around the SOP is unobservable. To see this, withobs
22) can be shown by noting that columhs..,4m + 4 are

(22)

loss of generality, assume that the SOP is located at thaori

A rotation at an angle will transform the coordinate frame \ i ) °
from (z,y) to («',4'). Therefore, the position and velocity“nearly independent, while the Iast 2 columns are linearly

states in the new coordinate frame can be computed from dependent nameipun 5 = — 3%, O4Z+5 and Q16 =
Zl 0 O4Z+6 Form > 2, adding more time segments does
[r’r} B [T(q&) 0 ] [m} T() 2 [cos¢ —sinqﬁ} not improve the rank any further as the last two columns
17 0 T(p)| |7 |’ " |sing cos¢ | will always be linearly dependent on the previous columns.
) ) However, form = 1 a fifth time segment increases the rank
Fpr small ¢, the sma_II angle gpprOX|mathra$>s¢ ~ _1 and by one, while adding additional time segments beyond 5 does
sing ~ ¢ can be invoked In the rotation matrif’(¢). o improve the rank any further. This can be shown by noting
Consequently, it can be readily shown that the transformﬂgat O, i =1,2,3,5,6,7.8, are Ilnearly independent, while
state vector can be expressedas= x + i (t Ty s Since O, = —0,, 06 o andzld a; O; = 0.
ns € N[Og(to, )], then - ? s € N[Op(to.t1)], and  For m = 1, the null-space ofOy(to, ), | > 5, can be
such term will be unobservablé from the measurements. shown to be

Theorem [V.2. A COpNav environment with one unknown
receiver andm partially-known SOPs is unobservable. More-
over, the observability matriX, (¢o,¢;) is rank-deficient by
3 for m = 1, VI > 5, and rank-deficient b for m > 2,
vi> 4.

N[OL(to,ty)]=span| ny ny mns |.

For m > 2, the null-space o0y (tg,t;), I > 4, can be
shown to be

N[OL(to,t;)] =span| ng n7 |,



2 T T T T T ) ) )
ne=[ni, ni, ni, o ng, ] the rows are linearly independent. The rank keeps incresnent
mé[ nl, ";51 n;52 ol ]T by two as each additional time segment is appended up to

" ’ " o | = 4. Adding a fourth time segment results in an observabilit
ng, 2vel —peg, ni, £ pel + el y 0 ’

R A T T matrix whose rank is 14 (full-rank). This can be shown by
Ng s, =7€3 — [ley, Ny = jles +7eg, 1=1,2,....m noting that the first 8 rows are linearly independent alont wi
—yr(to) + 3" s (¢ ao(to) — S (t rows9+8(l —2) and10 +8(I — 2), for I = 2, 3,4. Moreover,
— (to) + 2 =1 ¥s, (to) S (fo) = 2izy @i (o) rowsi+8(I—1) fori = 3,4,6,7,8 andl = 1 are identical to

v » K

gr(to) Zr(to) . the corresponding rows fér= 2, 3, .. .. Finally, (’)IHS(Z,Q) =
B Ol +T(1-1)0¢, forl =2,3,..., where®] is theith row
The structure ofV[OL(ty, 1)] reveals that form = 1, (5, corresponding observability mati®, (to, ;). n

none of the states is directly observable exceptand y;,,
which are observable by construction. However, #er> 2, Theorem IV.5. A COpNav environment with partially-

the receiver’s position and velocity states, y,, ©,, andy,, known receivers and one unknown SOP is unobservable.
become observable, but the receiver and SOPs clock bias agteover, the observability matri® , (¢o, ¢;) is rank-deficient
drift states,ot,, dt,, dts,, anddt,,, remain unobservable. by2, VI > 3.

Theorem IV.3. A COpNav environment with one unknown  proof: The state vector for this case is given by=

receiver and one fully-known SOP is unobservable. Moreovaf&T T mT}T Partial knowledge of the receivers is
o X . .. ri o rey Us ot
the observability matrxO (o, ;) is rank-deficient by, VI > equivalent to having an observation Jacobian matrix of the
5. form
Proof: The state vector for this case is given by= hl, .(t) 0 -- 0 hi,, o(tk)
[wj, mﬂT. Full knowledge of the SOP is equivalent to having [12:;02X4] o --- 0 Cyh(ﬂ)s
an observation Jacobian matrix of the form H(ty)= :
hi (tx) hl (¢ o : : : |
H(tk) = b,r,s( k) Cf[il-,sik) (23) 0 0 hZ?I:Tn,s(tk) h;r-,rnvS(tk)
x 0 0 22 02x4] 0

Invoking (15)-(20), it can be be seen that the observability

matrix Oy (to, %) has a rank of five at the first time segment\oting that H(t,) € RGm)*(6n+4) and invoking (15)-
since the rows are linearly independent. The rank incresne(®0), it can be be seen thatnk [OL(to,t1)] = 3n and

by one as each additional time segment is appended upr4@k [O (ty,15)] = 6n, since in both cases all rows are
I =5, since rows 2, 3, 4, and 5 are identical to rams5(I—1), linearly independent. Adding more time segments results
3+5(1—1),4+5(1—1), and5+5(1 — 1), respectively, while in rank [0 (to,#;)] = 6n + 2, VI > 3, since columns
the first five rows are linearly independent of rows5(I—1). 1,2,....6n + 2 are linearly independent, whereas the last
The rank stops improving at the fifth time segment, whereg{o columns are linearly dependent. In particulé;,,, 3 =
rank[O (t, t5)] = 9. The rank never increases further, since- 5" . O, 5 andOg, 14 = — Y., Ogirs. The null-space
O, = — Y0 a; O;. The null-space 0Oy (to,t), | > 5, of Oy (to,t;), I > 3, can be shown to be

can be shown to be

N[(’)L(to,tl)]zspan[ ns ] N[OL(t07tl)]:Span[ ng mng } ,

A T T T T 7
The structure ofV [O(0,1)] reveals that of the receiver's A T T T T oqT
states, only the receiver clock bias, and clock drift §t, ng £ [ ny,, ng,, - ng,. ni]
T & T T T o, T T
are observable as they are orthogonal to the unobservablg; ,, = fe; —neg, ng, =ne; +8eg, i =1,2,....n
A T &

i i T T T T T
subspace, while SOP states are observable by constructlon.n&S cel —nel, ng, 2 nel +cel

Theorem IV.4. A COpNav environment with one unknown
receiver, one fully-known SOP, and one partially-known SOP, — [> i yr, (to)] + ys(to) o [Doiq @, (to)] — xs(to)
is observabley ! > 4. B S (o) 1= Sor dr, (o) '

Proof: The state vector for this case is given ky= m

(2], 2] ,27,]". Full knowledge of one SOP and partial The structure ofA’[O(0,1)] reveals that the receivers

knowledge of the other is equivalent to having an obsermatigelocity states and the SOP’s position states are observabl

Jacobian matrix of the form However, the receivers’ and the SOP’s clock bias and drift
hg,r,sl(tk) hlml (tx) 0 states are not observable. Recall that the receivers’iposit

T T states are observable by construction.
H(tk): hb,T,Bg (tk) 0 hc,r,SQ (tk) (24) y

Lixa 0 Theorem IV.6. A COpNav environment witln partially-

0 0 252 022] known receivers angh partially-known SOPs is unobservable.
Invoking (15)-(20), it can be seen that the observabilityrira Moreover, the observability matri€ ;, (o, t;) is rank-deficient
O (to,t;) has a rank of 8 at the first time segment, since dy 2, VI > 2.




Proof: The state vector for this case is given by= oy (to)] + {Z;”:l Ys; (to)}

[wIl, ol el x] ] Partial knowledge of the re- B = ST (o)
ceivers and SOPs is equwalent to having an observation . = "
Jacobian matrix of the form c o D i1 2 (f)] - [Zj:l Ts; (to)}
[H,,, s 0 O H., ., 0 0 T > im &y (to)
y : . [
0 o 0 ' 0 The structure of N [O(0,1)] reveals that the receivers
H(t)= 8 Hbgms 1 00 O Hcgms velocity states are observable. However, the receiverd’ an
L2x2 02x2] SOPs’ clock bias and drift states are not observable. Rell
: .. : 0 : the receivers’ position states are observable by congtruct
L 0 0 0 v [2x2 O2x2] | Theorem V7. A COpNav environment with one partially-
[ by, () ] known receiver and one fully-known SOP is observable>
. 2.
A . .
Horis(te) = n o) | i=1L...,n Proof The state vector for this case is given by =
12’:;’5762X . (], x } Partial knowledge of the receiver and full knowl-
C LT (th) - edge of the SOP is equivalent to having an observation
c,ri,s1 \Uk . .
Jacobian matrix of the form
Hchivs(tk) = T ’ y U= 1’ EEN(E hg—r s( k) hIr s( )
heo, s, (t) H(ty)=| [Taw200u4] 0 . (25)
O2xa | 0 Livs

Noting that H(t;) € R(mn+2n+2m)x(6nt4m) gnd invoking Invoking (15)-(20), it can be be seen thahk (O (to,t1)] =
(15)-(20), it can be seen thatnk [O (to,t1)] = 3n+3m—1. 7, since all the rows are linearly independent. Adding more
This can be shown by noting that the columns®ft,,t;) time segments yieldsank (O (o, t1)] = 10 (full-rank), VI >

have the following properties: 2, since the first ten rows are linearly independent, whilesrow
« linearly independent columns®:.¢;, Oai6iv Os.6:, 4+7(l—1),5+7(.l—1),and7+7(l—1)forl — lare |d$nt|cal to
_ _ . with « _ the corresponding rows fdr= 2,3, ..., and rowsQO _
O6n+1+4j, O6nt2+4j, and Ogy,qzyqq—1); With i = . - . 6+7(1—1)
0,1,...,n, j=0,1,...,m,andl = 1,2,....j. are linearly dependent, such théX; ;) = Og + T'(l —
o columns of zeros:Osi6i, Ousrei, Ost6ir O6ntatdj 1)(’);- u

with i =0,1,...,n,andj =0,1,...,m
o linearly dependent columns: Ogp 4344

n j—1 . .
- L Og YO l};wnh =0,...,m . o
[Zz,l 61-1 1 21—0 O6nt3+4 J Proof: The state vector for this case is given by=
Next, it is noted thatO (to, t;) € RI(mnt2nt2m)]x(Gntam); [mI,mHT. Full knowledge of the receiver is equivalent to

hence the rank ofOp(to,#) will be determined by the having an observation Jacobian matrix of the form
number of linearly independent columns, since the matrix LT LT

will have more rows than columngl > 2. It can be seen H(t)= brs(tk) e s (tk) ) (26)

that rank [0 (to, ;)] = 6n + 4m — 2, VI > 2, i.e. thel- Tsxo 0

step observability matrix is rank-deficient by 2. This can bgwoking (15)-(20), it can be be seen that the observability
shown by noting that the firsén + 4m — 2 columns are matrix O (o, ;) has a rank of 7 at the first ime segment,
linearly independent, while the last two columns are lifearsince all the rows are linearly independent. The rank incre-
dependent, such that ments by one as each additional segment is appended up to
[ = 4. Adding a fourth time segment results in an observability
matrix whose rank is 10 (full-rank). This can be shown by
noting that the first 7 rows are linearly independent alont wi
rows8 + 7(l — 2), for [ = 2,3, 4. Moreover, rows + 7(l — 1)

Theorem IV.8. A COpNav environment with one fully-known
receiver and one unknown SOP is observalile> 4.

n
06n+4m—q - - § oﬁl—q + § oﬁn+4—q+4l 3
=1 =0

whereg = 0,1 and j = 0,1,...,m. The null-space of for i = 4,5 7andl = 1,2,..., are identical, respectively.
Oy (to,t;), I > 3, can be shown to be Finally, @9+7z Q)F = 0] +7(1 - 1)(’)4, (’)10+7l 9) =
(’)T—i—T(l—l y,andOls. .0 0 = OF +T(z—1)ol,
N[OL(to,tl)]:Span[ nip N1 ] ) forl=2.,3,. =2 u
. . . The results concluded from Theorems IV.1 - IV.8 are
ni = [ N0, 77 M0, Mi0s; 7 "10 Sm } summarized in Table I, where observable states refer teetho
ny 2 [ an nL,rn an oonl, . } in an orthogonal complem_ent to the un(_)bservable subsp_ace,
T A T T T AT T 19 and time step refers to the time step at which the observability
N, = Pes —Ceg, Mo, =Ce; +Peg, i=1,2,....n  mayix rank reaches a steady-state value. It is worth natiag
vy

ni,,, = Bey —Cey, ng, 2 (ej+pPe;, j=1,2,...,m the observability results for the scenarios consideredaiplel
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| constitute the minimal set of observability requiremeimmts  In the following simulations, the system true initial state
the sense that knowing the results for these scenarios, afié,) was fixed, while the EKF initial state estimai(t,)
can predict the observability of an arbitrary scenario with was generated according @(tg) ~ N [z(to), P(tolt—1)],
receivers andn SOPs and any type of prior knowledge (noneyhere P(ty|t_1) is the EKF initial estimation error covari-

partial, or full) for the receivers and SOPs. ance. All the simulations assumed a receiver whose ini-
tial state isxz,(to) = [0, 0, 0, 25, 10, 1]: and SOPs with
COPNAVOBSERVZQIBLII_TE(E\NALYSIS RESULTS initial states "’51@;0) = [50,100, 1, 0.1]" and s, (to) =
[-50, 100, 1, 0.1] .

[Case][ Observable?] Observable Swies [ Time SwepT | The simulations_for Case 4 consider.ed an environment with
T — e = an unknown receiver and two SOPs: one fully-known and
> no 7 =T Tone 5 one partially-known. The initial estimation error covania

m > 2! Ty, Yr, Er, Yr 4 matrices of the receiver and the second SOP were chosen
3 no Sty St 5 to be P,(to|t_1) = (1 x 10%)diag[2,2,1,1,30,0.3] and
4 yes all__ , 4 P, (to|t—1) = (1 x 10%)diag [30, 0.3], respectively.
> no i i=Loon s The simulations for Case 7 considered an environment with
= ves Y/ — — 5 a partially-known receiver and two SOPs: one fully-known
8 yes all 4 and one unknown. The initial estimation error covariance

matrices of the receiver and the second SOP were chosen to be
P»,‘(t0|t,1) = (1 X 103)d1ag [1, 1,30,03] and P52 (t0|t,1) =
(1 x 10%)diag [1, 1,30, 0.3], respectively.
V. SIMULATION RESULTS The simulations for Case 8 considered an environment with
. . . . . a fully-known receiver and one unknown SOP. The initial
This section presents simulation results that were actieve .~ . . .
. ) esélmatmn error covariance matrix of the SOP was chosen to
for the three observable cases in Table I: cases 4, 7, an

— 3\ (i
8. For purposes of numerical stability, the clock erroreﬁzataDe Psl (folt—1) = (1 x 10°)diag 1, 1’3(.)’0'3]' . .
: . . . Figures 1, 2, and 3 show the estimation error trajectories
were defined to bedt andcdt. All simulations assumed the _ . )
R ) . - Z;(tr|ty) for a single-run EKF along with the:20; (¢x|tx)
receiver's process noise spectral density toghe= ¢, = A .
974 . X . : estimation error variance bounds for cases 4, 7, and 8, re-
0.1m*/s*, while the sampling period was set B = 10 . L .
L spectively. Note that the estimation error variances cayee
ms. The receiver’'s clock was assumed to be a temperature- S :
. . "1o and that the estimation errors remain bounded, as would be
compensated crystal oscillator (TCXO) withy = 2 x 10 expected for an observable svstem
and h_y = 2 x 10729, while the SOPs’ clocks were as- P y :

sumed to be oven-controlled crystal oscillators (OCXOghwi _ Figures 4, 5, and 6 Sh.OW the resuling NEES trajectories
ho =8 x 10729 andh_5 = 4 x 10723, The observation noise €(tr) fof a = 0.01 along VY'thrl andr; for_case'_s 47, and 8,
spectral density was set to= 100 m?. respect_|yely. Npte that_ the(tk) vaIu_es reS|d_e within theg%

A simulator was developed to generate the “truth” d(,jltxé)iro_bablhty region, which is consistent with a well-behdve
for each COpNav environment studied. Noisy pseudorantgnjgumator operating on an observable system.
observations were processed by an EKF to estimate the states

of interest. The observability is quantified in terms of tiséi-e V1. EXPERIMENTAL RESULTS

mation errorz < z—4 and the corresponding estimation error  fig|q experimental demonstration was conducted to illus-
covarianceP £ E lﬁ? fET}, wherez is the EKF state estimate. trate one of the observable cases in Table |, namely Case 8.
Results for a single-run EKF and rigorous MC analysis are préhe objective was to demonstrate that a COpNav receiver with
sented. The MC analysis is based on/éfrun average of the velocity random walk dynamics and knowledge of its initial
normalized estimation error squared (NEES) [31]. Tierun state can estimate the states of an unknown SOP in its envi-
NEES is defined as;(ty) £ & (ti|tx)P;  (tr|tr)Z:(tkltr), ronment. To this end, two antennas were mounted on a vehicle
while the average NEES is definedd@s;) = % Zfil ei(ty). 1o acquire and tracki) multiple GPS signals andi) a signal

For the single-run EKF, an observable system should yiei®m a nearby cellular phone tower whose signal was mod-
converging estimation error covariances and the estimatiolated through code division multiple access (CDMA). The
errors should remain bounded. For th&run EKF, an ob- GPS and cellular signals were simultaneously downmixed and
servable system and a consistent EKF should yield a statistiynchronously sampled via two National Instrumé&higector
Né(ty) that is approximately chi-squared distributed witm Radio Frequency Signal Analyzers (RFSAs). These fronsend
degrees of freedom, specificallye(k) ~ x%.,,, Wheren is fed their data to a Generalized Radionavigation Interfusio
the state estimate dimension. An unobservable systemdhddevice (GRID) software receiver [42], which simultanequsl
yield an estimation error covariance that never improveh witracked all GPS L1 C/A signals in view and the signal from
more observations. Thus, the MC analysis boils down tothe cellular tower with unknown states, producing pseudgea
hypothesis test ori(t;) with an acceptance regiofr;, 73] observables for all tracked signals. The observables veste f
defined such thalPr {é(k) € [r1,72] |Ho} = 1 — a, whereH, into a MATLAB®-based EKF, which estimated the states of
is the null hypothesis and is the size of the test (probability the unknown CDMA cellular tower. Figure 7 illustrates the
of false alarm). hardware setup of the conducted experiment.
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multiple receivers with velocity random walk dynamics mak-
Fig. 7. Experiment hardware setup ing pseudorange measurements on multiple stationary SOPs
is fully-observable if and only if the initial state(s) oft a
least one receiver is fully-known, at least one receiver is
Since the states of the GPS satellite vehicles (SVs) weigrtially-known and at least one SOP is fully-known, or
known, and since the receiver was tracking more than fogf |east one SOP is fully-known and at least one SOP is
GPS SVs throughout the experiment, the receiver’s init&tes partially-known. Aided by this observability analysis,tdte
x,(to) was fully-known. The cellular tower state vector conwork will consider prescribing receiver trajectories theitl

sisted of its planar position states, clock bias, and cladk d maximize the estimability of states of interest in the COpNa
as defined in (7). The EKF initial state estimak€ty) was environment.

generated according t@(tg) ~ N [x(to), P(to|t_1)], where

.
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