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Abstract—Greedy motion planning strategies to enhance situa-
tional awareness in an opportunistic navigation (OpNav) ewiron-

ment is considered. An OpNav environment can be thought of as

a radio frequency signal landscape within which a receiverdcates
itself in time and space by extracting information from ambient
signals of opportunity (SOPs). The receiver is assumed to dw

This paradigm, termed opportunistic navigation (OpNawhsa
to extract positioning and timing information from ambient
radio frequency signals of opportunity (SOPs). These $igna
include cellular code division multiple access (CDMA) sidg
[8], digital television vestigial sideband (VSB) signalg],[

only pseudorange observations from the SOPs. The following Iridium satellite time division multiple access (TDMA) sigls

problem is considered. A receiver with noa priori knowledge
about its own initial states nor the initial states of multiple
SOPs, except for one, is dropped in an OpNav environment.
Assuming that the receiver can prescribe its maneuvers, wha
greedy (i.e., one-step look-ahead) motion planning stragg should
the receiver adopt so to optimally build a high-fidelity sigral
landscape map of the environment while simultaneously lod&ing
itself within this map in time and space with high accuracy?
Several information-based and innovation-based motion @inning
strategies are studied. It is shown that with proper reformuation,
the innovation-based strategies can be cast as tractable roex
programs, the solution of which is computationally efficien. Sim-
ulation results are presented comparing the various stratgies and
illustrating the improvements gained from adopting the proposed
strategies over random and predefined receiver trajectoris.

Index Terms—Situational awareness, adaptive sensing, tra-
jectory optimization, motion planning, information gathering,
navigation, signals of opportunity, opportunistic naviggion

I. INTRODUCTION

[10], and orthogonal frequency division multiplexing (ORI
signals [11]. In collaborative OpNav (COpNav), multiple -Op
Nav receivers share information to construct and contislyou
refine a global signal landscape [12].

The OpNav estimation problem is similar to the simulta-
neous localization and mapping (SLAM) problem in robotics
[13], [14]. Both imagine an agent which, starting with incom
plete knowledge of its location and surroundings, simtan
ously builds a map of its environment and locates itself inith
that map. Typical SLAM environmental maps are stationary.
In contrast, the OpNav signal landscape is more complex—
it is dynamic and stochastic. The signal landscape map can
be thought of metaphorically as a “jello map,” with the jello
firmer as the receiver and SOPs clocks are more stable.

The observability of COpNav environments comprising
multiple receivers with velocity random walk dynamics mak-
ing pseudorange measurements on multiple SOPs was thor-
oughly analyzed in [15], [16], and the degree of observahbili

Situational awareness is defined as the perception of #&o known as estimability, of the various states was gfiedti
elements in the environment within a volume of time anih [17]. The effects of allowing receiver-controlled mamets
space, the comprehension of their meaning, and the projectPn observability was studied in [18]. It was shown that
of their status in the near future [1]. Reliable and accurateceiver-controlled maneuvers reduce the requiegriori

situational awareness is vital in a number of applicatisnsh

information about the environment for complete obserigbil

as autonomous vehicles, disaster management, enviroaimeafd that the environment is completely observable if thigaini

monitoring, social networks, surveillance, and recorsaise.

state vector of at least one receiver or one “anchor” SOP is

Despite the extraordinary advances in global navigatitel-sa fully known. While observability is a Boolean property, .i.e
lite systems (GNSS), their inherent limitations rendemiheit asserts whether a system is observable or not, it does not

unreliable for situational awareness, particulary indopan

specify which trajectory is best for information gatheriagd

deep urban canyons, and in environments under malicict@nsequently estimability. This is the subject of this pajfe

attacks (e.g., jamming and spoofing) [2], [3].

this end, several classical information-based motiortegias

To overcome the limitations of GNSS and achieve reliabRfe analyzed and novel innovation-based, computationally
and accurate situational awareness, the outputs of sewithrs efficient strategies are introduced. For the sake of siritplic
multiple modalities need to be fused [4], [5]. Motivated byhis paper considers planar environments. Extensiongéeth
the plenitude of ambient radio frequency signals in GNS@imensions is anticipated to be straightforward.
challenged environments, a new paradigm is emerging [B], [7 Optimizing an observer’s path in tracking applications has
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been the subject of extensive research [19]-[21]. In such
problems, the observer, which has perfect knowledge ab®ut i

L0wn states, is tracking a stationary or a mobile target tinou

its onboard sensors. The trajectory optimization objectss
to prescribe optimal trajectories for the observer to fwllo
in order to maintain good estimates about the target's state
In SLAM, the problem of trajectory optimization is more in-
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volved, due to the coupling between the localization aaguraof the proposed strategies through Monte Carlo (MC) simu-

and the map quality [22]-[24]. lations and to compare the performance of information-thase
Optimizing the receiver’s trajectory in OpNav environmgentinnovation-based, random, and predefined motion stregegie

can be thought of as a hybrid ofi) (optimizing an observer's  The remainder of this paper is organized as follows. Section

path in tracking problems and:] optimizing the robot’s path Il describes the OpNav environment dynamics and observatio

in SLAM [18]. A particular feature of OpNav is that the quglit models. Section Il presents optimal information-based an

of the estimates not only depends on the spatial trajectamnovation-based greedy motion planning strategies atatbes

the receiver traverses within the environment, but alsohen tlishes convexity properties of the innovation-based sgjies.

velocity with which the receiver traverses such trajec{@3]. Section IV presents simulation results comparing the wario
An initial receiver trajectory optimization study was constrategies. Concluding remarks are given in Section V.

ducted in [25]. The following problem was considered. A

receiver with minimah priori knowledge about its own states [I. MODEL DESCRIPTION

and the S_OPS_’ states is dropped in an OpNav environmg&jc. Dynamics Model

The receiver is assumed to draw pseudorange observatlon?

from the SOPs. Assuming that the receiver can prescribe he receivers dynamlcs_ will be assumed to evolve acc_:ord-
o to the controlled velocity random walk model. An object

its own maneuvers, what motion planning strategy should® _ L . .
the receiver adopt to build a high-fidelity signal Iandscar{?ovmg according to such dynamics in a generic coordigate

map of the environment while simultaneously localizinglits as the dynamics

within this map in time and sp_ace? To th_is end, an optimal é(t) = u(t) + we(t),

closed-loop information-theoretic greedy (i.e., ongstEok- ) , , )
ahead) receiver motion planning strategy was proposecdaeThWhere”(t) is tr]e co_ntrol input in the fo.rm of.an acceleratlt_)n
information measures were studied: D-, A-, and E-optialitt®mmand andu (¢) is a zero-mean white noise process with
It was demonstrated that all greedy strategies outperfornfPWer spectral density, i.e.,

a receiver moving randomly. and in a predefined trajectory. E [e(t)] = 0, E[we(t)we(r)] = Ge 6(t — 1),

In [18], [26] the greedy motion planning strategy was gen- ] ) ) )

eralized into a receding horizon (i.e., multi-step looleatt) whered(t) is the Dirac delta function. The receiver and SOP
trajectory optimization, and the effectiveness and litiotes of €lock error dynamics will be modeled according to the two-
receding horizon strategy were assessed. Active colléibera State model composed of the clock bieisand clock driftdz.
signal landscape map building was addressed in [27]. Sevethe clock error states evolve according to

information fusion and decision making architectures were Tk (t) = Acik T (t) + W (1),

studied. It was demonstrated that a hierarchial architectu

possessed a negligible “price of anarchy,” which measumes t - (jt o — Wst A — 0 1
solution quality degradation in a decentralized systermfeo kT st | T g, |7 L

ce_rlw_:]r_allzed one. kes th tributi The first twhere the elements ab.), are modeled as zero-mean, mutu-
IS paper maxes hree contributions. The Trst con r‘J:flly independent white noise processes and the power spectr
bution is to demonstrate that the optimization prOble”bsensity of b is given by Qu — diag [S~ g ] The
C C - wst wé-t .

assomated. with D-, A an.d E‘Op“m".""ty criteria POSSESTower spectraS;,, and S;. can be related to the power-
no convexity properties, which necessitates relying on-gjn C 2 i/:/hich have been shown through

eral purpose numerical optimization solvers. Subseqgyen pw CoeﬁICIGHtS{f{,a}a:72, :
gboratory experiments to be adequate to characterize the

alternative to these classical information-based measur . . .
: . L inower spectral density of the fractional frequency dewrati
innovation-based optimization measures, namely most-inng

vative logarithm-determinant (MILD), most innovative ¢ y(¢) of an oscillator fr20m nominal freque_ncy, which takes
: . . : the form S,(f) = Y..__,haf® [30]. It is common to
(MIT), and most innovative maximum eigenvalue (MIME) Y a=-2

are proposed. Innovation-based optimization has notvedei approximate the clock error dynamics by considering only

as much attention in the literature as information-based opthe frequency random walk coefficient, and th,?o white

mization. The main idea behind innovation-based measwf %quinzcy2}(;oeff|3cientlzo, which lead to Sg;, ~ 7 and
is that one seeks a measurement that is hard to pred dtiit ~em-2 ,[ ! . . .
i.e., one with high innovation. To the authors’ knowledge he receiver's state vector will be defined by augmenting

the only application of innovation-based measures in cmtimthe receiver’s planar positior. and velocityr,. with its clock

information gathering appeared in [28], [29]. However,)onlerror statesr. t0 yield the state space realization

the eigenvalues of the innovation matrix were considered, z-(t) = Az, (t) + By u(t) + D, w,.(t), Q)
which yielded profitable experimental results. Neitherlgna T

ical nor numerical justifications was provided. The seconghere x, = {TI, 7‘°I7 oty (S'tr] , e = [z, yr]T, u, =
contribution is to show that with proper reformulations ansfiu u ]T . — [~ . }T

under mild approximations, MILD, MIT, and MIME possess '’ 2/ ' " v Ty WOt Tt o

strong convexity properties, which reduce the optimizatio 0ox2 Ioyxs 0Ooyxo 02x2 0
problems to searching over the extreme points of the fdigibi A, =| 022 0242 Oax2 | , B, =| Ioxo |, D,‘_{IQX“] .
region. The third contribution is to illustrate the effeetness 02x2 0Ooyxo Aok 0552 4x4
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The receiver’'s dynamics in (1) are discretized at a constantThe pseudorange observation made by the receiver on an
sampling periodT' [32]. Assuming zero-order hold of the SOP is made in the receiver time and is modeled according to
control inputs, i.e.{u(t) = w(kT), ¥T <t < (k+1)T}, and
droppingT in the sequel for simplicity of notation yields the pltr) =
discrete-time (DT) model |7y [tr — 0t (tr)] — 75 [tr — 0t () — StToF][l2 +

2y (k+1) = By, (k) + Gy (k) +w, (k), k=0,1,2,... ¢-{0tr(tr) = Ots [tr = Ot (tr) = Otror]} +By(tr), (4)

where w, is a DT zero-mean white noise sequence withhere ¢ is the speed of lightdtror is the time-of-flight
covarianceQ, = diag [Q,v, Qeii.,], Where of the signal from the SOP to the receiver, ailis the
" v et error in the pseudorange measurement, which is modeled as a

2
Ioxo TToxa O2x2 %ngg

| 77 Zero-mean white Gaussian noise process with power spectral
F.={02x2 Inx2 O2x2|, Gr=| Ty ’FC“‘_[O 1} density 7 [33]. The clock offsetsst, and ét, in (4) were
0242 0oy Fo 02y2 assumed to be small and slowly changing, in which case

0t (t) = 0t [t — 0t (t)] = Ot (¢,). The first termin (4) is the

3 2
Quier = S@atrT‘FS@st,% Sﬁist,‘TT true range between_ 'Fhe recgiver’s positionl at_time of rémgpt
' SU;MTT Sﬁ,gtrT and the SOP’s position at time of transmission of the signal,
e e while the second term arises due to the offsets from true time
3 0 &y 0 in the receiver and SOP clocks.
Q.. = 0 @G5 0 ¢G5 The observation model in (4) can be further simplified by
e }T; 0 GT 0 ' converting it to true time and invoking mild approximations
0 qu; 0 q,T discussed in [16], to arrive at

The SOP will be assumed to emanate from a spatiallyp(t) = ||7,(t) — 75(t)|2 + ¢ - [0t,(t) — dts(t)] + 0,(t), (5)
stationary terrestrial transmitter whose state consi$tétso
planar position and clock error states. Hence, the SOIp
dynamics can be described by the state space model

iscretizing the observation equation (5) at a samplingriral
yields the DT-equivalent observation model

&4(t) = Ay y(t) + Dyt (t), @ Pk =lre(k)=rs(k)ll2+ e - [0t (k) = 0ts (k)] +v,(k), ()
T LT T wherew, is a DT zero-mean white Gaussian sequence with
where z, = [7‘57 Ots, 5’55} v rs = [zs, U] Ws = yariancer = 7/T.
[wﬁs’ wStJT
005 Ooys 050 C. OpNav Environment Estimator Model
— X X X
As = { 0oy Ak } ’ 5 [ Ioyo } The estimator's dynamics and observation model for an

Discretizing the SOP’s dynamics (2) at a sampling intefival QpNav _e_nqunme_nt comprising a receiver and multlpl_e SOPs
ields the DT-equivalent model is specnﬁg_d in thI-S. subsectl(_)n. Tq this end, to satisfy the

y observability condition established in [18], the knowledgf

zs (k+1)=F,xs(k) +ws(k), (3) the initial state vector of one anchor SOP, denoied is

. : . _ ﬁssumed. Hence, the estimator’s dynamics model is given by
where w, is a DT zero-mean white noise sequence wit

covarianceQ,, and x(k+1)=Fx(k)+Gu(k)+wk),
F, = diag[Iox2, Fax], Qs = diag[02x2, Qeix,s), where z 2 [T, 2T ,....aT ]" is the estimators state
m
whereQuy. . is identical toQey ., except thall;,, andS. vecAtor, {:c_si}iﬁl are th(le state vectors.oh unknown SOPs,
are now replaced with SOP-specific speckg,,, andSg,, , * ~ “ 1° the control vectorF = glagT[Frana-T--af s,
respectively. © G = [G],02x4m] , and w = [wr’Wslv x -’w.sm} IS
a zero-mean process noise vector with covariaige=
B. Observation Model dlagA[QT’ Qsyy-- -y Qsm].TThe observathn vector has the form
i Z 2 [PsysPsiyr---sPsm] » Where p,. is the pseudorange
To properly model the pseudorange observations, one myggkeryation made by the receiver on tie SOP, wherg =
consider three different time systems. The first is true timg 1 ., |t is assumed that the observation noise elements

denoted by the variablg which can be considered equivalen,  are independent; hence, the estimator’s observation noise
to Global Positioning System (GPS) time. The second timeariance is given bR = diag |
system is that of the receiver’s clock and is denatedThe

third time system is that of the SOP’s clock and is denated

The three time systems are related to each other according to IIl. GREEDY MOTION PLANNING
A. Optimal Receiver Motion Planning Strategy

[

t=t, — ot (¢ t =15 — Ots(t L . . . . .
" r(t), s s(), The objective of the receiver's optimal motion planning is

wheredt,. (t) anddts(t) are the amounts by which the receiveto evaluate different sensing actions that the receivertaiam
and SOP clocks are different from true time, respectively. and choose the action that maximizes the information aeduir
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about the environment while simultaneously minimizing thmformation. Broadly speaking, Shannon entropy is reldated
uncertainty about the receiver's own states. To this enthe volume of a set containing a specified probability mass,
the one-step look-ahead, also referred to as greedy, egceivhile Fisher information is related to the surface area & th
motion planning will be considered. set [35]. Entropy measures the compactness, and thus the

The proposed optimal greedy receiver motion planning loapformativeness, of a distribution. The entropy of a random
is depicted in Figure 1, where, ,.x and a, max are the vectora with distributionp(x) is defined as [36]

maximum speed and acceleration, respectively, with whieh t )

receiver can move. At a particular time steghe pseudorange H(x) = —/ p(x) log[p(x)]de.

observations made by the receiver on the various SOPs in o0

the environmentz,, (k),j = a,1,...,m, are fused through The mutual information gain after an actienis defined as

an estimator, an extended Kalman filter (EKF) in this cas&(u) = H(x) — H(x|u), where H(z|u) is the conditional
which produces the state estimaték|k) and associated esti- entropy after actionu. Thus, AI(u) is a measure of the
mation error covarianc® (k|k). The estimate and associatededuction in the uncertainty i# due to the action:. A multi-
covariance are fed to an optimizer. The optimizer solvesvariate Gaussian random vectsr has entropy proportional
nonlinear constrained optimization problem to find thempti to the logarithm of the determinant of its covariance matrix
admissible control inputt*(k), which minimizes a functional P, namely H(z) = 1 log[(2me)" det(P)]. Therefore, for a
J of the control input, subject to the OpNav environmerfaussian random vectas(k) with covarianceP(k), it can be
dynamics and observation models,n.y and velocity and shown that to maximize the mutual information after an actio
acceleration constraints. Note that the optimizationaldeé (%), one needs to solve the optimization problem
is u(k), whereasv*(k — 1) is a known constant vector Y[k + 1

. . ) - u(k)]
representing the velocity commands that resulted fromirsglv maximize log det [W} ,

the optimization problem at the previous time-step 1 and u(k)

has already been applied. The optimal control inptitk) is  where Y(k) £ P~1(k) is the information matrix and
fed back to the receiver to command its maneuver and is algq; + 1|u(k)] is the information matrix after actiom (k).

communicated to the estimator. Recognizing thalY (k) corresponds to the Fisher information
matrix, one can establish the connection between Shannon
OpNav Environment: Dynamical System entropy and Fisher information: minimization of Shannon
u*(k) x,(k+1) = F, 2. (k) + G, u, (k) + w,(k) z(k)  entropy is equivalent to maximization of Fisher informatio
S0pNay {x‘s,(w 1) = Fyx,, (k) + w,, (k) _ This is the basis of the so-called D-optimality criterioong
z(k) = hlwok), 2o (B)] + 0y, (K), j=a1,...m of the most common information-based optimization measure

are defined next [37].

Estimator: EKF Definition _III.1.. Gi\{en_an information matrixy, the D-, A-,
and E-optimality criteria are defined as
S (klK), P4 D-optimality: is equivalent to minimization of the volume of
a(k1k), P(H the uncertainty ellipsoid, and is given by
Optimal Greedy Control minimize J = — log det [Y].

minimize J [u, (k)]
u, (k)

A-optimality: is equivalent to minimization of the average
subject to  YopNav

wi(k) = variance of the estimates, and is given by
’ llwr (B)ll2 < @rmax

f[ar () + %v:(k “s < % Ur o minimize J = tr [Y '] .

E-optimality: is equivalent to minimization of the length of the

Fig. 1. Optimal greedy receiver motion planning loop . ) . ) . )
largest axis of the uncertainty ellipsoid, and is given by

_ ) o minimize J = Amax [Yfl} ,
B. Information and Innovation Optimization Measures

A fundamental challenge in all optimization-based aafyhere/\max Is the largest eigenvalue.

proaches is the choice of a proper optimization metric. ThisIn contrast to the information-based criteria, which sdugh
subsection presents various information- and innovabiased to minimize a functional of the information matrix, the
optimization metrics. The main issue with these optimati innovation-based criteria seek to maximize a functional of
strategies is the dependency of the objective functional time innovation matrix. Intuitively, one seeks the recein@-
the parameters to be estimated. This issue is prevalenein tieuver that yields the most observation innovation, ilee, t
literature and is best described by Cochran as: “You tell nimost difficult” observation to predict. This paper intramks
the value off, and | promise to design the best experimerthe innovation-based optimization criteria: most innoxat
for estimatingé [34].” logarithm-determinant (MILD), most innovative trace (MIT

Information-based metrics are well-established in the liand most innovative maximum eigenvalue (MIME), which are
erature and are based on the Shannon entropy and Figtefined next.

4
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Definition 11l.2. Given an innovation matrix8, the MILD, quickly becomes intractable as more SOPs are present in

MIT, and MIME criteria are defined as the environment. If no analytical solution can be obtained,
MILD: is equivalent to maximization of the volume of thene typically resorts to numerical optimization solvergvN
innovation ellipsoid, and is given by ertheless, convexity properties of the problem are sought,

possible, guaranteeing global optimality of the solutiow a
enabling utilization of efficient numerical convex solvesach
MIT: is equivalent to maximization of the average innovationds CVX [38]. Plottings [u (k)| reveals that the D-, A-, and E-
and is given by optimality criteria are neither convex nor concave as ftiated
in Figure 2 for a random OpNav environment comprising a

maximize J = tr[S]. receiver and four SOPs. This necessitates relying on genera
urpose numerical constrained nonlinear optimizationess|
which are computationally intensive and may converge to a
local minimum.

maximize J = logdet [S].

MIME: is equivalent to maximization of the length of th
largest axis of the innovation ellipsoid, and is given by

maximize J = Amax [S],

where \,.x IS the largest eigenvalue.

tr [Pk + 1)k +1)]
A [Pk + 1]k +1)]

log det [P(k+ 1)k +1)]

C. Information-Based Optimal Motion Planning “s o “a ) "y o

The information-based motion planning optimization prolFig. 2. D-, A-, and E-optimality optimization functional®rfan OpNav
lems are formulated in this subsection. Given the estimai@vironment with a receiver and four SOPs.
&(k|k) and associated estimation error covariaR¢é|k), the
predicted state vecto#(k + 1|k) and associated prediction

error covariancé(k + 1|k) are
. . This subsection formulates the innovation-based optimiza
2(k +1|k) = Fa(k|k) + Gu(k) tion problems and shows that with proper reformulation and
P(k+1[k) = FP(k[k)FT +Q. reasonable approximations such optimization problems hav
Note thatP (k- 1|k) is not a function ofu(k). The observation strong convexity properties._ I\/_Iore_over, it is shown that the
Jacobian matrix, evaluated atk + 1|k), is given by MILD, _MIT, and MIME optlml_zanon problem_s_ _reduce_ to
searching over the extreme points of the feasibility region

D. Innovation-Based Optimal Motion Planning

hi(rr urs,) O o O Th 1. For a sufficiently small sampli istland
hI(,'zT’,UI’,'le) h;r(fraua'f'sl) 01><4 eorem lil. 1. rasu ICIentysma sampling peri an

H= _ _ _ _ with proper reformulation, the innovation matr&(k + 1) is
: : : affine in the control inputs, specifically

hl (., u,7s,) 014 <o hd (P u, ) )
h-lr(rhu,rs]') é[gl('rrauarsj-) gQ(TrauaTs]-) 00c¢ 0] S(k+1)_SO(k+1)+;SZ(k+1)Ul(k) (7)
h;(rmuarsj) £ [—gl(rrauﬂ‘sj) —g2(rr,u,ms;) —c 0] Proof: First, consider transforming the receiver and SOP
dynamics in (1)-(2) and observation model in (5) into a polar
(rrur,) & Zp + Ty + T;ul -z, coordinate frame centered at tAhe recei(m,r,yT)A, such that
gi(Tr, U, Ts;) = [+ T7 + T72u T g:dy]) = (1s;,0s,), wherex; = x,. — g, y; = yr — s,

(rr,u,rs,) yT+TyT+T72u2_ysj [2 | 2

g2(Tr, U, Ts; H’I’r TP+ T72u — 7"5].H27 { Ts; = xj —|—yj = { Tj =Ts, C.OSOOSJ.
. 05, = atan2 (y;, z; Yj = Ts; SMUs;

wherej = a,1,...,m, and the time dependency has been* ~* u2 (5, 5) ’ ’

dropped above for compactness of notation, nanldly= where atan2(y,x) is interpreted as the unam-
HE + 1), 7 = 7r(k + 1|k), u = u(k), rs, = 7rs,(k), biguous four-quadrant arctan function. Hence, the

>

75, = 75,(k + 1|k). The updated covariance matrix is givertransformed state has the formx’ = g(z) =
b T T .1 T T 4T T
y £sa7£sa7£sp£sla' "7£sma£sm’wc-rlk_’r7m;r]k7sla' "7w;l-lk75m ’

Pl (k+1lk+1) = P! (k+ k) +H (k+ DRH(E+1).  where¢, 2 [r,,,0,]", j = a,1,...,m. It can be readily
It is worth noting thatP(k + 1|k + 1) is a function ofu (k) shown that in the transformed coordinate frame the dynamics

and can be computed without knowledge of the observatiff nonlinear in the states, yet affine in the control inputs,
at the next time step, namely(k + 1). The cost functional while the observations are linear time-invariant, speglifjc

J [u(k)] can be chosen to be the D-, A-, or E-optimality crite- 2

rion defined in Definition 1.1, wher& = P~1(k+ 1|k +1). '(t) = fole'O)+ Y filx'®)]w®) +a@'(t) (8)
Ideally, one would like to solve the optimization problem i=1

analytically using Lagrange multipliers. However, the ldean z(t) = H'z'(t) + v(t),
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1 Tl ’ ’ / / / T 0 0 0 0
.fi - [fi,savfi,slv-- -afi,smafi,clk,rafi,clk,sl . "7fi,clk,sm} 0 0 0 0
. T
/ 5 —27,0,, , . T F/z,sj(t) = 0 costls, 0 0 |>
.f(),sj = Ts] ) esj yT's; 9 _— s fO.,clk,r = |:6tr, 0:| — cos 95j — sin Hsj 0 0
T's r2 T

2 j
. T . . . ..
;o —sinf; , CTe T  wherej =a,1,...,m and Ay is block-diagonal consisting
frs,= [O 0, cos s, 7] > Focms, [‘”sw 0} of m + 1 blocks of Ay

Then, the linearized system in (9) is discretized by assgmin

T -
fL. = {07 0, sinf, , - 95]'] F'(t), G'(t), andQ’(t) to be approximately constant over a
5 ! s sampling intervalT, i.e., F'(t) ~ F'(k), G'(t) ~ G'(k),
!/
Frr=Frotes = Foomr = Fhons =0 andQ'(t) ~ Q' (k )_and assuming zero-order hold (ZQH) of
btk Lelloss = 4 2.clk, Zeellesy = E2XA . the control inputs, i.e{u(t) = u(k), k <t <k + 1} to yield
W' = [w, , W, , ..., W, , Wk, Welk,sys - - -» Welk,s, | [39]
T 1 & / ! 1
), = 0.0, 04, . @/ (k+1) = @' (k + 1, k) 2/ (k) + T u(k) + w'(k)
k41
wherei = 0,1,2 and j = a,1,...,m. The transformed T'(k+1,k) é/ eF/(k)[kH—T](;(k) dr,
process noise yectoﬁ/ is zero-mean, white with a power
spectral densityQ’(¢) such that ®'(k+1,k) 2 F®T andw’(k) is a zero-mean white
Q' = diag |:le ,Q’ QL Qs Qettesss - s Qi Sm} stochastic sequence with covariaf@§k + 1, k) given by
k41
~ F/ (k) [k+1—7] & FT(k)[k+1—7
Q ( ) dlag [07 O,qm7 (jy] ‘I’T ({Sj) Q/(k+ 1,]€) :/ e ( )[ +1 ]Q/(k)e ( )[ +1 ]dT
0 0 0 0 Note that the state transition matri®’(k + 1,%) is now a
L1000 0 0 ' matrix exponential, sinc&(¢) is assumed to be constant over
v (ﬁsj) =10 0 cosf, sinf, |+ J=al,....om T The matrix exponential can be factored as
—sin @, cos Oy .
00 —/—— —~ &' (k+1,k) = B(k) T T Fiwi(h) - m(k) 2 (TFo(k),
h/T 0O ... 0 no 0 0 Note that the above factorization holds, since the matrices
O W 0wt L 0 Fj(k) and 37, Fi(k)u;(k) can be readily shown to be
H — . clir elk,s1 commutative (see Appendix A). Next, the matrix exponential
: : : : : : eT Lo Filkui(k) js expressed as a Taylor series and assuming
0 0 - hl h’CTk)T 0o - hgk . sufficiently small values off’, the series is truncated to the
first-order power ifil". Therefore, the state transition matrix is
/T A _ ’

Next, the nonlinear dynamics in (8) is Imearized around 9

nominalz$ andu® to yield the linear time-varying system &' (k+1,k) =Z(k) + TZE(/C)FQ(/C)ui(k).
d F ’ ’ ~/ i=1
dt&l3 (1) = Fi(#)oa'(t) + G'(t)ou(t) + @' (), (9) Proceeding in a similar manner faQ'(k + 1,k), it is
wheredx’ £ ' — x° and du £ u — u®. It can be readily Straightforward to show tha®'(k + 1,k) ~ T Q'(k).
shown thatF’(t) is affine in the control inputs, namely Next, the predicted error covariance is given by
P'(k+1]k) = & (k+1,k)P'(k|k)® (k4 1,k)

, . , , , Note that to evaluat®’(k + 1|k), which corresponds to the
Fo(t)=diag [Fo (), Fo,0, (1), - Fo o, (1), Actes] transformed state’ (k), one need®’ (k|k) in the transformed
Fj(t)=diag [F; , (1), F (1), .. F; on(1),00mi2)x(2m+2)] State-space. Given the state estimaté|k) in the original
state-space and associatBgk|k), one can find the trans-

0 0 1 0 formedP’(k|k) via linearization around:(k|k) as
0 0 0 1
, \ :
Foo)=| 6, 0 0 2rb, 2’ = g(x) ~ g[@(k|k)] + Vag ()| [z — &(K[K)].
275 0s; 0 Os; 2 x=a(k|k)
r2 Ts. Ts.
- O] N ’ 0 0 ’ Recognizing thatcov [z — &(k|k)] = P(k|k) and defining
2 ;
/ 0 0 0 0 A(k) = Vag(x)| o=z k), Yields
1s,(0) = 0 —sinfsj 0 0 P'(k+1|k) = A(K)P(k + 1|k)AT (k). (10)
SNVs 987 . : o .
| 2 T, 00 Explicit expression forA (k) is given in Appendix B.
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Substituting for®’ (k+1, k) and truncating to the first-order
power inT', it can be shown that the predicted error covariance
is affine in the control inputs, specifically

P/(k+1|k) = Py(k + 1|k) + > Pi(k + 1lk)ui(k)

i=1

Qr,max

m

P)(k + 1|k) £ Z(E)P'(k|k)ET (k) + Q' (k + 1,k) @ )
a )
/ A =) / /T =T

Pi(k + 1|k) =T|E(k)P (k|k)Fl (F)E (k) Fig. 3. (a) Black shaded region: control feasibility regfoninformation- and
innovation-based optimization. (b) Dashed curve: extrewiats of feasibility

+ E(k)F;(k:)P'(Mk)ET(k)}, 1=1,2. region over which optimal solution of innovation-basedimyation lies.

Finally, the observation innovatio#f (k + 1) £ z(k + 1) —
2'(k + 1|k), where 2'(k + 1|k) = H'2'(k + 1]k), has a
corresponding covarianc® (k + 1) given by

Hz + v, wherev ~ N (0,R) is independent ofe. Then,
the mutual information between and z, which measures the
expected reduction in entropy in one random vector due to the

S'(k+1)=H7P'(k+ 1]k)H" + R, observation of another, can be shown through the Kullback-
) T Leibler divergence to be given by [42]
and (7) follows withSj(k + 1) = HP((k + 1|k)H' + R and
S'(k+1)=HP}(k+ 1|k)HT, fori=1,2. [ | e.2) = 1 det [Po4 + HTR™'H] 1)
The special affine form of the innovation matrix in (7) ’ 2 & det [p;;]
yieIQs the following resul_t r_ege}rding the optimal solutiof 1 det [H P, HT + R]
the innovation-based optimization problems. = 3 log det [R] (12)

Theorem 111.2. The optimal solutions for the innovation-
based greedy motion planning problems: MILD, MIT, an
MIME lie on the extreme points of the feasibility region.

herefore, to maximizel(x,z) one can either maximize
e right-hand side of (11) or (12). Interpreti®),, as the
prediction error covariance, which is not a function of
Proof: First, it easy to see that the velocity and acceleras shown in Subsection 1lI-C, it can be established that the
tion constraints are convex in the optimization variablg), former maximization is nothing but D-optimality, while the
since the norm of a vector is convex and the composition laftter maximization is MILD.
a convex function with an affine mapping preserves convex-
ity [40]. Next, we show that MILD is a concave function, IV. SIMULATION RESULTS
whereas MIT and MIME are convex functions. To this end, _ . . . . .
This section presents simulation results comparing the

concavity of MILD follows from Lemma C.1 in Appendix C. ) ! . . . ,
Moreover, since MIT is affine in the optimization variable, igreedy information- and innovation-based receiver motion

is both convex and concave. Convexity of MIME follows fronpUrategies. A receiver W'th an unknown |n|t_|al state vemas_ .
Lemma C.2 in Appendix C. Hence, in the MILD case, one igssumed to be dropped in an OpNav environment comprising

maximizing a concave functional subject to convex constsai ggpancho(rj ?k? P Vgtgpa krjt(r)lwn l'(mt'al s_ta.tt.e lvetct;)r, IathIGd
But, since the logarithm functional is strictly monotoriga ar @n ree S With ‘unknown Inftial state vectors,

3 : ) ’
increasing, the maximum is attained at the extreme poiA?@eled {SOP:};_,. The receivers and SOPs'’ clocks were
of the feasibility region. In the MIT and MIME case, one iSassumed to be temperature-compensated and oven-cashtrolle

maximizing convex functionals subject to convex constsin crystal oscillators (TCXGC and OCXOs), respectively. For

therefore, the maximum is attained at the extreme points E)L'lrposes of numerical stability, the clock error statesewer
the feasiE)iIity region [41] efined to becdt and cdt. The simulation settings are given
: in Table I.

The significance of Theorem 111.2 is that the innovation-" _ ht ) traiector imulated. The first t
based optimization problems reduce to search problems vig-'ght receiver trajectories were simulated. The first two

function evaluations. Figure 3(a) illustrates the confied- were open-loop: one in WhiCh the receiver's maneuvers were
sibility region over which the information- and innovation chosen randomly at each time step from the feasibility regio

based optimization functionals need to be considered.rEigC(Vh'k'}.In the other, tggonllane_llf\éers were ;pecn‘]ed S0 to trgvers
3(b) illustrates the extreme points of the feasibility cegover a trajectory aroun a- The remaining six trajectories

which the optimal solution of the innovation-based functits were _clos_ed-loop a_ccor_ding to F_igur_e 1 wih{u(k)] being
lies, which can be found straightforwardly. D-optimality, A-optimality, E-optimality, MILD, MIT, and
MIME. To avoid converging to a local minimum, the optimal

solutions of the information-based functionals were found
by gridding the control feasibility region and performing a
Under linear Gaussian assumptions, one can show that éxhaustive-search, instead of solving through genenglgsae
optimality and MILD are equivalent. To see this, consideo twnumerical optimization solvers. On the other hand, thenogtti
jointly Gaussian random vectossand z with auto- and cross- solutions of the innovation-based functionals were fougd b
covariances given b®.., P.., andP,.. Assume that: = searching over the extreme points of the feasibility regieor

E. Relationship between D-Optimality and MILD
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the same gridding resolution, the innovation-based methatie receiver andOP; along with the total RMSEE over the
were thirty times faster than the information-based. Fégdir simulation horizon (50 seconds). Similar RMSEE and total
illustrates the trajectories for a single simulation run.

TABLE |
SIMULATION SETTINGS

Parameter Value
x,(0) [0, 0, 0, 0, 100, 10]"
xs, (0) [0, 150, 10, 0.1]7
x5, (0) [100, —150, 20, 0.2]7
x5, (0) [200, 200, 30, 0.3]"
(1)) [—150, 50, 40, 0.4]T
&r (0] — 1) ~ N [2-(0), P (0] — 1)]
&, (0] — 1) ~ N[5, (0),Ps, (0] = 1)], i=1,2,3
P, (0] —1) (10%) - diag [1,1,1072,102,1,1072]
P, (0] — 1) (10%) - diag [1,1,1,1071], i=1,2,3
{hO,r, h—2,7‘} {2 X 107197 2 X 10720}
ho,s;s h—2,s; {8x10720,4%x 1072}, j=4a,1,2,3
e, dy 0.1 (m/s%)?
R diag [400, 500, 600, 700] m?
{'Umax, amax} {20 m/s, 5m/52}
T 0.1s
200 ) 2007
200 [ ]
150.0: 15004
1000 1000-|
{m SOP, 1
| A& SOP, A 0 A
00| ® SOP,
SOP; (a) ’ (b)
= -2000 ISUU IUUU -500 UU SUU IUUU IEUU ZUUU 2500 ZuUUZUUU —ldUU Uh lﬂbﬂ Zﬂbﬂ 3000
1500 200 )
-100.0-| -500-| A ((1)
2 ]
350.0-| 2000-| ()
250.0- 00
i
50.0-| 004
1 500 A
001 (f)
2500 2000-| [ ]
2000 150.0-
15004 1000+
50.0-
o 500+ A
oo 1000
-50.0 -1500-| 1
A0 e e a0 Sho b 0 mho 1ho e mho O on e a0 ho b slo who 15h0 zagulzsuu
Fig. 4. Receiver trajectories due to (a) random, (b) prbsdii (c) D-

optimality, (d) MILD, (e) A-optimality, (f) MIT, (g) E-optinality, and (h)
MIME motion planning strategies.

RMSEE results were reported f80P,; and SOPs3.

The following conclusions can be drawn from these results.
First, optimization-based motion planning yielded sugeri
results to open-loop random and predefined trajectorieghwh
highlights the need to optimize the receiver trajectory for
optimal information gathering. Second, there was a cosrsist
performance ordering of the optimization-based methods: D
optimality and MILD yielded the best results, followed by
A-optimality and MIT, while E-optimality and MIME yielded
the worst results. Note that the only exception to this drder
was in the receiver and SOP clock drift RMSEE for A-
optimality, E-optimality, MIT, and MIME. Nevertheless, gh
differences among these four methods for the clock drift
states RMSEE were practically negligible. Third, while D-
optimality and MILD were comparable, D-optimality was
slightly superior, despite the fact that they were showneo b
equivalent under certain assumptions in Subsection s
can be explained by recalling that in deriving MILD, some
simplifying assumptions were invoked, namely droppingi®r
involving higher-order powers of’ and approximating the
matrix exponential via a Taylor Series expansion. Addibtyn
D-optimality and MILD equivalency was shown to hold for
the Gaussian case, which does not hold here due to the
nonlinearity in the observations.

V. CONCLUSIONS

This paper studied the following problem. A receiver with
no a priori knowledge about its own states is dropped in
an OpNav environment comprising multiple terrestrial SOPs
The receiver has na priori knowledge of the state vectors
of these SOPs, except for one anchor SOP. The receiver
draws pseudorange observations from the SOPs. Assuming
that the receiver can prescribe its maneuvers, what greedy
motion planning strategy should the receiver adopt to build
a high-fidelity signal landscape map of the environmentevhil
simultaneously localizing itself within this map in time dan
space with high accuracy? Six information- and innovation-
based optimization measures were derived. On one hand, it
was demonstrated that the information-based measurestid n
possess convexity properties, which necessitates relging
general-purpose numerical constrained nonlinear opéitiaz
solvers. On the other hand, under suitable reformulationls a
mild approximations, it was shown that the innovation-lblase
measures possessed strong convexity properties, which re-
duced solving the associated optimization problems tockear
ing over the extreme points of the feasibility regions. Nume
cal simulation results were presented comparing the sitestr
gies and two open-loop strategies in terms of the RMSEE. It
was demonstrated that all six strategies outperformedwbe t
open-loop strategies. Among the six strategies, D-optiynal
and MILD performed the best, followed by A-optimality and
MIT, followed by E-optimality and MIME. Future work will
study the analytical connections between A-optimality and

To compare the performance of the eight trajectories, thetween MIT and E-optimality and MIME. Also, distributiyit
root mean squared estimation error (RMSEE) criterion wasoperties of MILD, MIT, and MIME will be explored for the
chosen. Figures 5-11 show the RMSEE for 100 MC runs fease of multiple receivers.
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APPENDIXA
COMMUTATIVITY OF DYNAMICS MATRICES

Fact A.1. The matricesF|, and Zfil F,u; are commutative.

Proof: Denoting A = Fj, andB £
calculations reveal that

AB = BA =diag [F3 S0

3517...7

0 0 0 O
0 0 0 0
By = 0 00 0
2 fsj 9Sj (u1 sir;fsj —u2 cos Hsj) 00 0
sj
wherej =a,1,...,m.
APPENDIXB
MATRIX BLOCKS FOREQUATION (10)
[ Asa 04><4 04><4 ]
A51 _A-Sl O4><4
A 044 —A
A k — Sm X Sm
(k) Acikr  O2xs 024
O2xa  Aciks, 02x4
| Ooxa  Ozxs Acs,, |
Avy op Ay, 0 0 0 0
=3 c37
A A Aesj-;wr AOS]‘)y’I‘ O O O O
U i Aigye Aigae Argge 000
Aésj--,z'r Aésj,yr Aé g éSjvyr 00
Ty —Ts, Yr —Ys.,;
Aro, =N o= A = A=
”rr rsj-” ”rr "'Sj”
_yT+ys,- Ty —Ts,
o,y = Rg, o= Tt Ko =R, = T
e [ o T
A B [yr(_xr + ISJ-) + &y (yr — Ys; )} (yr — ij)
7“3]';17 3
l|lry — Ts; |
. [yr(xr - xs]') +Zr(~yr + Ys; )} (zr — xs]')
ke [rr —7s; |2
Mg, = {y [ (2 = 25,)% + (yr = ys,)?]

+2&,(x, — x4, ) (Yr
Aés--yr = {x'r [_(IT — Ts; )2 + (yr - ij)Q]
~2p(2r =20 (4r —s,)} [l =7 |1
Ack,r = [ 0254 Ioxo ]

Acks, 2[ 02x2 Inx2 |, j=a,1,....m

—y)} /e =2

Z 1 Fiu;, direct

F5 o 0mi2)x(2mr2)]
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APPENDIXC
LINEAR FUNCTIONALS CONVEXITY PROPERTIES

Lemma C.1. The functional f(x) log [det (Ao +
Z?:l x;A;)], wherex € R" and A; € S™ is concave on
{:13 : Ao + Z?:l ,TiAi - 0}

Proof: Since nonnegative weighting of a concave funcl
tional preserves its concavity, consider the functional

(7]

(8]

n [10]
1
fl@) = —log|det | Ao+ Z;:ciAi
n L [11]
= log{ |det Ao—f—inAi
i=1
2 hfg(w) v
Using the fact that the functional ¢'(x) -
1

—[det (Ao + >, z;A;)]™, where z € R"™ and
A; € S™ is convex on {x:Ag+> " x;A; =0} (14]

hence,g(x) £ —¢'(x) is concave. Recognizing that is
concave and nondecreasing, we conclude fhé& concave, [15]

from applying the composition rule: if () £ h [g(x)], with

h:R —- Randg : R®" — R, then f is concave ifh is
concave and nondecreasing ants concave [40]. m [16]

Lemma C.2. The functionalf (z) = Amax [Ao+ >, 2 A),
wherez € R™ and A; € S™ is convex. (17]
Proof: The functionalf can be expressed as 18]

f@)= sup |y" [Ao+ > mAi)y

lyll2=1 ; [19]

Since f is the point-wise supremum of a family of liner
functionals of z, i.e. y' (Ao + > i_, ;A;)y, indexed by [20]
y € R", and using the fact that the point-wise supremum
of convex functionals is convex, thehis convex. B2
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