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Abstract—Greedy motion planning strategies to enhance situa-
tional awareness in an opportunistic navigation (OpNav) environ-
ment is considered. An OpNav environment can be thought of as
a radio frequency signal landscape within which a receiver locates
itself in time and space by extracting information from ambient
signals of opportunity (SOPs). The receiver is assumed to draw
only pseudorange observations from the SOPs. The following
problem is considered. A receiver with noa priori knowledge
about its own initial states nor the initial states of multiple
SOPs, except for one, is dropped in an OpNav environment.
Assuming that the receiver can prescribe its maneuvers, what
greedy (i.e., one-step look-ahead) motion planning strategy should
the receiver adopt so to optimally build a high-fidelity signal
landscape map of the environment while simultaneously localizing
itself within this map in time and space with high accuracy?
Several information-based and innovation-based motion planning
strategies are studied. It is shown that with proper reformulation,
the innovation-based strategies can be cast as tractable convex
programs, the solution of which is computationally efficient. Sim-
ulation results are presented comparing the various strategies and
illustrating the improvements gained from adopting the proposed
strategies over random and predefined receiver trajectories.

Index Terms—Situational awareness, adaptive sensing, tra-
jectory optimization, motion planning, information gathering,
navigation, signals of opportunity, opportunistic navigation

I. I NTRODUCTION

Situational awareness is defined as the perception of the
elements in the environment within a volume of time and
space, the comprehension of their meaning, and the projection
of their status in the near future [1]. Reliable and accurate
situational awareness is vital in a number of applications,such
as autonomous vehicles, disaster management, environmental
monitoring, social networks, surveillance, and reconnaissance.
Despite the extraordinary advances in global navigation satel-
lite systems (GNSS), their inherent limitations render them
unreliable for situational awareness, particulary indoors, in
deep urban canyons, and in environments under malicious
attacks (e.g., jamming and spoofing) [2], [3].

To overcome the limitations of GNSS and achieve reliable
and accurate situational awareness, the outputs of sensorswith
multiple modalities need to be fused [4], [5]. Motivated by
the plenitude of ambient radio frequency signals in GNSS-
challenged environments, a new paradigm is emerging [6], [7].
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This paradigm, termed opportunistic navigation (OpNav), aims
to extract positioning and timing information from ambient
radio frequency signals of opportunity (SOPs). These signals
include cellular code division multiple access (CDMA) signals
[8], digital television vestigial sideband (VSB) signals [9],
Iridium satellite time division multiple access (TDMA) signals
[10], and orthogonal frequency division multiplexing (OFDM)
signals [11]. In collaborative OpNav (COpNav), multiple Op-
Nav receivers share information to construct and continuously
refine a global signal landscape [12].

The OpNav estimation problem is similar to the simulta-
neous localization and mapping (SLAM) problem in robotics
[13], [14]. Both imagine an agent which, starting with incom-
plete knowledge of its location and surroundings, simultane-
ously builds a map of its environment and locates itself within
that map. Typical SLAM environmental maps are stationary.
In contrast, the OpNav signal landscape is more complex–
it is dynamic and stochastic. The signal landscape map can
be thought of metaphorically as a “jello map,” with the jello
firmer as the receiver and SOPs clocks are more stable.

The observability of COpNav environments comprising
multiple receivers with velocity random walk dynamics mak-
ing pseudorange measurements on multiple SOPs was thor-
oughly analyzed in [15], [16], and the degree of observability,
also known as estimability, of the various states was quantified
in [17]. The effects of allowing receiver-controlled maneuvers
on observability was studied in [18]. It was shown that
receiver-controlled maneuvers reduce the requireda priori
information about the environment for complete observability,
and that the environment is completely observable if the initial
state vector of at least one receiver or one “anchor” SOP is
fully known. While observability is a Boolean property, i.e.
it asserts whether a system is observable or not, it does not
specify which trajectory is best for information gathering, and
consequently estimability. This is the subject of this paper. To
this end, several classical information-based motion strategies
are analyzed and novel innovation-based, computationally-
efficient strategies are introduced. For the sake of simplicity,
this paper considers planar environments. Extensions to three-
dimensions is anticipated to be straightforward.

Optimizing an observer’s path in tracking applications has
been the subject of extensive research [19]–[21]. In such
problems, the observer, which has perfect knowledge about its
own states, is tracking a stationary or a mobile target through
its onboard sensors. The trajectory optimization objective is
to prescribe optimal trajectories for the observer to follow
in order to maintain good estimates about the target’s states.
In SLAM, the problem of trajectory optimization is more in-
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volved, due to the coupling between the localization accuracy
and the map quality [22]–[24].

Optimizing the receiver’s trajectory in OpNav environments
can be thought of as a hybrid of: (i) optimizing an observer’s
path in tracking problems and (ii) optimizing the robot’s path
in SLAM [18]. A particular feature of OpNav is that the quality
of the estimates not only depends on the spatial trajectory
the receiver traverses within the environment, but also on the
velocity with which the receiver traverses such trajectory[25].

An initial receiver trajectory optimization study was con-
ducted in [25]. The following problem was considered. A
receiver with minimala priori knowledge about its own states
and the SOPs’ states is dropped in an OpNav environment.
The receiver is assumed to draw pseudorange observations
from the SOPs. Assuming that the receiver can prescribe
its own maneuvers, what motion planning strategy should
the receiver adopt to build a high-fidelity signal landscape
map of the environment while simultaneously localizing itself
within this map in time and space? To this end, an optimal
closed-loop information-theoretic greedy (i.e., one-step look-
ahead) receiver motion planning strategy was proposed. Three
information measures were studied: D-, A-, and E-optimality.
It was demonstrated that all greedy strategies outperformed
a receiver moving randomly and in a predefined trajectory.
In [18], [26] the greedy motion planning strategy was gen-
eralized into a receding horizon (i.e., multi-step look-ahead)
trajectory optimization, and the effectiveness and limitations of
receding horizon strategy were assessed. Active collaborative
signal landscape map building was addressed in [27]. Several
information fusion and decision making architectures were
studied. It was demonstrated that a hierarchial architecture
possessed a negligible “price of anarchy,” which measures the
solution quality degradation in a decentralized system from a
centralized one.

This paper makes three contributions. The first contri-
bution is to demonstrate that the optimization problems
associated with D-, A-, and E-optimality criteria possess
no convexity properties, which necessitates relying on gen-
eral purpose numerical optimization solvers. Subsequently,
alternative to these classical information-based measures,
innovation-based optimization measures, namely most inno-
vative logarithm-determinant (MILD), most innovative trace
(MIT), and most innovative maximum eigenvalue (MIME)
are proposed. Innovation-based optimization has not received
as much attention in the literature as information-based opti-
mization. The main idea behind innovation-based measures
is that one seeks a measurement that is hard to predict,
i.e., one with high innovation. To the authors’ knowledge,
the only application of innovation-based measures in optimal
information gathering appeared in [28], [29]. However, only
the eigenvalues of the innovation matrix were considered,
which yielded profitable experimental results. Neither analyt-
ical nor numerical justifications was provided. The second
contribution is to show that with proper reformulations and
under mild approximations, MILD, MIT, and MIME possess
strong convexity properties, which reduce the optimization
problems to searching over the extreme points of the feasibility
region. The third contribution is to illustrate the effectiveness

of the proposed strategies through Monte Carlo (MC) simu-
lations and to compare the performance of information-based,
innovation-based, random, and predefined motion strategies.

The remainder of this paper is organized as follows. Section
II describes the OpNav environment dynamics and observation
models. Section III presents optimal information-based and
innovation-based greedy motion planning strategies and estab-
lishes convexity properties of the innovation-based strategies.
Section IV presents simulation results comparing the various
strategies. Concluding remarks are given in Section V.

II. M ODEL DESCRIPTION

A. Dynamics Model

The receiver’s dynamics will be assumed to evolve accord-
ing to the controlled velocity random walk model. An object
moving according to such dynamics in a generic coordinateξ
has the dynamics

ξ̈(t) = u(t) + w̃ξ(t),

whereu(t) is the control input in the form of an acceleration
command and̃wξ(t) is a zero-mean white noise process with
power spectral densitỹqξ, i.e.,

E [w̃ξ(t)] = 0, E [w̃ξ(t)w̃ξ(τ)] = q̃ξ δ(t− τ),

whereδ(t) is the Dirac delta function. The receiver and SOP
clock error dynamics will be modeled according to the two-
state model composed of the clock biasδt and clock driftδ̇t.
The clock error states evolve according to

ẋclk(t) = Aclk xclk(t) + w̃clk(t),

xclk =

[

δt

δ̇t

]

, w̃clk =

[

w̃δt

w̃δ̇t

]

, Aclk =

[

0 1
0 0

]

,

where the elements of̃wclk are modeled as zero-mean, mutu-
ally independent white noise processes and the power spectral
density of w̃clk is given by Q̃clk = diag

[

Sw̃δt
, Sw̃δ̇t

]

. The
power spectraSw̃δt

and Sw̃δ̇t
can be related to the power-

law coefficients{hα}
2
α=−2, which have been shown through

laboratory experiments to be adequate to characterize the
power spectral density of the fractional frequency deviation
y(t) of an oscillator from nominal frequency, which takes
the form Sy(f) =

∑2
α=−2 hαf

α [30]. It is common to
approximate the clock error dynamics by considering only
the frequency random walk coefficienth−2 and the white
frequency coefficienth0, which lead toSw̃δt

≈
h0

2 and
Sw̃δ̇t

≈ 2π2h−2 [31].
The receiver’s state vector will be defined by augmenting

the receiver’s planar positionrr and velocityṙr with its clock
error statesxclk to yield the state space realization

ẋr(t) = Ar xr(t) +Br ur(t) +Dr w̃r(t), (1)

where xr =
[

rTr , ṙ
T

r , δtr, δ̇tr

]T

, rr = [xr, yr]
T, ur =

[u1, u2]
T, w̃r =

[

w̃x, w̃y, w̃δtr , w̃δ̇tr

]T

,

Ar=





02×2 I2×2 02×2

02×2 02×2 02×2

02×2 02×2 Aclk



 , Br=





02×2

I2×2

02×2



 , Dr=

[

02×4

I4×4

]

.

2
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The receiver’s dynamics in (1) are discretized at a constant
sampling periodT [32]. Assuming zero-order hold of the
control inputs, i.e.,{u(t) = u(kT ), kT ≤ t < (k + 1)T }, and
droppingT in the sequel for simplicity of notation yields the
discrete-time (DT) model

xr (k + 1) = Fr xr(k) +Gr ur(k) +wr(k), k = 0, 1, 2, . . .

where wr is a DT zero-mean white noise sequence with
covarianceQr = diag [Qpv, Qclk,r], where

Fr=





I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk



 , Gr=





T 2

2 I2×2

T I2×2

02×2



 , Fclk=

[

1 T
0 1

]

Qclk,r=

[

Sw̃δtr
T+Sw̃δ̇tr

T 3

3 Sw̃δ̇tr

T 2

2

Sw̃δ̇tr

T 2

2 Sw̃δ̇tr
T

]

Qpv =











q̃x
T 3

3 0 q̃x
T 2

2 0

0 q̃y
T 3

3 0 q̃y
T 2

2

q̃x
T 2

2 0 q̃xT 0

0 q̃y
T 2

2 0 q̃yT











.

The SOP will be assumed to emanate from a spatially-
stationary terrestrial transmitter whose state consists of its
planar position and clock error states. Hence, the SOP’s
dynamics can be described by the state space model

ẋs(t) = As xs(t) +Dsw̃s(t), (2)

where xs =
[

rT

s , δts, δ̇ts

]T

, rs = [xs, ys]
T, w̃s =

[

w̃δts , w̃δ̇ts

]T

As =

[

02×2 02×2

02×2 Aclk

]

, Ds =

[

02×2

I2×2

]

.

Discretizing the SOP’s dynamics (2) at a sampling intervalT
yields the DT-equivalent model

xs (k + 1) = Fs xs(k) +ws(k), (3)

where ws is a DT zero-mean white noise sequence with
covarianceQs, and

Fs = diag [I2×2, Fclk] , Qs = diag [02×2, Qclk,s] ,

whereQclk,s is identical toQclk,r, except thatSw̃δtr
andSw̃δ̇tr

are now replaced with SOP-specific spectra,Sw̃δts
andSw̃δ̇ts

,
respectively.

B. Observation Model

To properly model the pseudorange observations, one must
consider three different time systems. The first is true time,
denoted by the variablet, which can be considered equivalent
to Global Positioning System (GPS) time. The second time
system is that of the receiver’s clock and is denotedtr. The
third time system is that of the SOP’s clock and is denotedts.
The three time systems are related to each other according to

t = tr − δtr(t), t = ts − δts(t),

whereδtr(t) andδts(t) are the amounts by which the receiver
and SOP clocks are different from true time, respectively.

The pseudorange observation made by the receiver on an
SOP is made in the receiver time and is modeled according to

ρ(tr) =

‖rr [tr − δtr(tr)]− rs [tr − δtr(tr)− δtTOF]‖2 +

c . {δtr(tr)− δts [tr − δtr(tr)− δtTOF]}+ ṽρ(tr), (4)

where c is the speed of light,δtTOF is the time-of-flight
of the signal from the SOP to the receiver, andṽρ is the
error in the pseudorange measurement, which is modeled as a
zero-mean white Gaussian noise process with power spectral
density r̃ [33]. The clock offsetsδtr and δts in (4) were
assumed to be small and slowly changing, in which case
δtr(t) = δtr [tr − δtr(t)] ≈ δtr(tr). The first term in (4) is the
true range between the receiver’s position at time of reception
and the SOP’s position at time of transmission of the signal,
while the second term arises due to the offsets from true time
in the receiver and SOP clocks.

The observation model in (4) can be further simplified by
converting it to true time and invoking mild approximations,
discussed in [16], to arrive at

ρ(t) ≈ ‖rr(t)− rs(t)‖2 + c · [δtr(t)− δts(t)] + ṽρ(t), (5)

Discretizing the observation equation (5) at a sampling interval
T yields the DT-equivalent observation model

ρ(k) = ‖rr(k)−rs(k)‖2+ c · [δtr(k)− δts(k)]+vρ(k), (6)

wherevρ is a DT zero-mean white Gaussian sequence with
variancer = r̃/T .

C. OpNav Environment Estimator Model

The estimator’s dynamics and observation model for an
OpNav environment comprising a receiver and multiple SOPs
is specified in this subsection. To this end, to satisfy the
observability condition established in [18], the knowledge of
the initial state vector of one anchor SOP, denotedxa, is
assumed. Hence, the estimator’s dynamics model is given by

x (k + 1) = Fx (k) +Gu (k) +w(k),

where x ,
[

xT

r ,x
T

s1
, . . . ,xT

sm

]T

is the estimator’s state
vector,{xsi}

m
i=1 are the state vectors ofm unknown SOPs,

u , ur is the control vector,F = diag [Fr,Fs, . . . ,Fs],
G =

[

GT

r ,02×4m

]T

, and w ,
[

wT

r ,w
T

s1
, . . . ,wT

sm

]T

is
a zero-mean process noise vector with covarianceQ =
diag [Qr,Qs1 , . . . ,Qsm ]. The observation vector has the form
z , [ρsa , ρs1 , . . . , ρsm ]

T, where ρsj is the pseudorange
observation made by the receiver on thejth SOP, wherej =
a, 1, . . . ,m. It is assumed that the observation noise elements
vρsj

are independent; hence, the estimator’s observation noise
covariance is given byR = diag [rsa , rs1 , . . . , rsm ].

III. G REEDY MOTION PLANNING

A. Optimal Receiver Motion Planning Strategy

The objective of the receiver’s optimal motion planning is
to evaluate different sensing actions that the receiver cantake
and choose the action that maximizes the information acquired

3
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about the environment while simultaneously minimizing the
uncertainty about the receiver’s own states. To this end,
the one-step look-ahead, also referred to as greedy, receiver
motion planning will be considered.

The proposed optimal greedy receiver motion planning loop
is depicted in Figure 1, wherevr,max and ar,max are the
maximum speed and acceleration, respectively, with which the
receiver can move. At a particular time stepk, the pseudorange
observations made by the receiver on the various SOPs in
the environment,zsj (k), j = a, 1, . . . ,m, are fused through
an estimator, an extended Kalman filter (EKF) in this case,
which produces the state estimatex̂(k|k) and associated esti-
mation error covarianceP(k|k). The estimate and associated
covariance are fed to an optimizer. The optimizer solves a
nonlinear constrained optimization problem to find the optimal
admissible control inputu⋆(k), which minimizes a functional
J of the control input, subject to the OpNav environment
dynamics and observation modelsΣOpNav and velocity and
acceleration constraints. Note that the optimization variable
is u(k), whereasv⋆(k − 1) is a known constant vector
representing the velocity commands that resulted from solving
the optimization problem at the previous time-stepk − 1 and
has already been applied. The optimal control inputu⋆(k) is
fed back to the receiver to command its maneuver and is also
communicated to the estimator.

Optimal Greedy Control

OpNav Environment: Dynamical System

ΣOpNav :







xr(k + 1) = Fr xr(k) +Gr ur(k) +wr(k)
xsj(k + 1) = Fs xsj(k) +wsj(k)
zj(k) = h

[

xr(k), xsj(k)
]

+ vsj(k), j = a, 1, . . . ,m

Estimator: EKF

z(k)

x̂(k|k), P(k|k)

u
⋆(k)

u
⋆
r(k) =































minimize
ur(k)

J [ur(k)]

subject to ΣOpNav

‖ur(k)‖2 ≤ ar,max

‖ur(k) +
1

T
v
⋆
r(k − 1)‖2 ≤

1

T
vr,max

Fig. 1. Optimal greedy receiver motion planning loop

B. Information and Innovation Optimization Measures

A fundamental challenge in all optimization-based ap-
proaches is the choice of a proper optimization metric. This
subsection presents various information- and innovation-based
optimization metrics. The main issue with these optimization
strategies is the dependency of the objective functional on
the parameters to be estimated. This issue is prevalent in the
literature and is best described by Cochran as: “You tell me
the value ofθ, and I promise to design the best experiment
for estimatingθ [34].”

Information-based metrics are well-established in the lit-
erature and are based on the Shannon entropy and Fisher

information. Broadly speaking, Shannon entropy is relatedto
the volume of a set containing a specified probability mass,
while Fisher information is related to the surface area of this
set [35]. Entropy measures the compactness, and thus the
informativeness, of a distribution. The entropy of a random
vectorx with distributionp(x) is defined as [36]

H(x) , −

∫ ∞

∞

p(x) log[p(x)]dx.

The mutual information gain after an actionu is defined as
∆I(u) , H(x)−H(x|u), whereH(x|u) is the conditional
entropy after actionu. Thus, ∆I(u) is a measure of the
reduction in the uncertainty inx due to the actionu. A multi-
variate Gaussian random vectorx has entropy proportional
to the logarithm of the determinant of its covariance matrix
P, namelyH(x) = 1

2 log[(2πe)
n det(P)]. Therefore, for a

Gaussian random vectorx(k) with covarianceP(k), it can be
shown that to maximize the mutual information after an action
u(k), one needs to solve the optimization problem

maximize
u(k)

log det

[

Y[k + 1|u(k)]

Y(k)

]

,

where Y(k) , P−1(k) is the information matrix and
Y[k + 1|u(k)] is the information matrix after actionu(k).
Recognizing thatY(k) corresponds to the Fisher information
matrix, one can establish the connection between Shannon
entropy and Fisher information: minimization of Shannon
entropy is equivalent to maximization of Fisher information.
This is the basis of the so-called D-optimality criterion. Some
of the most common information-based optimization measures
are defined next [37].

Definition III.1. Given an information matrix,Y, the D-, A-,
and E-optimality criteria are defined as
D-optimality: is equivalent to minimization of the volume of
the uncertainty ellipsoid, and is given by

minimize J = − log det [Y] .

A-optimality: is equivalent to minimization of the average
variance of the estimates, and is given by

minimize J = tr
[

Y−1
]

.

E-optimality: is equivalent to minimization of the length of the
largest axis of the uncertainty ellipsoid, and is given by

minimize J = λmax

[

Y−1
]

,

whereλmax is the largest eigenvalue.

In contrast to the information-based criteria, which sought
to minimize a functional of the information matrix, the
innovation-based criteria seek to maximize a functional of
the innovation matrix. Intuitively, one seeks the receiverma-
neuver that yields the most observation innovation, i.e., the
“most difficult” observation to predict. This paper introduces
the innovation-based optimization criteria: most innovative
logarithm-determinant (MILD), most innovative trace (MIT),
and most innovative maximum eigenvalue (MIME), which are
defined next.

4
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Definition III.2. Given an innovation matrix,S, the MILD,
MIT, and MIME criteria are defined as
MILD: is equivalent to maximization of the volume of the
innovation ellipsoid, and is given by

maximize J = log det [S] .

MIT: is equivalent to maximization of the average innovations,
and is given by

maximize J = tr [S] .

MIME: is equivalent to maximization of the length of the
largest axis of the innovation ellipsoid, and is given by

maximize J = λmax [S] ,

whereλmax is the largest eigenvalue.

C. Information-Based Optimal Motion Planning

The information-based motion planning optimization prob-
lems are formulated in this subsection. Given the estimate
x̂(k|k) and associated estimation error covarianceP(k|k), the
predicted state vector̂x(k + 1|k) and associated prediction
error covarianceP(k + 1|k) are

x̂(k + 1|k) = Fx̂(k|k) +Gu(k)

P(k + 1|k) = FP(k|k)FT +Q.

Note thatP(k+1|k) is not a function ofu(k). The observation
Jacobian matrix, evaluated atx̂(k + 1|k), is given by

H =











hT

1 (r̂r,u, rsa) 01×4 · · · 01×4

hT

1 (r̂r,u, r̂s1) hT

2 (r̂r,u, r̂s1) · · · 01×4

...
...

. . .
...

hT

1 (r̂r,u, r̂sm) 01×4 · · · hT

2 (r̂r,u, r̂sm)











hT

1 (rr,u, rsj ) ,
[

g1(rr,u, rsj ) g2(rr,u, rsj ) 0 0 c 0
]

hT

2 (rr,u, rsj ) ,
[

−g1(rr,u, rsj ) −g2(rr,u, rsj ) −c 0
]

g1(rr,u, rsj ) ,
xr + T ẋr +

T 2

2 u1 − xsj

‖rr + T ṙ + T 2

2 u− rsj‖2

g2(rr,u, rsj ) ,
yr + T ẏr +

T 2

2 u2 − ysj

‖rr + T ṙ + T 2

2 u− rsj‖2
,

where j = a, 1, . . . ,m, and the time dependency has been
dropped above for compactness of notation, namelyH =
H(k + 1), r̂r = r̂r(k + 1|k), u = u(k), rsa = rsa(k),
r̂sj = r̂sj (k + 1|k). The updated covariance matrix is given
by

P−1(k+1|k+1) = P−1(k+1|k)+HT(k+1)R−1H(k+1).

It is worth noting thatP(k+1|k+1) is a function ofu(k)
and can be computed without knowledge of the observation
at the next time step, namelyz(k + 1). The cost functional
J [u(k)] can be chosen to be the D-, A-, or E-optimality crite-
rion defined in Definition III.1, whereY = P−1(k+1|k+1).

Ideally, one would like to solve the optimization problem
analytically using Lagrange multipliers. However, the problem

quickly becomes intractable as more SOPs are present in
the environment. If no analytical solution can be obtained,
one typically resorts to numerical optimization solvers. Nev-
ertheless, convexity properties of the problem are sought,if
possible, guaranteeing global optimality of the solution and
enabling utilization of efficient numerical convex solvers, such
as CVX [38]. PlottingJ [u(k)] reveals that the D-, A-, and E-
optimality criteria are neither convex nor concave as illustrated
in Figure 2 for a random OpNav environment comprising a
receiver and four SOPs. This necessitates relying on general-
purpose numerical constrained nonlinear optimization solvers,
which are computationally intensive and may converge to a
local minimum.

u1(k)
u
2(k)

lo
g
d
et
[P

(k
+
1|
k
+
1)
]

tr
[P

(k
+
1|
k
+
1)
]

λ
m
a
x
[P

(k
+
1|
k
+
1)
]

u1(k)
u
2(k) u1(k)

u
2(k)

Fig. 2. D-, A-, and E-optimality optimization functionals for an OpNav
environment with a receiver and four SOPs.

D. Innovation-Based Optimal Motion Planning

This subsection formulates the innovation-based optimiza-
tion problems and shows that with proper reformulation and
reasonable approximations such optimization problems have
strong convexity properties. Moreover, it is shown that the
MILD, MIT, and MIME optimization problems reduce to
searching over the extreme points of the feasibility region.

Theorem III.1. For a sufficiently small sampling periodT and
with proper reformulation, the innovation matrixS(k + 1) is
affine in the control inputs, specifically

S(k + 1) = S0(k + 1) +

2
∑

i=1

Si(k + 1)ui(k). (7)

Proof: First, consider transforming the receiver and SOP
dynamics in (1)-(2) and observation model in (5) into a polar
coordinate frame centered at the receiver(xr , yr), such that
(xj , yj) 7→ (rsj , θsj ), wherexj , xr − xsj , yj , yr − ysj ,
and
{

rsj =
√

x2
j + y2j

θsj = atan2 (yj, xj)
⇔

{

xj = rsj cos θsj
yj = rsj sin θsj

where atan2(y, x) is interpreted as the unam-
biguous four-quadrant arctan function. Hence, the
transformed state has the formx′ , g (x) =
[

ξTsa , ξ̇
T

sa
, ξTs1 , ξ̇

T

s1
, . . . , ξTsm , ξ̇

T

sm
,xT

clk,r,x
T

clk,s1
, . . . ,xT

clk,sm

]T

,

whereξsj ,
[

rsj , θsi
]T

, j = a, 1, . . . ,m. It can be readily
shown that in the transformed coordinate frame the dynamics
are nonlinear in the states, yet affine in the control inputs,
while the observations are linear time-invariant, specifically

ẋ′(t) = f ′
0 [x

′(t)] +
2
∑

i=1

f ′
i [x

′(t)] ui(t) + w̃′(t) (8)

z(t) = H′x′(t) + ṽ(t),

5
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f ′
i =

[

f ′
i,sa

,f ′
i,s1

, . . . ,f ′
i,sm

,f ′
i,clk,r,f

′
i,clk,s1 . . . ,f

′
i,clk,sm

]T

f ′
0,sj =

[

ṙsj , θ̇sj , rsj θ̇
2
sj
,
−2 ṙsj θ̇sj

rsj

]T

, f ′
0,clk,r =

[

δ̇tr, 0
]T

f ′
1,sj =

[

0, 0, cos θsj ,
− sin θsj

rsj

]T

, f ′
0,clk,sj =

[

δ̇tsj , 0
]T

f ′
2,sj =

[

0, 0, sin θsj ,
cos θsj
rsj

]T

f ′
1,clk,r = f ′

1,clk,sj = f ′
2,clk,r = f ′

2,clk,sj = 02×1

w̃′ =
[

w̃′
sa
, w̃′

s1
, . . . , w̃′

sm
, w̃clk,r, w̃clk,s1 , . . . , w̃clk,sm

]T

w̃′
sj

=
[

0, 0, w̃′
1,sj , w̃

′
2,sj

]T

,

where i = 0, 1, 2 and j = a, 1, . . . ,m. The transformed
process noise vector̃w′ is zero-mean, white with a power
spectral densitỹQ′(t) such that

Q̃′ = diag
[

Q̃′
sa
, Q̃′

s1
, . . . , Q̃′

sm
, Q̃clk,r, Q̃clk,s1 , . . . , Q̃clk,sm

]

Q̃′
sj

= Ψ
(

ξsj

)

diag [0, 0, q̃x, q̃y]Ψ
T

(

ξsj

)

Ψ
(

ξsj

)

,











0 0 0 0
0 0 0 0
0 0 cos θsj sin θsj

0 0
− sin θsj

rsj

cos θsj
rsj











, j = a, 1, . . . ,m

H′ =











h′T
sa

0 · · · 0 h′T
clk,r 0 · · · 0

0 h′T
s1

· · · 0 h′T
clk,r h′T

clk,s1
· · · 0

...
...

. . .
...

...
...

.. .
...

0 0 · · · h′T
sm

h′T
clk,r 0 · · · h′T

clk,sm











h′T
sj

, [ 1, 0, 0, 0 ] , h′T
clk,r , [ c, 0 ] , hT

clk,sj = −h′T
clk,r.

Next, the nonlinear dynamics in (8) is linearized around
nominalxo

j anduo to yield the linear time-varying system

d

dt
δx′(t) = F′(t)δx′(t) +G′(t)δu(t) + w̃′(t), (9)

whereδx′ , x′ − xo and δu , u − uo. It can be readily
shown thatF′(t) is affine in the control inputs, namely

F′(t) = F′
0(t) +

2
∑

i=1

F′
i(t)ui(t)

F′
0(t)=diag

[

F′
0,sa(t),F

′
0,s1(t), . . . ,F

′
0,sm(t),Aclks

]

,

F′
i(t)=diag

[

F′
i,sa

(t),F′
i,s1

(t), . . . ,F′
i,sm

(t),0(2m+2)×(2m+2)

]

F′
0,sj(t) =













0 0 1 0
0 0 0 1

θ̇2sj 0 0 2 rsj θ̇sj
2 ṙsj θ̇sj

r2sj
0

−2 θ̇sj
rsj

−2ṙsj
rsj













F′
1,sj(t) =











0 0 0 0
0 0 0 0
0 − sin θsj 0 0

sin θsj
r2sj

− cos θsj
rsj

0 0











F′
2,sj(t) =











0 0 0 0
0 0 0 0
0 cos θsj 0 0

− cos θsj
r2sj

− sin θsj
rsj

0 0











,

wherej = a, 1, . . . ,m andAclks is block-diagonal consisting
of m+ 1 blocks ofAclk.

Then, the linearized system in (9) is discretized by assuming
F′(t), G′(t), andQ̃′(t) to be approximately constant over a
sampling intervalT , i.e., F′(t) ≈ F′(k), G′(t) ≈ G′(k),
and Q̃′(t) ≈ Q̃′(k), and assuming zero-order hold (ZOH) of
the control inputs, i.e.,{u(t) = u(k), k ≤ t < k + 1} to yield
[39]

x′(k + 1) = Φ′(k + 1, k)x′(k) + Γ′ u(k) +w′(k)

Γ′(k + 1, k) ,

∫ k+1

eF
′(k)[k+1−τ ] G(k) dτ,

Φ′(k + 1, k) , eF
′(k)T , and w′(k) is a zero-mean white

stochastic sequence with covarianceQ′(k + 1, k) given by

Q′(k + 1, k) =

∫ k+1

eF
′(k)[k+1−τ ]Q̃′(k)eF

′T(k)[k+1−τ ]dτ.

Note that the state transition matrixΦ′(k + 1, k) is now a
matrix exponential, sinceF(t) is assumed to be constant over
T . The matrix exponential can be factored as

Φ′(k + 1, k) = Ξ(k) eT
∑

2

i=1
F

′

i(k)ui(k), Ξ(k) , eTF
′

0
(k).

Note that the above factorization holds, since the matrices
F′

0(k) and
∑2

i=1 F
′
i(k)ui(k) can be readily shown to be

commutative (see Appendix A). Next, the matrix exponential
eT

∑
2

i=1
F

′

i(k)ui(k) is expressed as a Taylor series and assuming
sufficiently small values ofT , the series is truncated to the
first-order power inT . Therefore, the state transition matrix is
expressible as

Φ′(k + 1, k) = Ξ(k) + T

2
∑

i=1

Ξ(k)F′
i(k)ui(k).

Proceeding in a similar manner forQ′(k + 1, k), it is
straightforward to show thatQ′(k + 1, k) ≈ T Q′(k).

Next, the predicted error covariance is given by

P′(k + 1|k) = Φ′(k + 1, k)P′(k|k)Φ′T(k + 1, k)

+Q′(k + 1, k).

Note that to evaluateP′(k + 1|k), which corresponds to the
transformed statex′(k), one needsP′(k|k) in the transformed
state-space. Given the state estimatex̂(k|k) in the original
state-space and associatedP(k|k), one can find the trans-
formedP′(k|k) via linearization around̂x(k|k) as

x′ = g(x) ≈ g [x̂(k|k)] +∇xg(x)

∣

∣

∣

∣

∣

x=x̂(k|k)

· [x− x̂(k|k)] .

Recognizing thatcov [x− x̂(k|k)] = P(k|k) and defining
Λ(k) , ∇xg(x)|x=x̂(k|k), yields

P′(k + 1|k) = Λ(k)P(k + 1|k)ΛT(k). (10)

Explicit expression forΛ(k) is given in Appendix B.
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Substituting forΦ′(k+1, k) and truncating to the first-order
power inT , it can be shown that the predicted error covariance
is affine in the control inputs, specifically

P′(k + 1|k) = P′
0(k + 1|k) +

2
∑

i=1

P′
i(k + 1|k)ui(k)

P′
0(k + 1|k) , Ξ(k)P′(k|k)ΞT(k) + Q′(k + 1, k)

P′
i(k + 1|k) , T

[

Ξ(k)P′(k|k)F′T
i (k)ΞT(k)

+Ξ(k)F′
i(k)P

′(k|k)ΞT(k)
]

, i = 1, 2.

Finally, the observation innovatioñz′(k+ 1) , z(k+1)−
ẑ
′(k + 1|k), where ẑ

′(k + 1|k) = H′x̂
′(k + 1|k), has a

corresponding covarianceS′(k + 1) given by

S′(k + 1) = H′P′(k + 1|k)H′T +R,

and (7) follows withS′
0(k+1) = HP′

0(k+1|k)HT +R and
S′
i(k + 1) = HP′

i(k + 1|k)HT, for i = 1, 2.
The special affine form of the innovation matrix in (7)

yields the following result regarding the optimal solutionof
the innovation-based optimization problems.

Theorem III.2. The optimal solutions for the innovation-
based greedy motion planning problems: MILD, MIT, and
MIME lie on the extreme points of the feasibility region.

Proof: First, it easy to see that the velocity and accelera-
tion constraints are convex in the optimization variableu(k),
since the norm of a vector is convex and the composition of
a convex function with an affine mapping preserves convex-
ity [40]. Next, we show that MILD is a concave function,
whereas MIT and MIME are convex functions. To this end,
concavity of MILD follows from Lemma C.1 in Appendix C.
Moreover, since MIT is affine in the optimization variable, it
is both convex and concave. Convexity of MIME follows from
Lemma C.2 in Appendix C. Hence, in the MILD case, one is
maximizing a concave functional subject to convex constraints.
But, since the logarithm functional is strictly monotonically
increasing, the maximum is attained at the extreme points
of the feasibility region. In the MIT and MIME case, one is
maximizing convex functionals subject to convex constraints;
therefore, the maximum is attained at the extreme points of
the feasibility region [41].

The significance of Theorem III.2 is that the innovation-
based optimization problems reduce to search problems via
function evaluations. Figure 3(a) illustrates the controlfea-
sibility region over which the information- and innovation-
based optimization functionals need to be considered. Figure
3(b) illustrates the extreme points of the feasibility region over
which the optimal solution of the innovation-based functionals
lies, which can be found straightforwardly.

E. Relationship between D-Optimality and MILD

Under linear Gaussian assumptions, one can show that D-
optimality and MILD are equivalent. To see this, consider two
jointly Gaussian random vectorsx andz with auto- and cross-
covariances given byPxx, Pzz , andPxz. Assume thatz =

u1

u2

ar,max

1

T
vr,max

u(k)

−

1

T
v(k − 1)

(a) (b)

u1

u2

ar,max

1

T
vr,max

u(k)

−

1

T
v(k − 1)

Fig. 3. (a) Black shaded region: control feasibility regionfor information- and
innovation-based optimization. (b) Dashed curve: extremepoints of feasibility
region over which optimal solution of innovation-based optimization lies.

Hx + v, wherev ∼ N (0,R) is independent ofx. Then,
the mutual information betweenx andz, which measures the
expected reduction in entropy in one random vector due to the
observation of another, can be shown through the Kullback-
Leibler divergence to be given by [42]

I(x, z) =
1

2
log

det
[

P−1
xx

+HTR−1H
]

det
[

P−1
xx

] (11)

=
1

2
log

det
[

HPxxHT +R
]

det [R]
. (12)

Therefore, to maximizeI(x, z) one can either maximize
the right-hand side of (11) or (12). InterpretingPxx as the
prediction error covariance, which is not a function ofu

as shown in Subsection III-C, it can be established that the
former maximization is nothing but D-optimality, while the
latter maximization is MILD.

IV. SIMULATION RESULTS

This section presents simulation results comparing the
greedy information- and innovation-based receiver motion
strategies. A receiver with an unknown initial state vectorwas
assumed to be dropped in an OpNav environment comprising
an anchor SOP with a known initial state vector, labeled
SOPa, and three SOPs with unknown initial state vectors,
labeled {SOPi}

3
i=1. The receiver’s and SOPs’ clocks were

assumed to be temperature-compensated and oven-controlled
crystal oscillators (TCXO and OCXOs), respectively. For
purposes of numerical stability, the clock error states were
defined to becδt and cδ̇t. The simulation settings are given
in Table I.

Eight receiver trajectories were simulated. The first two
were open-loop: one in which the receiver’s maneuvers were
chosen randomly at each time step from the feasibility region,
while in the other, the maneuvers were specified so to traverse
a trajectory aroundSOPa. The remaining six trajectories
were closed-loop according to Figure 1 withJ [u(k)] being
D-optimality, A-optimality, E-optimality, MILD, MIT, and
MIME. To avoid converging to a local minimum, the optimal
solutions of the information-based functionals were found
by gridding the control feasibility region and performing an
exhaustive-search, instead of solving through general-purpose
numerical optimization solvers. On the other hand, the optimal
solutions of the innovation-based functionals were found by
searching over the extreme points of the feasibility region. For

7
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the same gridding resolution, the innovation-based methods
were thirty times faster than the information-based. Figure 4
illustrates the trajectories for a single simulation run.

TABLE I
SIMULATION SETTINGS

Parameter Value

xr(0) [0, 0, 0, 0, 100, 10]T

xsa (0) [0, 150, 10, 0.1]T

xs1
(0) [100, −150, 20, 0.2]T

xs2
(0) [200, 200, 30, 0.3]T

xs3
(0) [−150, 50, 40, 0.4]T

x̂r(0| − 1) ∼ N [xr(0),Pr(0| − 1)]
x̂si (0| − 1) ∼ N [xsi (0),Psi (0| − 1)] , i = 1, 2, 3
Pr(0| − 1) (104) · diag

[

1, 1, 10−2, 10−2, 1, 10−2
]

Psi (0| − 1) (103) · diag
[

1, 1, 1, 10−1
]

, i = 1, 2, 3
{h0,r , h−2,r}

{

2× 10−19, 2× 10−20
}

{

h0,sj
, h

−2,sj

}

{

8× 10−20, 4× 10−23
}

, j = a, 1, 2, 3

q̃x, q̃y 0.1 (m/s2)2

R diag [400, 500, 600, 700] m2

{vmax, amax}
{

20m/s, 5m/s2
}

T 0.1 s

(a) (b)

SOPa

SOP1

SOP2

SOP3

(d)(c)

(f)(e)

(g) (h)

Fig. 4. Receiver trajectories due to (a) random, (b) prescribed, (c) D-
optimality, (d) MILD, (e) A-optimality, (f) MIT, (g) E-optimality, and (h)
MIME motion planning strategies.

To compare the performance of the eight trajectories, the
root mean squared estimation error (RMSEE) criterion was
chosen. Figures 5-11 show the RMSEE for 100 MC runs for

the receiver andSOP1 along with the total RMSEE over the
simulation horizon (50 seconds). Similar RMSEE and total
RMSEE results were reported forSOP2 andSOP3.

The following conclusions can be drawn from these results.
First, optimization-based motion planning yielded superior
results to open-loop random and predefined trajectories, which
highlights the need to optimize the receiver trajectory for
optimal information gathering. Second, there was a consistent
performance ordering of the optimization-based methods: D-
optimality and MILD yielded the best results, followed by
A-optimality and MIT, while E-optimality and MIME yielded
the worst results. Note that the only exception to this ordering
was in the receiver and SOP clock drift RMSEE for A-
optimality, E-optimality, MIT, and MIME. Nevertheless, the
differences among these four methods for the clock drift
states RMSEE were practically negligible. Third, while D-
optimality and MILD were comparable, D-optimality was
slightly superior, despite the fact that they were shown to be
equivalent under certain assumptions in Subsection III-E.This
can be explained by recalling that in deriving MILD, some
simplifying assumptions were invoked, namely dropping terms
involving higher-order powers ofT and approximating the
matrix exponential via a Taylor Series expansion. Additionally,
D-optimality and MILD equivalency was shown to hold for
the Gaussian case, which does not hold here due to the
nonlinearity in the observations.

V. CONCLUSIONS

This paper studied the following problem. A receiver with
no a priori knowledge about its own states is dropped in
an OpNav environment comprising multiple terrestrial SOPs.
The receiver has noa priori knowledge of the state vectors
of these SOPs, except for one anchor SOP. The receiver
draws pseudorange observations from the SOPs. Assuming
that the receiver can prescribe its maneuvers, what greedy
motion planning strategy should the receiver adopt to build
a high-fidelity signal landscape map of the environment while
simultaneously localizing itself within this map in time and
space with high accuracy? Six information- and innovation-
based optimization measures were derived. On one hand, it
was demonstrated that the information-based measures did not
possess convexity properties, which necessitates relyingon
general-purpose numerical constrained nonlinear optimization
solvers. On the other hand, under suitable reformulations and
mild approximations, it was shown that the innovation-based
measures possessed strong convexity properties, which re-
duced solving the associated optimization problems to search-
ing over the extreme points of the feasibility regions. Numeri-
cal simulation results were presented comparing the six strate-
gies and two open-loop strategies in terms of the RMSEE. It
was demonstrated that all six strategies outperformed the two
open-loop strategies. Among the six strategies, D-optimality
and MILD performed the best, followed by A-optimality and
MIT, followed by E-optimality and MIME. Future work will
study the analytical connections between A-optimality and
between MIT and E-optimality and MIME. Also, distributivity
properties of MILD, MIT, and MIME will be explored for the
case of multiple receivers.
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Ci
rc
ul
ar

D
-O
pt

M
IL
D

A
-O
pt

M
IT

E-
O
pt

M
IM
E

Ra
nd
om

Time (s)

Circular
D-Optimal
A-Optimal
E-Optimal
MILD
MIT
MIME

Random

T
o
ta
lR

M
S
E
E
[

cδ̇
t r
(k
)]

(m
/s
)2

R
M
S
E
E
[

cδ̇
t r
(k
)]

(m
/s
)2

Fig. 8. Receiver clock drift RMSEE and total RMSEE

Time (s)

Circular
D-Optimal
A-Optimal
E-Optimal
MILD
MIT
MIME

R
M
S
E
E
[r

s
2
(k
)]
(m

)

Random

Ci
rc
ul
ar

D
-O
pt

M
IL
D

A
-O
pt

M
IT

E-
O
pt

M
IM
E

T
o
ta
lR

M
S
E
E
[r

s
2
(k
)]
(m

)

Ra
nd
om

Fig. 9. SOP1 position RMSEE and total RMSEE

Time (s)

Circular
D-Optimal
A-Optimal
E-Optimal
MILD
MIT
MIME

Random

Ci
rc
ul
ar

D
-O
pt

M
IL
D

A
-O
pt

M
IT

E-
O
pt

M
IM
E

T
o
ta
lR

M
S
E
E
[c
δ
t s

2
(k
)]
(m

)

Ra
nd
om

R
M
S
E
E
[c
δ
t s

2
(k
)]
(m

)

Fig. 10. SOP1 clock bias RMSEE and total RMSEE
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APPENDIX A
COMMUTATIVITY OF DYNAMICS MATRICES

Fact A.1. The matricesF′
0 and

∑2
i=1 Fiui are commutative.

Proof: DenotingA , F′
0 and B ,

∑2
i=1 Fiui, direct

calculations reveal that

AB = BA = diag
[

F′
3,sa ,F

′
3,s1 , . . . ,F

′
3,sm ,0(2m+2)×(2m+2)

]

,

F′
3,sj =











0 0 0 0
0 0 0 0
0 0 0 0

2 ṙsj θ̇sj(u1 sin θsj−u2 cos θsj )
r3sj

0 0 0











,

wherej = a, 1, . . . ,m.

APPENDIX B
MATRIX BLOCKS FOREQUATION (10)

Λ(k) =





























Λsa 04×4 · · · 04×4

Λs1 −Λs1 · · · 04×4

...
...

. . .
...

Λsm 04×4 · · · −Λsm

Λclk,r 02×4 · · · 02×4

02×4 Λclk,s1 · · · 02×4

...
...

. . .
...

02×4 02×4 · · · Λclk,sm





























.

Λsj ,











Λrsj ,xr
Λrsj ,yr

0 0 0 0

Λθsj ,xr
Λθsj ,yr

0 0 0 0

Λṙsj ,xr
Λṙsj ,yr

Λṙsj ,ẋr
Λṙsj ,ẏr

0 0

Λθ̇sj ,xr
Λθ̇sj ,yr

Λθ̇sj ,ẋr
Λθ̇sj ,ẏr

0 0











Λrsj ,xr
=Λṙsj ,ẋr

=
xr−xsj

‖rr−rsj‖
, Λrsj ,yr

=Λṙsj ,ẏr
=

yr−ysj
‖rr−rsj‖

Λθsj ,xr
=Λθ̇sj ,ẋr

=
−yr+ysj
‖rr−rsj‖

2
, Λθsj ,yr

=Λθ̇sj ,ẏr
=

xr−xsj

‖rr−rsj‖
2

Λṙsj ,xr
=

[

ẏr(−xr + xsj ) + ẋr(yr − ysj )
]

(yr − ysj )

‖rr − rsj‖
3

Λṙsj ,yr
=

[

ẏr(xr − xsj ) + ẋr(−yr + ysj )
]

(xr − xsj )

‖rr − rsj‖
3

Λθ̇sj ,xr
=
{

ẏr
[

−(xr − xsj )
2 + (yr − ysj )

2
]

+2ẋr(xr − xsj )(yr − ysj )
}/

‖rr − rsj‖
2

Λθ̇sj ,yr
=
{

ẋr

[

−(xr − xsj )
2 + (yr − ysj )

2
]

−2ẏr(xr − xsj )(yr − ysj )
}/

‖rr − rsj‖
2

Λclk,r ,
[

02×4 I2×2

]

Λclk,sj ,
[

02×2 I2×2

]

, j = a, 1, . . . ,m.
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APPENDIX C
L INEAR FUNCTIONALS CONVEXITY PROPERTIES

Lemma C.1. The functional f(x) = log [ det (A0 +
∑n

i=1 xiAi)], wherex ∈ R
n and Ai ∈ S

m is concave on
{x : A0 +

∑n
i=1 xiAi ≻ 0}.

Proof: Since nonnegative weighting of a concave func-
tional preserves its concavity, consider the functional

f(x) =
1

m
log

[

det

(

A0 +
n
∑

i=1

xiAi

)]

= log







[

det

(

A0 +
n
∑

i=1

xiAi

)]
1

m







, h [g(x)]

Using the fact that the functional g′(x) =

− [det (A0 +
∑n

i=1 xiAi)]
1

m , where x ∈ R
n and

Ai ∈ S
m is convex on {x : A0 +

∑n
i=1 xiAi ≻ 0};

hence,g(x) , −g′(x) is concave. Recognizing thath is
concave and nondecreasing, we conclude thatf is concave,
from applying the composition rule: iff(x) , h [g(x)], with
h : R → R and g : R

n → R, then f is concave ifh is
concave and nondecreasing andg is concave [40].

Lemma C.2. The functionalf(x)=λmax [A0+
∑n

i=1xiAi],
wherex ∈ R

n andAi ∈ S
n is convex.

Proof: The functionalf can be expressed as

f(x) = sup
‖y‖2=1

[

yT

(

A0 +

n
∑

i=1

xiAi

)

y

]

.

Since f is the point-wise supremum of a family of liner
functionals of x, i.e. yT (A0 +

∑n
i=1 xiAi) y, indexed by

y ∈ R
n, and using the fact that the point-wise supremum

of convex functionals is convex, thenf is convex.
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