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Abstract—The quality of atmospheric corrections provided
by a dense reference network for centimeter-accurate carrier-
phase differential GNSS (CDGNSS) positioning is investigated.
A dense reference network (less than 20 km inter-station distance)
offers significant benefits for mass-market users, enabling low-
cost (including single-frequency) CDGNSS positioning with rapid
integer ambiguity resolution. Precise positioning on a mass-
market platform would significantly influence the world economy,
ushering in a host of consumer-focused applications such as
globally-registered augmented and virtual reality and improved
all-weather safety and efficiency for intelligent transportation
systems, applications which have so far been hampered by the
several-meter-level errors in standard GNSS positioning. This
contribution examines CDGNSS integer ambiguity resolution
performance in terms of network correction uncertainty, and
network correction uncertainty, in turn, in terms of network
density. It considers the total error in network corrections: a
sum of ionospheric, tropospheric, and reference station multipath
components. The paper’s primary goal is to identify the network
density beyond which mass-market users would see no further
significant improvement in ambiguity resolution performance. It
finishes by describing development and deployment of a low-cost
dense reference network in Austin, Texas.

Keywords—carrier-phase positioning, GNSS reference net-
works, multipath mitigation

I. INTRODUCTION

There is evidence of strong demand for low-cost precise

positioning in the mass market. Carrier-phase differential

GNSS (CDGNSS) positioning, which is accurate to within a

few centimeters even on a moving platform, would satisfy

this demand were its cost significantly reduced. Low-cost

CDGNSS can be viewed as a key enabler for consumer

applications ranging from virtual and augmented reality to 3D

mapping to all-weather positioning for automated vehicles.

Centimeter-accurate positioning by CDGNSS is not new;

the technique has been perfected over the past two decades

for applications in geodesy, precision agriculture, surveying,

and machine control. But mass market use of precise posi-

tioning will demand much lower user cost than any current

application, yet still require rapid and accurate position fixing.

Existing CDGNSS-capable receivers range in cost from $500

to more than $5,000, and a subscription for the correction data

on which they depend ranges from $300 to $1500 per annum.

Widespread adoption of precise GNSS positioning technology

will require a radical cost reduction—by a factor of 10 to 100.

To achieve this, mass-market CDGNSS-capable receivers will

have to make do with inexpensive, low-quality antennas whose

multipath rejection and phase center stability are inferior to

those of antennas typically used for CDGNSS. Moreover, to

keep costs low, there will be a strong incentive for mass-market

CDGNSS-capable receivers to be single frequency, whereas

almost all receivers used for CDGNSS in surveying, etc., are

multi-frequency. Despite these user-side disadvantages, mass-

market precise positioning will be expected to demonstrate

convergence and accuracy performance rivaling that of the

most demanding current precise positioning applications: im-

patient mass-market users will be unsatisfied with techniques

requiring more than a few tens of seconds to converge to a

reliable sub-decimeter solution.

Meeting this challenge calls for bold innovation on both the

user (rover receiver) side and on the reference network side of

precise satellite positioning. There is currently great interest

in user-side techniques for reducing the effects of multipath

and speeding convergence time despite poor antennas [1]–[4].

This paper examines the challenge of mass-market precise

positioning from the point of view of the reference network.

It asks “How should the reference network be designed to

support use of low-cost rover receivers while minimizing

convergence time to an accurate and reliable fix?”

Over the past decade, the trend in precise satellite-based

positioning has been toward the so-called precise point posi-

tioning (PPP) technique, whose primary virtue is the sparsity

of its reference network. But standard PPP requires several

tens of minutes or more to converge to a sub-10-centimeter

95% horizontal accuracy [5]–[7]. Sub-decimeter accuracy is

an appropriate target for consumer applications such as lane

departure warning. To be sure, the convergence time of

standard PPP will decrease with the introduction of new

GNSS constellations and signals. But early results indicate that

augmenting GPS with a full complement of multi-frequency

BDS and GLONASS signals only offers a modest reduction in

convergence time [8]. Standard PPP convergence time is there-

fore unlikely to fall below 5 minutes, which is unacceptably

long for the majority of mass-market applications.

Faster convergence can be achieved by re-casting the PPP

problem as one of relative positioning, thereby exposing

integer ambiguities to the end user. This technique, known as
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PPP-RTK or PPP-AR, is mathematically similar to traditional

network real-time kinematic (NRTK) positioning [9]. As the

network density is increased, sub-minute or even instantaneous

convergence is possible with dual-frequency high-quality re-

ceivers [6]. Even single-frequency PPP-RTK is possible, with

convergence times of approximately 5 minutes for a 40-km

network spacing [10].

For PPP-RTK and NRTK, convergence time is synonymous

with the time required to resolve the integer ambiguities that

arise in the double-difference (DD) carrier-phase measure-

ments, referred to in this paper as time to ambiguity resolution,

or TAR. As reference networks become denser, they are better

able to compensate for the spatially-correlated variations in

signal delay introduced by irregularities in the ionosphere

and, to a lesser extent, in the neutral atmosphere [6], [7].

The improvement is manifest as reduced uncertainty in the

atmospheric corrections that the network sends to the user.

Reduced uncertainty in the atmospheric corrections is key to

reducing TAR [11].

Prior work has established an analytical connection between

uncertainty in the ionospheric corrections, denoted σι, and

TAR, beginning with the introduction of the ionosphere-

weighted model in [11] and culminating in the analytical

formulations for so-called Ambiguity Dilution of Precision

(ADOP) in [12]. ADOP can be used to accurately predict

the probability P (ẑ = z) that the vector of estimated integer

ambiguities ẑ is equal to the vector of true ambiguities z.

TAR can be defined as the time required for P (ẑ = z) to

rise above a specified value (e.g., 0.99), or, equivalently, for

ADOP to fall below a specified value (e.g., 0.12 cycles).

The existing literature does not, however, offer a satisfactory

model for the dependence of σι on network density. The

prevailing model, adopted in [13] and [11], is based on single-

baseline CDGNSS, which is inapt for PPP-RTK and NRTK.

Moreover, prior work does not address the effect of network-

side multipath on the accuracy of the corrections data, which

becomes increasingly important as low-cost and poorly-sited

reference stations are used to densify the network.

This paper makes four primary contributions. First, it

presents a compact summary of the functional relationship

between σι and P (ẑ = z) for single- and dual-frequency

CDGNSS in scenarios representative of mass-market posi-

tioning. Second, it develops a simple analytical model that

relates the variance of errors in network-provided corrections

to network density. The model highlights the ability of dense

networks to suppress network-side multipath by applying a

strong linear model for atmospheric delays. Third, it presents

the results of a thorough empirical investigation of the rela-

tionship between network density and the total uncertainty in

network correction data. The key result of this investigation is

a plot revealing the network density beyond which users will

experience no further significant improvement in ambiguity

resolution performance. Finally, the paper describes the design

of a low-cost dense reference network being deployed in

Austin, Texas.

II. AMBIGUITY RESOLUTION PERFORMANCE AS A

FUNCTION OF IONOSPHERIC UNCERTAINTY

Reducing the ionospheric uncertainty σι allows a strong

prior constraint to be applied in the ionosphere-weighted

model, thereby increasing P (ẑ = z) [11]. It is instructive

to consider P (ẑ = z) for single-epoch ambiguity resolution

(AR). This is true for two reasons. First, for stationary users

with low-cost equipment, multipath errors dominate in the

carrier-phase measurement and are strongly correlated over

100 seconds or more [3]. Thus, if single-epoch AR fails then

a static user may have to wait an unacceptably long time for

multipath errors to decorrelate enough to permit AR. In any

case, singe-epoch performance is a strong predictor of multi-

epoch performance over an interval short enough (a few tens

of seconds) to satisfy impatient mass-market users.

The second reason for considering single-epoch AR is the

existence of a convenient and accurate analytical model for

single-epoch AR that reveals the dependency of ADOP, and,

by extension, P (ẑ = z), on scenario parameters of practical

interest. This model, presented in [12] and [14], relates ADOP

to the following parameters: the standard deviation of iono-

spheric correction errors σι, the number of visible satellites

m, the standard deviation of undifferenced carrier- and code-

phase measurement errors, σφ and σρ, respectively, (including

multipath-induced errors), a satellite geometry factor fg , the

number p of free parameters to be estimated (p = 3 for

negligible tropospheric error, p = 4 to estimate a single

additional tropospheric parameter), and the number of carrier

frequencies broadcast by each of the m satellites (e.g., 1,

2, or 3) along with each carrier’s wavelength. The model is

highly accurate for single-epoch AR, but only approximate for

multiple epochs, with accuracy degrading as the data interval

lengthens. The model’s inaccuracy results from its assumption

that overhead satellites remain static from epoch to epoch,

which yields pessimistic results for even fairly short data

capture intervals (e.g., 30 seconds) [3]. Fully accounting for

satellite motion in an analytical model for ADOP is an open

problem (presently intractable), which is why ADOP studies

that wish to account for satellite motion resort to simulation

[3].

In [14] the analytical ADOP model was applied, together

with a simulation study, to conclude that single-frequency

CDGNSS positioning would be possible over baselines up to

10-15 km if signals from full constellations of both GPS and

Galileo were exploited. These conclusions are, however, based

on optimistic scenario parameters that would be unrealistic

for low-cost rover receivers in mass-market applications. In

particular, the authors assume σφ = 2 mm, σρ = 20 cm,

and an elevation mask angle of 10 degrees, which would

only be appropriate for a survey-grade antenna in a low

multipath environment with a clear view of the sky. For a

low-quality patch antenna, such as would be appropriate for a

mass-market receiver, and a moderate multipath environment,

σφ = 2.75 mm is more realistic (see Fig. [4] in [15], dividing

the 5.5 mm ensemble standard deviation by two to obtain the
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undifferenced σφ). In adverse multipath, which is common in

mass-market applications, σφ can be expected to be 3 mm or

higher. A shift from σφ = 2 mm to σφ = 3 mm may not

appear significant, but in fact ADOP is highly sensitive to σφ,

so realistic values for σφ are crucial for accurate projections

of ADOP.
Similarly, the value σρ = 20 cm is unrealistic for low-

cost receivers, even for benign multipath environments, and

an elevation cutoff angle of 15 to 30 degrees would be more

appropriate.
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Fig. 1. Single-epoch single-frequency ambiguity fixing. Blue traces (left
axis) indicate the probability P (ẑ = z) of correctly resolving all integer
ambiguities with a single epoch of data as a function of the number of
satellites m. Each trace represents P (ẑ = z) for a different value of
ionospheric uncertainty σι. Green bars (right axis) represent the probability
mass function P (m) for the number of satellites above an elevation mask
angle of 15 degrees, assuming 31 GPS, 14 Galileo, and 3 WAAS satellites,
which corresponds to the projected constellations in late 2018. Each blue
trace is marked with the total probability of correct integer resolution PT,
which is a function of both the trace itself and P (m). Other parameters of
the scenario are as follows: geometry factor fg = 2.5, standard deviation
of undifferenced phase measurements σφ = 3 mm, standard deviation of
undifferenced pseudorange measurements σρ = 50 cm, and number of
estimated parameters p = 3.
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Fig. 2. Total probability of a correct fix for the scenario of Fig. 1 as a
function of ionospheric uncertainty σι.

Fig. 1 shows single-epoch, single-frequency results from

the analytical ADOP model for parameters that, while still

optimistic, more accurately reflect the mass-market use case.

The key parameter σφ is set to 3 mm, and σρ and the elevation

cutoff are set to 50 cm and 15 degrees, respectively. The
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Fig. 3. As Fig. 2 except for dual-frequency (L1-L2) measurements and the
probability mass function P (m) corresponds only to a constellation of 31
GPS satellites. The elevation mask angle is again taken to be 15 degrees. It is
assumed that dual-frequency measurements can be obtained from every GPS
satellite.
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Fig. 4. Total probability of a correct fix for the scenario of Fig. 3 as a
function of ionospheric uncertainty σι.

geometry factor fg is set to 2.5, which is conservative [14]

and thus well suited for use cases with strong multipath at low

elevation angles. The blue traces in Fig. 1 show P (ẑ = z)
as a function of m for various values of σι. The green

bars represent the probability mass function P (m), or the

probability that exactly m satellites will, on average, be above

the elevation mask and thus visible to the user. The P (m)
shown corresponds to the L1 signals a user in the central

United States would see in late 2018, at which point one

expects 31 GPS, 14 Galileo, and 3 WAAS satellites.

For each blue trace, the total probability PT, calculated as

PT =

m̄∑

m=1

P (ẑ = z|m)P (m)

is also given, with the limit m̄ chosen high enough to ensure

that all nonzero elements of P (m) are included. Fig. 2 plots

PT as a function of σι for the same scenario.

Several conclusions can be drawn from Figs. 1 and 2. Most

importantly, it is clear that for single-epoch single-frequency

AR to be even moderately reliable (PT ≥ 0.9), the ionospheric

uncertainty σι must be held to under 2 mm. Reducing σι from

2 to 1 mm significantly reduces the AR failure rate (1−PT)—
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by more than a factor of two. However, further reduction in

σι, even driving it to zero, brings only minor failure rate

improvement. For σι > 2 mm, single-epoch, single-frequency

AR performance will be quite poor, becoming hopeless beyond

σι = 10 mm.

Figs. 3 and 4 offer results for a dual-frequency (L1-L2)

single-epoch scenario. All other scenario parameters are held

as for the single-frequency scenario except that, in an attempt

to be somewhat more pessimistic, P (m) is based only on

GPS satellites. It is assumed that from each satellite the

user can extract dual-frequency measurements. Of course, if

dual-frequency, or even single-frequency, measurements were

also available from non-GPS satellites, the results in Figs.

3 and 4 would improve. On the other hand, mass-market

dual-frequency receivers may only track the modernized civil

GPS signals on L2, which are only available on 19 of 31

GPS satellites as of April 2016. Limiting P (m) to only GPS

satellites stakes out a middle ground that should be approxi-

mately representative of the mass-market dual-frequency use

case from 2016-2020.

As with the single-frequency case, it is evident that dual-

frequency PT is strongly dependent on σι. But the dual-

frequency case is more forgiving: for PT ≥ 0.9, σι can be

as large as 4 mm. The linear asymptote of PT with increasing

σι in Fig. 4 reflects the dual-frequency model’s ability to

compensate for ionospheric uncertainty by performing its own

estimation of ionospheric delay, taking advantage of the disper-

sive nature of the ionosphere and of access to dual-frequency

measurements. PT improves with smaller σι because less dual-

frequency measurement information is “wasted” on estimating

the ionospheric delay. This is the fundamental insight of the

ionosphere-weighted model [11].

Despite the dual-frequency model’s improved tolerance for

larger σι, it remains true that significant performance benefits

accrue as σι is reduced—down to about 2 mm. One can con-

clude from Figs. 1 and 3 that, to achieve a respectable single-

epoch PT of 0.95 or greater, single-frequency applications

will require σι ≤ 1 mm and dual-frequency applications will

require σι ≤ 2 mm.

III. RELATING CORRECTIONS UNCERTAINTY TO NETWORK

DENSITY

A key question arises in connection with σι: How is

σι related to reference network density? One expects σι to

decrease with increased network density, but what is the exact

relationship?

Ref. [11] adopts a linear relationship between σι and the

distance l between the user and the nearest reference station:

σι = βl, 0.3 ≤ β ≤ 3 mm/km

Parameter β depends on ionospheric activity; [11] recom-

mends determining β empirically. Similarly, [13] and [14]

adopt a linear relation, with β = 0.4 mm/km. But there

appears to be no justification for applying this linear model

to ionospheric corrections provided to a user by a network of

reference receivers. The linear trend shown in Fig. 4 of [13]

corresponds to individual single-baseline solutions involving

a single master reference station without network aiding; it

is not representative of how σι varies for a rover within a

reference network.

Instead of determining how σι varies throughout a reference

network, it will be more useful to consider the spatial varia-

tion in the variance of aggregate error in network-provided

corrections. The aggregate error variance, denoted σ2
ν , can be

modeled as the sum of variances associated with (1) residual

ionospheric delay error, (2) residual neutral atmospheric (here-

after tropospheric) error, and (3) error due to carrier-phase

multipath at the reference network stations:

σ2
ν = σ2

ι + σ2
t + σ2

m

This model assumes that precise orbital ephemerides are

used to eliminate spatially-correlated errors due to satellite

ephemeris errors and that the contribution to σ2
ν from reference

station carrier-phase thermal noise is negligible compared to

reference station carrier-phase multipath error.

Taking σν , instead of σι, as the factor of interest—the one

to be related to network density—is motivated by an acknowl-

edgment that, in practical application, any error in network-

provided corrections will degrade AR performance. For single-

frequency application of the analytical AR model in [12],

exploited in the foregoing section, one has only to substitute

σν for σι to properly account for the additional effects of

residual tropospheric error and network-side multipath errors

in the corrections data. Thus, on the horizontal axis of Fig. 2,

σν can be directly substituted for σι.

For dual-frequency application of the analytical AR model,

the situation is not so simple: a dual-frequency ionosphere-

weighted model can overcome a large σι by estimating the

ionospheric delay independently from the network, whereas

it can do nothing to reduce the deleterious effects of large

σt and σm. Nonetheless, for the short AR convergence times

of interest in this paper (ideally, single-epoch convergence),

substituting σν for σι—even in the dual-frequency model—

is a valid approximation. This is because, for rapid AR

convergence, σι must be small (approximately 2 mm or less),

which means that very little information from the rover’s dual-

frequency measurements is actually directed to the estimation

of the residual ionospheric errors. Thus, it is also reasonable

to substitute σν for σι on the horizontal axis of Fig. 4.

Focusing therefore on σν , consider its relationship to ref-

erence network density γ, expressed in stations per unit area.

This relationship depends on the assumed model for the DD

ionospheric and tropospheric delays. Let a denote the master

reference station and let S = {s1, s2, ..., sN} denote the set

of all secondary stations available in the network. Then, for

pivot satellite i and alternate satellite j, suppose that the

true combined DD atmospheric delay at secondary station

s ∈ S can be accurately modeled as follows, where xs, ys,

and zs represent the secondary station’s east, north, and up

displacement from the master:

νijas = cijx xs + cijy ys + cijz zs + cij0 (1)
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Dai et al. refer to this model as a linear interpolation model or

first-order surface model [16]. The quantities cijx , c
ij
y , c

ij
z and

cij0 are the model parameters for the satellite pair i, j.

Assuming all reference station antenna locations are per-

fectly known, the measurement model for a DD carrier-

phase residual for the satellite pair i, j, master station a, and

secondary station s ∈ S is

ν̃ijas = νijas + wij
a⋆ + wij

⋆s (2)

where νijas is the true value of the DD atmospheric delay, wij
a⋆

is the measurement error due to carrier-phase multipath at the

master station, and wij
⋆s is the measurement error due to carrier

phase multipath at the secondary station; wij
a⋆ and wij

⋆s are

assumed to be zero mean.

Carrier-phase residuals ν̃ijas from all s ∈ S can be combined

in a least-squares cost function to estimate the parameters cijx ,

cijy , cijz , and cij0 , as will be detailed in the next section. An

estimate of the DD atmospheric delay at some location x, y, z
can then be produced as

ν̂ija = ĉijx x+ ĉijy y + ĉijz z + ĉij0

where (̂·) denotes estimated parameters. The quantity ν̂ija is

modeled as relating to the true DD atmospheric delay νija at

the designated location by

ν̂ija = νija + wij
ν

The error term wij
ν is the aggregate error term discussed

previously; it is modeled as having zero mean and variance

2σ2
ν (the factor of two arises because σ2

ν is meant to refer to

an undifferenced error variance, whereas wij
ν is a DD error).

The value of σ2
ν can be found as a by-product of the least-

squares technique; it depends on (1) the geometry of the

reference network (the number and locations of secondary

reference stations with respect to the master), (2) the statistics

of wij
⋆s, s ∈ S (including correlation between these), and (3)

the location x, y, z. Note that, importantly, σ2
ν is not affected

by wij
a⋆. This is because the non-homogeneous parameter cij0

in (1) absorbs wij
a⋆ in the least squares optimization, since wij

a⋆

is common to all DD carrier-phase residuals ν̃ijas, s ∈ S.

Assuming the master and secondary reference station geom-

etry shown in Fig. 5, and assuming uncorrelated, identically-

distributed wij
a⋆ and wij

⋆s, s ∈ S, Fig. 5 shows an example map

of σν along the x and y axes.

For the linear model in (1), one can show that if stations are

sufficiently uniformly distributed (i.e., no station clumping),

then the average value of σν across a network, denoted σ̄ν , is

approximately related to the network density γ by

σ̄ν =
q√
γ

(3)

where q is a parameter related to the variance of the uncorre-

lated errors wij
⋆s, s ∈ S. This approximation becomes highly

accurate as γ increases.

It is clear from (3) that, for the linear model (1), σ̄ν can be

driven to an arbitrarily small value by increasing the network

density γ, and this is true despite the presence of multipath in

Fig. 5. Map showing trends in σν across a simulated reference network
assuming a linear model for combined DD ionospheric and tropospheric
delays and independent errors due to multipath at each station. The master
station is marked in black; secondary reference stations are marked in white.
Blue denotes low σν ; red denotes high σν .

the reference station carrier-phase measurements. Whether (3)

applies in practice depends on whether (1) can be considered

an accurate model for νijas, at least over a compact region. The

following section examines this question empirically. It further

seeks to identify, for an example dense reference network, the

density γ beyond which further reduction in σ̄ν no longer

matters (would no longer improve P (ẑ = z)) because rover

multipath dominates.

IV. ANALYSIS OF A DENSE REFERENCE NETWORK

A. Data selection and processing

An analysis of dense reference network performance was

conducted using data from several organizations providing

GNSS reference station observations; namely, NGS CORS

(National Geodetic Survey Continuously Operating Reference

Stations), UNAVCO, and CRTN (California Real Time

Network). This combination of sources allowed analysis of

a hypothetical reference network of 23 high-quality GNSS

receivers with an overall network density of approximately

8 nodes/1000 km2 or, alternately expressed, an average

inter-station spacing of 14 km. The sites selected to comprise

this reference network, located between Los Angeles, CA and

Pomona, CA, are listed in Table I and their relative positions

are depicted graphically in Fig. 6.

All available GPS L1 C/A data from GPS weeks 1850

through 1859 were used for the analysis. Double-differencing

of carrier-phase observations was used exclusively. Station

LONG was maintained in every combination as the master ref-

erence station. The highest elevation satellite for each solution

window was selected as the pivot satellite. A minimum satellite

elevation mask was enforced at 20 degrees. Additionally, any
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Fig. 6. Depiction of the placement of the 23 GNSS reference stations listed
in Table I. Horizontal positions are relative to the master station, LONG of
CRTN, in kilometers. The color map indicates the height of each station above
the WGS 84 geoid in meters.

TABLE I
SELECTED REFERENCE STATIONS FOR ANALYSIS

Station ID Network Distance to Master
(km)

LONG CRTN Master
CVHS CRTN 10.0
WCHS CRTN 10.2
LPHS UNAVCO 10.4
RHCL CRTN 10.5
CIT1 CRTN 11.8

GVRS CRTN 12.4
MRDM UNAVCO 13.2
CGDM UNAVCO 15.1
SGDM UNAVCO 16.7
PSDM CRTN 18.3
BKMS UNAVCO 18.6
OXYC CRTN 18.9
SPMS UNAVCO 19.5
ELSC CRTN 21.0
VDCY CRTN 21.3
BGIS UNAVCO 21.6
DYH2 UNAVCO 22.4
LORS CORS 23.1
MTA1 UNAVCO 23.2
SILK UNAVCO 24.1

BTDM UNAVCO 26.3
MHMS CRTN 29.4

satellite not above the elevation mask and providing carrier-

phase observations at both the beginning and end of any

given processing window was excluded. A step size of 10

minutes was used. The longest available sub-window, meeting

the above requirements and providing a minimum of 6 satellite

vehicles (1 pivot satellite and 5 others), was selected for

processing. To facilitate batch processing, integer ambiguities

were assumed to have resolved correctly when the mean

standard deviation of carrier-phase residuals for that solution

was less than one quarter wavelength of the GPS L1 frequency.

In application, this final constraint resulted in rejecting only

0.6% of all solutions.

B. Network corrections estimation

Estimation of network corrections made use of least-squares

estimation applied to carrier-phase residuals measured between

master station LONG, denoted a hereafter, and secondary

reference stations s ∈ S, where S is now taken to be the set of

all stations other than LONG in Table I. Consider the following

model for the DD carrier-phase measurement, expressed in

meters, between master station a, secondary station s ∈ S,

pivot satellite i, and alternate satellite j:

λφij
as = rijas + νijas + λN ij

as + wij
as (4)

Here, λ is the carrier wavelength; φij
as is the DD carrier-phase

measurement, in cycles; rijas is the DD range; N ij
as ∈ Z is the

DD integer ambiguity; νijas is the DD combined atmospheric

delay, which includes tropospheric and ionospheric delays;

and wij
as is the DD carrier-phase measurement error, which

is dominated by carrier-phase multipath error at a and s.

Experimental analysis of σ̄ν as a function of network density

proceeded as follows. A subset of secondary stations Sk ⊂ S
was chosen, together with a, to act as the kth test network.

A large number K of subsets Sk of various geographic size

and density were analyzed. Let {S \ Sk} denote the set

of secondary stations not in the kth test network. For each

Sk, k = 1, 2, . . . ,K , all secondary stations in {S \ Sk} were

designated, one at a time, to act as a test station, or rover.

Atmospheric delays estimated by the kth network for test

station s ∈ {S \Sk} were then differenced from actual delays

measured by s to evaluate the quality of the atmospheric delay

estimates.

Details of the atmospheric delay estimation procedure for

the kth test network are as follows. For each s ∈ Sk, a DD

measurement residual was formed for each pivot satellite i and

alternate satellite j as

ν̃ijas = λφij
as − rijas − λN ij

as (5)

where rijas was assumed known to sub-millimeter accuracy and

N ij
as was assumed to have been resolved correctly. The true

DD atmospheric error νijas contributing to (5) was assumed to

vary linearly with geometry over sufficiently short baselines

as modeled in (2). The DD multipath error term wij
as was

assumed to be zero mean, and the component wij
⋆s due solely

to s was assumed to be uncorrelated with all corresponding

components wij
⋆u, u ∈ {Sk \ s}.

Under these assumptions, νijas can readily be estimated via

least squares. Let ν̃
ij be the |Sk| × 1 vector containing the

residuals ν̃ijas for s ∈ Sk. This residuals vector can be modeled

as

ν̃
ij = Hc

ij
1 +w

ij (6)

where H is an |Sk| × 4 matrix whose rows are of the form

[xs ys zs 1]. The 4× 1 vector

c
ij
1 = [cijx1, c

ij
y1, c

ij
z1, c

ij
0 ]

T
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contains the parameters of the hyper-plane to be estimated at

each epoch. The |Sk|×1 vector wij contains DD measurement

errors.

An estimate ĉ
ij
1 from a least-squares solution of (6) was

used to produce a network correction ν̂ijas for a test secondary

station s ∈ {S \ Sk}, acting as rover, at location xs, ys, zs:

ν̂ijas,l = ĉijx1xs + ĉijy1ys + ĉijz1zs + ĉij0 (7)

The subscript l on the atmospheric correction ν̂ijas,l indicates

that the correction is based on a linear model for DD atmo-

spheric errors; it is used to distinguish the correction from

those produced by a quadratic model later on. The correction

ν̂ijas,l was applied at test station s ∈ {S \ Sk} to produce a

corrected DD phase measurement

λφ̃ij
as = λφij

as − ν̂ijas

This procedure was repeated at each epoch for each satellite

pair i, j visible to each test station s ∈ {S \ Sk} of the kth

test network, k = 1, 2, ...,K .

If the assumed models hold, then in the limit as the network

density increases, λφ̃ij
as can be modeled as

λφ̃ij
as = rijas + λN ij

as + wij
⋆s (8)

where wij
⋆s is DD phase measurement error due only to

multipath at s. In other words, as network density increases,

application of the network correction ν̂ijas,l eliminates not only

νijas but also wij
a⋆, the component of the DD phase measurement

error due to multipath at the master.

C. Linear least-squares compared to quadratic-least squares

estimation

To evaluate the assumption that DD tropospheric and iono-

spheric errors vary proportional to relative position, c1 was

estimated with the full set of secondary stations S for single

epochs at 300 second intervals. The probability distributions

of the contributions of those parameters (e.g., cx1xs and not

simply cx1) are shown in Fig. 7. For comparison, equivalent

values are calculated for a quadratic least-squares estimate of

the following form:

ν̂ijas,q = ĉijx2x
2
s + ĉijy2y

2
s + ĉijz2z

2
s

+ ĉijx1xs + ĉijy1ys + ĉijz1zs + ĉij0 (9)

Here, the subscript q of ν̂ijas,q denotes a quadratic model for

DD atmospheric delays. The distributions of comparable terms

from (9) are also shown in Fig. 7 and 8. These data represent

the collection of all satellites above the elevation mask angle.

It is noted that when all satellites are considered together, the

expected value of these terms is very near zero.

Fig. 9 and 10 show the same data as Fig. 7 and 8 but

with each GPS satellite plotted separately. It is noted that

the linear parameters, when considering only a particular

satellite, are not necessarily zero-mean. This is hypothesized

to be a manifestation of the satellite orbit reflected in the

tropospheric and ionospheric errors. It is interesting to note

that the quadratic terms shown in Fig. 10 largely exhibit zero
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Fig. 7. Probability densities of the ĉx1xs, ĉy1ys, and ĉz1zs terms estimated
at the station location for SPMS of UNAVCO. As indicated by the legend,
the linear components are shown for a linear least-squares estimation as well
as the linear components for a quadratic least-squares estimation. These data
represent the probability densities for all GPS satellites combined.
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Fig. 8. Probability densities of the ĉx2x2
s , ĉy2y2s , and ĉz2z2 terms calculated

at the station location for SPMS of UNAVCO.

mean behavior despite non-zero mean for the associated linear

terms.

Fig. 11 shows the probability distributions of the difference

between (7) and (9) (i.e., ν̂ijas,l − ν̂ijas,q) at 3 representative

reference station positions. It can be noticed that despite the

increasing baseline distance of LORS and BGIS as compared

to CGDM, there is no apparent correlation in these estimation

errors. Notice that CGDM and LORS have very similar distri-

butions despite their difference in baselines. BGIS and LORS,

with similar baselines, exhibit very different distributions.

There is no apparent correlation found between reference

station positions and these error terms. Additionally, these

distributions are zero-mean for all s ∈ S (to within 0.5 mm in

each case) with 68.27% boundaries (see Fig. 11 caption for an

explanation) positioned between 1.5− 5.5 mm. Because these

errors appear indistinguishable from multipath, it is concluded,
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Fig. 9. Probability densities of the ĉx1xs, ĉy1ys, and ĉz1zs terms for
every GPS satellite observed, calculated at the station location for SPMS
of UNAVCO, where each plot line represents a different GPS satellite. This
figure is intended to qualitatively illustrate the non-zero mean nature of these
linear terms when considered for individual satellites.
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Fig. 10. Probability densities of the ĉx2x2
s , ĉy2y2s , and ĉz2z2s terms for

every GPS satellite observed, calculated at the station location for SPMS
of UNAVCO, where each plot line represents a different GPS satellite. This
figure is included to qualitatively illustrate the largely zero mean nature of
these quadratic terms when considered for individual satellites.

for this specific network and time period, that linear least-

squares estimation is sufficient for estimating tropospheric and

ionospheric errors. This is fortunate, because the linear model

for atmospheric DD delays provides an averaging effect on

multipath present at the reference stations which minimizes the

introduction of multipath errors into the estimates produced.

D. Uncorrected carrier-phase residuals

Fig. 12 shows the expected values for DD carrier-phase

residual standard deviations for all s ∈ S through use of

uncorrected observations. These data were produced by aver-

aging the standard deviation of the DD carrier-phase residuals

calculated at each epoch across all satellites present in the

solution. The fitted curve indicates a linear growth of DD
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Fig. 11. Probability densities of the difference between linear least-squares

and quadratic least-squares network correction estimates (ν̂ij
as,l

− ν̂ijas,q) for
representative reference stations. The red vertical lines denote boundaries
between which 68.27% of the probability distribution is contained; displayed
as a comparative proxy to 1σ of the Gaussian-distribution (these distributions
are non-Gaussian). Recall that CGDM has a distance to the master station of
15.1km, BGIS is at 21.6km, and LORS is at 23.1km.
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Fig. 12. Standard deviation of uncorrected DD carrier-phase residuals versus
baseline distance between each of the 22 reference stations and the master
reference station. The fitted curve has an equation of νijas(ras) = 0.62ras+9
which suggest a linear growth of DD tropospheric and ionospheric errors of
β = 0.62mm/km for this set of data.

carrier-phase residuals with β = 0.62 mm/km. Additionally,

the mm-level scatter of these data points suggest that position

biases of the resolved reference station positions are also mm-

level. If the linear fit is shifted down by approximately 4 mm

(e.g., taking the minimum data points as those with very little

position bias) and extrapolated to 0 km, one can consider

this as providing a rough estimate of DD multipath at the

reference stations; 4.7 mm (DD) or 3.3 mm (single-difference

equivalent).

E. Network corrected carrier-phase residuals

1) Network generation and processing: Fig. 13 displays

similar data to those shown in Fig. 12. These carrier-phase
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Fig. 13. Standard deviation of carrier-phase residual remainders (the carrier-
phase residuals which remain after application of network corrections) versus
average network density. The fitted curve is simply a polynomial fit of these
data whose selection is not based on any theoretically anticipated behavior.
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Fig. 14. Standard deviation of carrier-phase residual remainders (the carrier-
phase residuals which remain after application of network corrections) versus
the number of network nodes (including master).

residual values are what remain after application of network

corrections produced as detailed in Section IV-B. Each data

point corresponds to a particular subset of secondary stations

Sk ⊂ S, together with a, and a particular rover selected

from {S \ Sk}. For each Sk, k = 1, 2, . . . ,K , both the size

and specific selection of secondary stations comprising that

subset were randomly selected. In all, 70 different network

configurations (i.e., K = 70) and over 3.67 million NRTK

solutions were analyzed.

2) Average network density metric: The horizontal-axis

utilizes a metric intended to represent an average network

density relative to the rover of those reference stations used

to estimate network corrections for a given plotted data point.

Average network density is calculated as the average value

of all iterates
N(r)
πr2

for r2 from r2min to r2max. N(r) is the

integer quantity of network reference stations within distance

r of the rover. rmin and rmax are distances to the nearest and

farthest references stations, respectively, relative to the rover.

3) Discussion of results: It is seen in Fig. 13 that carrier-

phase residuals after application of network corrections are, in

most cases, considerably reduced compared to those original

magnitudes seen in Fig. 12. Few network configurations of

≤ 6 nodes demonstrate comparable performance to the best

performing network configurations. In fact, where networks

of ≥ 13 nodes have a mean value of 2.8 mm and a maximum

value of 4.9 mm, the mean value for all networks of ≤ 6 nodes

is 6.4 mm with several considerably larger values beyond that.

Fig. 13, with increasing network density, appears to

asymptotically approach a minimum value of 4 mm. Even

for hypothetical perfect network corrections, single-difference

(between satellites) multipath from the rover will persist

in these residuals. Recall the previous rough estimate for

single-difference multipath of these reference stations of

3.3 mm. These results suggest that network densities beyond

5 nodes/1000 km2 provide remaining correction errors of

< 2 mm (e.g., the margin between the asymptote and the

attributed rover multipath level).

4) Recommendations: From Fig. 13 it can be seen that

average network densities beyond 5 nodes/1000 km2 provide

negligible improvement in reducing carrier-phase residuals

once σν is reduced below the floor of rover multipath. This

equates to a maximum recommended station spacing of 18 km

for a uniformly-spaced network. Fig. 14 shows diminishing

returns at around 10 network nodes, yet these data do show

an additional improvement of 0.3 mm between 11 and 22

network nodes. Additional nodes should be included beyond

these recommendations to provide redundancy.

V. DEVELOPMENT OF A DENSE REFERENCE NETWORK IN

AUSTIN

A low-cost reference network testbed is being developed

and deployed by the University of Texas at Austin around the

city of Austin, Texas. Sites for station deployment, including

building rooftops and illumination poles, have been provided

by the Texas Department of Transportation. Fig. 15 shows one

of the network’s low-cost reference stations.

The testbed will be useful for investigating how the 18-

km inter-station-spacing recommendation scales to a dense

network of low-cost reference stations in environments with

greater multipath and signal blockage than those of the sites

studied in the foregoing section (the high-quality permanently-

operating stations listed in Table I). Such non-ideal signal

environments are to be expected in a dense low-cost reference

network, for which choice of station siting is driven largely

by opportunity.

The reference station design is novel. Each station is a self-

contained, self-powered node supporting a software-defined

dual-frequency, dual-antenna GNSS receiver with an always-

on cellular connection to university servers for data collection
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Fig. 15. A low-cost reference station in the University of Texas at Austin
reference network, deployed in March, 2016, in Austin, Texas.

and software maintenance. The stations can be broken down

into four functional elements: the structure, power system,

GNSS receiver, and communication system.

A. Reference stations

1) Physical structure: The frame of the reference station,

constructed out of 80/20 aluminum extrusion, is configured

such that the angle between the legs may be adjusted to

optimize the angle of the solar panel mounted to the front

legs. 60-degree inside-angle brackets mounted atop the front

legs provide a secure, level connection of the antenna ground

plane in a position such that it can protect the antennas from

multipath reflecting off of the structure and prevent casting

shadows onto the solar panel. An angle of 60 degrees (from

ground) has been chosen to optimize solar power during the

short days of the winter months in Austin, Texas. Alternate

angle brackets may be used to mount the ground plane at

different angles of deployment. Two NEMA-certified weather-

sealed plastic electrical boxes attached to the legs of the

frame house the battery and electronics. Also in development

is a similarly-constructed pole-mount station, configured to

be easily mounted on existing city infrastructure, such as

illumination poles.
2) Communications and processing: Data management and

communication is performed by a Raspberry Pi 2 Model B.

The Raspberry Pi connects to a USB hub that provides both

power and a data interface to other components. These include

a Huawei cellular modem, a dual-input GNSS signal digitizer,

and an 8-channel GPIO/ADC board. The Raspberry Pi utilizes

the cellular modem to communicate data to the network server

at a 1-second data interval and allows remote access via a

reverse SSH tunnel. A reverse SSH tunnel is necessary since

the cellular provider assigns a dynamic IP address and enforces

a restrictive firewall on clients.
3) Receiver hardware: The dual-frequency (L1-L2) GNSS

receiver draws radio frequency signals from two Tallysman

Fig. 16. Reference station components diagram.

TW3870 dual-frequency antennas mounted to a 6”×2’×1/4”

aluminum backplane with a relative baseline between antennas

of 18”. Antenna-to-receiver connections are achieved through

TNC-to-TNC cables connected to bulkhead TNC-to-MMCX

assemblies at the electronics box. The dual-input GNSS signal

digitizer receives power from the USB hub and outputs two-

bit-quantized GNSS sample data at 19.2 MHz (at each of L1

and L2) through the USB hub. GNSS signal processing is

performed by GRID, an in-house-developed software defined

receiver [17]–[19], which runs in real time on the Raspberry

Pi.

4) Power system: The reference stations are completely

self-sustaining, drawing power from a 50-Watt polycrystalline

solar panel and a 12-Volt, 18-Amp-hour, sealed lead-acid

battery. On a full charge, the battery is sized to sustain full

operation of the reference station for 48 hours. The solar panel

is sized to replenish 24 hours of power consumption from 2

hours of full sunlight.

Battery charging is controlled by a 5-Amp PWM (pulse-

width modulated) charge controller. A 12VDC-to-5VDC, 3-

Amp buck converter provides regulated power to a 4-port 2.5-

Amp USB 2.0 hub. The powered USB hub serves as a USB

breakout for the Raspberry Pi, providing component protection

and isolation as well as supplying the power demands of all

the USB-powered peripherals. Total power draw when opera-

tional and transmitting observations at a 1-second interval is

approximately 4.1 Watts.

Inline fuses are installed on the buck converter input and the

battery. Power system monitoring and logging of battery volt-

age, battery current, and solar panel voltage is implemented

through the combination of voltage dividers, a Hall-effect

current sensor, and an 8-channel GPIO/ADC-to-USB board.

B. Network Layout

Initial deployment of this reference network has begun with

rooftop installation of 9 reference stations to Texas Department

of Transportation, University of Texas, and private facilities.

In anticipation of a benefit to public transportation safety
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Fig. 17. Map overview of the planned Austin area reference network (Google
Maps).

and the “connected city” future, the Texas Department of

Transportation has agreed to contribute rooftop access to a

total of 11 facilities for rooftop stations and 3 illumination

pole mount locations for pole-mount stations. All together,

current plans are for 20 reference stations throughout the city

of Austin. Fig. 17 shows the first selection of deployment

locations. Full deployment is to be completed by June, 2016.

The reference network’s average inter-station spacing is far

shorter than the 18-km recommendation of Section IV-E4.

The tighter spacing provides redundancy and flexibility of

experimentation.

VI. CONCLUSIONS

For a sufficiently dense reference network, linear least

squares estimation can be applied to the task of reducing

uncertainties due to tropospheric and ionospheric delays for

the purposes of providing improved positioning accuracy as

well as faster time to ambiguity resolution for carrier-phase

differential positioning. High network density allows use of

a strong linear model for atmospheric delays, which has the

virtue of suppressing network-side multipath errors in the

provided corrections.
A network of 23 high-quality reference stations in the

vicinity of Los Angeles, California was studied to determine

what network density is sufficient to make all network-side

error sources negligible compared to rover receiver multipath.

A density of ≥5 stations per 1000 km2, or an average inter-

station spacing of ≤18 km, was found to drive network-side

ionospheric, tropospheric, and multipath errors well below

rover receiver multipath.

These findings motivate a 5- to 25-fold densification of

existing permanent reference networks to support mass-market

applications for which low user (rover receiver) cost and

rapid convergence to a reliable sub-decimeter position are a

priority. A dense network of low-cost reference stations is

being deployed in Austin, Texas, by the University of Texas

at Austin, in collaboration with the Texas Department of

Transportation, to further explore the benefits of high-density

GNSS reference networks for mass-market precise positioning.
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