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Methodologies are proposed for combining carrier-phase differential GPS

(CDGPS), visual simultaneous localization and mapping (SLAM), and inertial mea-

surements to obtain precise and globally-referenced position and attitude estimates of

a rigid structure connecting a GPS receiver, a camera, and an inertial measurement

unit (IMU). As part of developing these methodologies, observability of globally-

referenced attitude based solely on GPS-based position estimates and visual fea-

ture measurements is proven. Determination of attitude in this manner eliminates

the need for attitude estimates based on magnetometer and accelerometer measure-

ments, which are notoriously susceptible to magnetic disturbances. This combination

of navigation techniques, if coupled properly, is capable of attaining centimeter-level

or better absolute positioning and degree-level or better absolute attitude accuracies

in any space, both indoors and out. Such a navigation system is ideally suited for

application to augmented reality (AR), which often employs a GPS receiver, a cam-

era, and an IMU, and would result in tight registration of virtual elements to the

real world. A prototype AR system is presented that represents a first step towards
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coupling CDGPS, visual SLAM, and inertial navigation. While this prototype AR

system does not couple CDGPS and visual SLAM tightly enough to obtain some of

the benefit of the proposed methodologies, the system is capable of demonstrating

an upper bound on the precision that such a combination of navigation techniques

could attain. Test results for the prototype AR system are presented for a dynamic

scenario that demonstrate sub-centimeter-level positioning precision and sub-degree-

level attitude precision. This level of precision would enable convincing augmented

visuals.
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Chapter 1

Introduction

Augmented reality (AR) is a concept closely related to virtual reality (VR),

but has a fundamentally different goal. Instead of replacing the real world with a

virtual one like VR does, AR seeks to produce a blended version of the real world

and context-relevant virtual elements that enhance or augment the user’s experience

in some way, typically through visuals. The relation of AR to VR is best explained

by imagining a continuum of perception with the real world on one end and VR on

the other. On this continuum, AR would be placed in between the real world and

VR with the exact placement depending on the goal of the particular application of

AR.

AR has been a perennial disappointment since the term was first coined 23

years ago by Tom Caudell. Wellner et al. [5] in 1993 lamented that “for the most

part our computing takes place sitting in front of, and staring at, a single glowing

screen attached to an array of buttons and a mouse.” As the ultimate promise of

AR, he imagined a world where both entirely virtual objects and real objects imbued

with virtual properties could be used to bring the physical world and computing

together. Instead of viewing information on a two-dimensional computer screen, the

three-dimensional physical world becomes a canvas on which virtual information can

be displayed or edited either individually or collaboratively. Twenty years have passed

since Wellner’s article and little has changed. There have been technological advances

in AR, but, with all the promise of AR, it simply has not gained much traction in
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the commercial world.

The operative question is then what has prevented AR from reaching Wellner’s

vision. The answer is that creating augmented visuals that provide a convincing

illusion of realism is extremely difficult. Thus, AR has either suffered from poor

alignment of the virtual elements and the real world, resulting in an unconvincing

illusion, or has been limited in application to avoid this difficulty.

Errors in the alignment of virtual objects or information with their desired

real world position and orientation, or pose, are typically referred to as registration

errors. Registration errors are a direct result of the estimation error of the user’s

position and orientation relative to the virtual element. These registration errors have

been the primary limiting factor in the suitability of AR for various applications [6].

If registration errors are too large, then it becomes difficult or even impossible to

interact with the virtual objects because the object may not appear stationary as

the user approaches. This is because registration errors become more prominent in

the user’s view of the object as the user gets closer to the virtual object due to user

positioning errors.

Many current AR applications leverage the fact that user positioning errors

have little impact on registration errors when virtual objects are far away and con-

strain themselves to only visualizing objects at a distance. The recently announced

Google Glass [7] falls into this category. Some of these applications, including Google

Glass, are described in Sec. 1.1. While there is utility to these applications, they seem

disappointing when compared to Wellner’s vision of a fully immersive AR experience.

Techniques capable of creating convincing augmented visuals with small reg-

istration errors have been created using relative navigation to visual cues in the envi-

ronment. However, these techniques are not generally applicable. Relative navigation
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alone does not provide any global reference, which is necessary for many applications

and convenient for others.

To reach the ultimate promise of AR envisioned by Wellner, we imagine an

ideal AR system that is

Accurate: The ideal AR system should provide absolute camera pose with centimeter-

level or better positioning accuracy and sub-degree-level attitude accuracy. For

a positioning error of 1 cm and an attitude error of half a degree, a virtual

object 1 m in front of the camera would have at most a registration error of

approximately 1.9 cm in position.

Available: The ideal AR system should be capable of providing absolute camera

pose at the above accuracy in any space, both indoors and out.

Inexpensive: The ideal AR system should be priced in a reasonable range for a

typical consumer.

Easy to Use: The ideal AR system should be easy for users to either hold up in front

of them or wear on their head. The augmented view should also be updated in

real-time with no latency by propagating the best estimate of the camera pose

forward in time through a dynamics model.

The desired positioning accuracy is difficult to achieve in a global reference

frame, but can be accomplished with carrier-phase differential GPS (CDGPS). CDGPS,

commonly referred to as real-time-kinematics (RTK) for operation in real-time with

motion, is a technique in which the difference between the carrier-phase observables

from two GPS receivers are used to obtain the relative position of the two antennas.

Under normal conditions, this technique results in centimeter-level or better accuracy
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of the relative position vector. Therefore, if the location of one of the antennas, the

reference antenna, is known accurately from a survey of the location, then the ab-

solute coordinates of the other antenna, the mobile antenna, can be determined to

centimeter-level or better accuracy.

Currently, the price of commercially available CDGPS-capable receivers is out

of reach for the typical consumer. However, the price could easily be reduced by

making concessions in regards to signal diversity. CDGPS-capable receivers currently

on the market are designed primarily for surveyors that desire instant, high-accuracy

position fixes, even in urban canyons. This requires the use of multiple satellite con-

stellations and multiple signal frequencies. Each additional satellite constellation and

signal frequency adds significant cost to the receiver. On the other hand, inexpensive,

single-frequency GPS receivers are on the market that produce the carrier-phase and

pseudorange observables required to obtain CDGPS accuracy.

The concession of reducing signal diversity to maintain price, however, ex-

acerbates problems with GPS availability. GPS reception is too weak for indoor

navigation and is difficult in urban canyons. Multiple constellations could help with

urban canyons, but indoor navigation with GPS alone is a difficult problem.

One well published solution to address GPS availability issues and provide

attitude estimates is to couple GPS-based positioning with an inertial navigation

system (INS). The sensors for an INS typically consist of a three-axis accelerome-

ter, a three-axis gyro, a magnetometer, and possibly a thermometer (for temperature

calibration of the sensors). For the remainder of this thesis, the term inertial measure-

ment unit (IMU) will be used to collectively refer to the sensors comprising an INS, as

listed above. However, a coupled CDGPS and INS navigation system provides poor

attitude estimates during dynamics and near magnetic disturbances. Additionally,

4



the position solution of a coupled CDGPS and INS navigation system drifts quickly

during periods of GPS unavailability for all but the highest-quality IMUs, which are

large and expensive.

A far superior option, which is presented in this thesis, is to couple CDGPS

with monocular visual simultaneous localization and mapping (SLAM). Visual SLAM

is ideally situated as a complementary navigation technique to CDGPS-based naviga-

tion. This combination of navigation techniques is special in that neither one acting

alone can observe globally-referenced attitude, but their combination allows globally-

referenced attitude to be recovered, which is proven in subsequent chapters. Visual

SLAM alone provides high-accuracy relative pose in areas rich with nearby visually

recognizable features. These nearby feature rich environments include precisely the

environments where GPS availability is poor or non-existent. During periods of GPS

availability, CDGPS can provide the reference to a global coordinate system that vi-

sual SLAM lacks. During periods of GPS unavailability, visual SLAM provides pose

estimates that drift much more slowly, relative to absolute coordinates, than all but

the highest-quality IMUs. An INS with an inexpensive IMU could be combined with

this solution for additional robustness, particularly during periods of GPS unavail-

ability to further reduce the drift of the pose estimates. This fusion of navigation

techniques has the potential to satisfy the ultimate promise of AR.

One example of an application that would benefit from the AR system de-

scribed above is construction. Currently, construction workers must carefully com-

pare building plans with measurements on site to determine where to place beams

and other structural elements, among other tasks. Construction could be expedited

with the ability to visualize the structure of a building in its exact future location

while building the structure. In particular, Shin identified 8 of 17 construction tasks
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in [8] that could be performed more efficiently by employing AR technologies.

Another potential application of this AR system is utility work. Utility workers

need to identify existing underground structure before digging to avoid damaging

existing infrastructure and prevent accidents that may cause injury. AR would enable

these workers to “see” current infrastructure and easily avoid it without having to

interpret schematics and relate that to where they are trying to dig.

There are many other interesting consumer applications in areas like gaming,

social media, and tourism that could be enabled by a low-cost, general purpose AR

platform providing robust, high-accuracy absolute pose of the camera. An ideal AR

system would be usable for all these applications and could operate in any space,

both indoors and out. Much like a smart-phone, the AR system could provide an ap-

plication programming interface (API) that other application specific software could

use to request pose information and push augmented visuals to the screen.

1.1 Background

In relation to the lofty goals of an ideal AR system laid out above, current

consumer AR technology fails to impress. Nevertheless, some isolated applications

of AR for which the full realization of the ideal AR system is unnecessary have been

successful. These applications typically rely on visual cues or pattern recognition for

relative navigation, but there are some applications that leverage absolute pose which

do not have as stringent accuracy requirements as those envisioned for the ideal AR

system. The following are some of these applications:

Sports Broadcasts: Sports broadcasts have used limited forms of AR for years to

overlay information on the video feed to aid viewers. One example of this is the
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line-of-scrimmage and first-down lines typically drawn on American Football

broadcasts. This technology uses a combination of visual cues from the footage

itself and the known location of the video cameras [9]. This technology can

also be seen in broadcasts of the Olympic Games for several sports including

swimming and many track and field events. In this case, the lines drawn on

the screen typically represent record paces or markers for previous athletes’

performances.

Lego Models: To market their products, Lego employs AR technology at their

kiosks which displays the fully constructed Lego model on top of the prod-

uct package when held in front of a smart-phone camera. This technique uses

visual tags on the product package to position and orient the model on top of

the box [10].

Word Lens: Tourists to foreign countries often have trouble finding their way around

because the signs are in foreign languages. Word Lens is an AR application

which translates text on signs viewed through a smart-phone camera as illus-

trated in Fig. 1.1 [1]. This application uses text recognition software to identify

portions of the video feed with text and then places the translated text on top

of the original text with the same color background.

Wikitude: Wikitude is another smart-phone application which displays information

about nearby points of interest, such as restaurants and landmarks, in text bub-

bles above their actual location as the user looks around while holding up their

smart-phone [11]. This application leverages coarse pose estimates provided by

GPS and an IMU.
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Figure 1.1: A smart-phone running the Word Lens application that is translating a
sign from Spanish to English [1].

StarWalk: StarWalk is an application for smart-phones which allows users to point

their smart-phones toward the sky and display constellations in that portion of

the sky [2]. Like Wikitude, StarWalk utilizes coarse pose estimates provided

by GPS and an IMU. However, StarWalk does not overlay the constellations

on video from the phone. The display is entirely virtual, but reflects the user’s

actual pose.

Layar: Layar began as a smart-phone application that used visual recognition to

overlay videos and website links onto magazine articles and advertisements [12].

The company, also called Layar, later created a software development kit that

allows others to create their own AR applications based on either visual recog-

nition, pose estimates provided by the smart-phone, or both. Like this thesis,

Layar imagines a world where AR becomes a part of our everyday lives and

seeks to bring the world closer to that goal.
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Figure 1.2: The Star Walk application is being used to highlight constellations in the
night sky [2].

Google Glass: Google recently introduced a product called Glass which is a wear-

able AR platform that looks like a pair of glasses with no lenses and a small

display above the right eye. This is easily the most ambitious consumer AR plat-

form to date. However, Glass makes no attempt toward improving registration

accuracy over existing consumer AR. Glass is essentially just a smart-phone

that is worn on the face with some additional hand gestures for ease of use.

Like a smart-phone, Glass has a variety of useful applications that are capable

of tasks such as giving directions, sending messages, taking photos or video,

making calls, and providing a variety of other information on request [7].
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1.2 Prior Work

1.2.1 Augmented Reality

Prior work in AR can be divided into two primary categories, fiduciary-marker-

based and non-fiduciary-marker-based. Work in each of these categories is discussed

separately below. This discussion is restricted to those techniques which provide or

have the potential to provide absolute pose.

1.2.1.1 Fiduciary-Marker-Based Augmented Reality

Fiduciary-marker-based AR relies on identification of visual cues or markers

that can be correlated with a globally-referenced database and act as anchors for rel-

ative navigation. This requires the environment in which the AR system will operate

to either be prepared, by placing and surveying fiduciary markers, or surveying for

native features which are visually distinguishable ahead of time.

One such fiduciary AR technique by Huang et al. uses monocular visual SLAM

to navigate indoors by matching doorways and other room-identifying-features to an

online database of floor plans [13]. The appropriate floor plan is found using the

rough location provided by an iPhone’s or iPad’s hybrid navigation algorithm, which

is based on GPS, cellular phone signals, and Wi-Fi signals. The attitude is based on

the iPhone’s or iPad’s IMU. This information was used to guide the user to locations

within the building. The positioning of this technique was reported as accurate to

meter-level, which would result in large registration errors for a virtual object within

a meter of the user.

Another way of providing navigation for an AR system is to place uniquely

identifiable markers at surveyed locations, like on the walls of buildings or on the

ground. AR systems could download the locations of these markers from an online
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database as they identify the markers in their view and position themselves relative to

the markers. This is similar to what is done with survey markers, which are often built

into sidewalks and used as a starting point for surveyors with laser ranging equipment.

An example of this technique used in a visual SLAM framework is given in [14] by

Zachariah et al. This particular implementation uses a set of visual tags on walls

in a hallway seen by a monocular camera and an IMU. Decimeter-level positioning

accuracy was obtained in this example, which would still result in large registration

errors for a virtual object within a meter of the user. This method also does not scale

well as it would require a dense network of markers to be placed everywhere an AR

system would be operated.

A final method takes the concept of fiduciary markers to its extreme limit and

represents the current state of the art in fiduciary-marker-based AR. This technique

is based on Microsoft’s PhotoSynth which was pioneered by Snavely et al. in [15].

PhotoSynth takes a crowd-sourced database of photos of a location and determines

the calibration and pose of the camera for each picture and the location of identified

features common to the photos. PhototSynth also allows for smooth interpolation

between views to give a full 6 degree-of-freedom (DOF) explorable model of the

scene. This feature database could be leveraged for AR by applying visual SLAM

and feature matching with the database after narrowing the search space with a coarse

position estimate. In a TED talk by Arcas of Bing Maps [16] in 2010, the power of

this technique for AR was demonstrated through a live video of Arcas’ colleagues

from a remote location that was integrated into Bing Maps as a floating frame at the

exact pose of the real world video camera.

While the PhotoSynth approach seems to satisfy the accuracy requirements of

an ideal AR system, there are several problems to universal availability. First, this
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technique requires that the world be mapped with pictures taken from enough angles

for PhotoSynth to work. This could be crowd-sourced for many locations that are

public and well trafficked, but other areas would have to be explored specifically for

this purpose. Google and Microsoft both have teams using car and backpack mounted

systems to provide street views for their corresponding map programs which could be

leveraged for this purpose. However, the area covered by these teams is insignificant

when it comes to mapping the whole world. Second, the world would have to be

mapped over again as the environment changes. This requires a significant amount

of management of an enormously large database. Third, applications that operate in

changing environments, such as construction, could not use this technique. Finally,

private spaces will require those who use the space to take these images themselves.

For people to use this technique in their homes, they would need to walk around

their homes and take pictures of every room from a number of different angles and

locations. In addition to being a hassle for users, this could also create privacy issues

if these images had to be incorporated into a public database to be usable with AR

applications. Communications bandwidth would also be a severe limitation to the

proliferation of AR using this technique.

1.2.1.2 Non-Fiduciary-Marker-Based Augmented Reality

Non-fiduciary-marker-based AR providing absolute pose primarily, if not en-

tirely, consists of GPS-based solutions. Most of these systems couple some version of

GPS positioning with an IMU for attitude. Variants of GPS positioning that have

been used are

1. pseudorange-based GPS, which, for civil users, provides meter-level positioning

accuracy and is referred to as the standard positioning service (SPS).
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2. differential GPS (DGPS), which provides relative positioning to a reference

station at decimeter-level accuracy.

3. carrier-phase differential GPS (CDGPS), which provides relative positioning to

a reference station at centimeter-level accuracy or better.

One of the first GPS-based AR systems was designed to aid tourists in ex-

ploring urban environments. This AR system was developed in 1997 by Feiner et al.

at Columbia University [3]. Feiner’s AR system, shown in Fig. 1.3, is composed of a

backpack with a computer and GPS receiver, a pair of goggles for the display with

a built-in IMU, and a hand-held pad for interfacing with the system. The operation

of this system is similar to Wikitude, mentioned in Sec. 1.1, in that it overlays in-

formation about points of interest on their corresponding location and aids the user

in navigating to these locations. In fact, the reported pose accuracy of this device

is comparable to that of Wikitude even though this system uses DGPS. The fact

that the GPS antenna is not rigidly attached to the IMU and display also severely

limits the potential accuracy of this AR system configuration even if the positioning

accuracy of the GPS receiver was improved.

An AR system similar to the Columbia system was created and tested by

Behzadan et al. [17, 18] at the University of Michigan for visualizing construction

work-flow. Initially the AR system only used SPS GPS with a gyroscopes-only atti-

tude solution, but was later upgraded with DGPS and a full INS.

Roberts et al. at the University of Nottingham built a hand-held AR system

that looks like a pair of binoculars which allows utility workers to visualize subsurface

infrastructure [4, 19]. An example of the visuals obtained from this system is shown

in Fig. 1.4. This AR system used an uncoupled CDGPS and IMU solution for its pose
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Figure 1.3: An augmented reality system developed by researchers at Columbia Uni-
versity for providing users with information about their surroundings [3].

estimate. However, no quantitative analysis of the system’s accuracy was presented.

This AR system restricts the user to applications with an open sky view, since it

cannot produce position estimates in the absence of GPS. In a dynamic scenario, the

CDGPS position solution would also suffer from the unknown user dynamics. The

IMU could easily alleviate this issue if it were coupled to the CDGPS solution.

Schall et al. also constructed a hand-held AR device for visualizing subsurface

infrastructure at Graz University of Technology [20]. Although their initial prototype

only used SPS GPS and an IMU, much effort was spent in designing software to pro-

vide convincing visualizations of the subsurface infrastructure and on the ergonomics

of the device. Later papers report an updated navigation filter and AR system that

loosely couples CDGPS, an IMU, and a variant of visual SLAM for drift-free atti-

tude tracking [21, 22]. This system comes the closest to that presented in this thesis,
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Figure 1.4: An image produced by an AR system developed by researchers at the
University of Nottingham showing subsurface utilities overlaid onto the real world
image in the background [4].

but does not fully couple CDGPS and visual SLAM. Further discussion on this AR

system’s navigation filter is given in the following section.

1.2.2 Vision-Aided Navigation

Vision-aided navigation couples some form of visual navigation with other

navigation techniques to improve the navigation system’s performance. The vast

majority of prior work in vision-aided navigation has only coupled visual SLAM

and an INS. This allows for resolution of the inherent scale-factor ambiguity of

the map created by visual SLAM to recover true metric distances. This approach

has been broadly explored in both visual SLAM methodologies, filter-based and

bundle-adjustment-based. Examples of this approach for filter-based visual SLAM

and bundle-adjustment-based visual SLAM are given in [23–26] and [27–29] respec-

tively. Several papers even specifically mention coupled visual SLAM and INS as an

alternative to GPS, instead of a complementary navigation technique [30, 31].
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There has been some prior work on coupling visual navigation and GPS, but

these techniques only coupled the two in some limited fashion. One example of

this is a technique developed by Soloviev and Venable that used GPS carrier-phase

measurements to aid in scale-factor resolution and state propagation in an extended

Kalman filter (EKF) visual SLAM framework [32]. This technique was primarily

targeted at GPS-challenged environments where only a few GPS satellites could be

tracked. Another technique developed by Wang et al. only used optical flow to aid a

coupled GPS and INS navigation solution for an unmanned aerial vehicle [33].

The closest navigation technique to a full coupling of GPS and visual SLAM

was developed by Schall et al., as previously mentioned [21, 22]. An important dis-

tinction of Schall’s filter from a fully-coupled GPS and visual SLAM approach is that

Schall’s filter only extracts attitude estimates from visual SLAM to smooth out the

IMU attitude estimates. In fact, Schall’s filter leaves attitude estimation and posi-

tion estimation decoupled and does not use accelerometer measurements from the

IMU for propagating position between GPS measurements. This approach limits the

absolute attitude accuracy of the filter to that of the IMU, which is not true for a

fully-coupled GPS, visual SLAM, and IMU approach. This filter is also sub-optimal

in that it throws away positioning information that could be readily obtained from the

visual SLAM algorithm, ignores accelerometer measurements, and ignores coupling

between attitude and position.

1.3 Contributions

In contrast to other approaches that combine GPS and visual SLAM in a

limited fashion, this thesis presents methods to fully fuse GPS and visual SLAM

that would enable convincing absolute registration in any space, both indoors and
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out. One added benefit to this coupling is the recovery of absolute attitude without

the use of an IMU. A sufficient condition for observability of the locations of visual

features and the absolute pose of the camera without the use of an IMU is presented

and proven. Several potential filter architectures are presented for combining GPS,

visual SLAM, and an INS and the advantages of each are discussed. These filter

architectures include an original filter-based visual SLAM method that is a modified

version of the method presented by Mourikis et al. in [23].

A filter that combines CDGPS, bundle-adjustment-based visual SLAM, and

an INS is presented which, while not optimal, is capable of demonstrating the po-

tential of this combination of navigation techniques. A prototype AR system based

on this filter is detailed and shown to obtain accuracy that would enable convincing

absolute registration. With some modification to the prototype AR system so that

visual SLAM is coupled tighter to the navigation system, this AR system could op-

erate in any space, indoors and out. Further prototypes of the AR system could be

miniaturized and reduced in cost with little effect on the accuracy of the system in

order to approach the ideal AR system.

1.4 Organization

The remainder of the thesis is structured as follows

Chapter 2 gives an observability proof for combined GPS and visual SLAM and

discusses potential approaches for optimal fusion of GPS, visual SLAM, and an

INS in the sense of accuracy per computational cost.

Chapter 3 presents the measurement and dynamics models used in the navigation

filter of the prototype AR system.
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Chapter 4 defines the navigation filter of the prototype AR system.

Chapter 5 describes the hardware and software used for the prototype AR system.

Chapter 6 presents test results for the prototype AR system.

Chapter 7 gives conclusions for this thesis and describes areas for future work.

Appendices present some mathematical background in quaternion math, the square-

root EKF (SREKF), and integer ambiguity resolution that is helpful for com-

prehension of the navigation filter presented in this thesis.
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Chapter 2

Analysis of Coupled Visual SLAM and GPS

In recent years, vision-aided inertial navigation has received much attention

as a method for resolving the scale-factor ambiguity inherent to monocular visual

SLAM. With the scale-factor ambiguity resolved, high-accuracy relative navigation

has been achieved. This method has widely been considered an alternative to GPS-

based absolute pose techniques, which have problems navigating in urban canyons

and indoors. Few researcher have coupled visual SLAM with GPS, and those who

have only did so in a limited fashion.

This chapter investigates how these two complementary navigation techniques

and inertial measurements can be coupled with the goal of obtaining highly accurate

absolute pose in any area of operation, indoors and out. The chapter begins with

an observability analysis which demonstrates that absolute pose can be recovered by

combining visual SLAM and GPS alone. This combination of measurements is special

in that neither one acting alone can observe absolute attitude, but their combination

allows absolute attitude to be recovered. A discussion of estimation methods is then

presented that details the unique aspects of the visual SLAM problem from an esti-

mation standpoint. Estimation strategies are detailed and compared for the problems

of stand-alone visual SLAM and coupled visual SLAM, GPS, and inertial sensors.
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2.1 Observability Analysis

Consider a rigid body on which is rigidly mounted a calibrated camera. The

body frame of the rigid body will be taken as the camera reference frame and denoted

as C. Its origin and x and y axes lie in the camera’s image plane; its z axis points

down the camera bore-sight. A reference point xr = [xr, yr, zr]T is fixed on the rigid

body. When expressed in the camera frame, xr is written xr
C = [xrC, y

r
C, z

r
C]

T and is

constant. Consider a scene viewed by the camera that consists of a collection of M

static point features in a local reference frame L. The jth point feature has constant

coordinates in frame L: x
pj
L

= [x
pj
L
, y

pj
L
, z

pj
L
].

The camera moves about the static point features and captures N keyframes,

which are images of the M point features taken from distinct views of the scene. A

distinct view is defined as a view of the scene from a distinct location. Although

not required by the definition, these distinct views may also have differing attitude

so long as the M point features remain in view of the camera. Each keyframe has

a corresponding reference frame Ci, which is defined to be aligned with the camera

frame at the instant the image was taken, and image frame Ii, which is defined as the

plane located 1 m in front of the camera lens and normal to the camera bore-sight.

It is assumed that the M point features are present in each of the N keyframes and

can be correctly and uniquely identified.

To determine the projection of the M point features onto the image frames of

the N keyframes, the point features are first expressed in each Ci. This operation is

expressed as follows

x
pj
Ci

= R(qL
Ci
)(x

pj
L
− xCi

L
), for i = 1, 2, . . . , N & j = 1, 2, . . . ,M (2.1)
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where qL
Ci

is the quaternion representation of the attitude of the camera for the ith

keyframe relative to the L frame, R(·) is the rotation matrix corresponding to the

argument, and xCi

L
is the position of the origin of the camera (hereafter the camera po-

sition) for the ith keyframe expressed in the L frame. For any attitude representation,

(·)AB represents a rotation from the A frame to the B frame. Details on quaternion

representation of attitude and quaternion math are provided in Appendix A.

A camera projection function p(·) converts a vector expressed in the camera

frame Ci into a two-dimensional projection of the vector onto the image frame Ii as

s
pj
Ii

=

[

α
pj
Ii

β
pj
Ii

]

= p(x
pj
Ci
), for i = 1, 2, . . . , N & j = 1, 2, . . . ,M (2.2)

The set of these projected coordinates for each point feature and each keyframe

constitute the measurements provided by a feature extraction algorithm operating on

these keyframes.

Suppose that, in addition to these local measurements, measurements of the

position of the reference point on the rigid body are provided in a global reference

frame G at each keyframe, denoted as xri
G
. The position of the reference point in G is

related to the pose of the camera through the equation

xri
G
= xCi

G
+R(qCi

G
)xr

C, for i = 1, 2, . . . , N (2.3)

The local frame L is fixed with respect to G and is related to G by a similarity

transform. A vector expressed in G can be expressed in L through the equation

xL = λR(qG

L
)(xG + xL

G ) (2.4)
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where xL
G , q

G

L
, and λ are the translation, rotation, and scale-factor that characterize

the similarity transform from G to L.

The globally-referenced structure from motion problem can be formulated as

follows: Given the measurements s
pj
Ii

and xri
G
for i = 1, 2, . . . , N and j = 1, 2, . . . ,M ,

estimate the camera pose for each frame (parameterized by xCi

L
and qCi

L
for i =

1, 2, . . . , N), the location of each point feature (x
pj
L

for j = 1, 2, . . . ,M), and the

similarity transform relating G and L (parameterized by xL
G , q

G

L
, and λ).

The goal of the following analysis is to define a set of sufficient conditions under

which these quantities are observable. To start, the projection function from Eq. 2.2

is taken to be a perspective projection and weak local observability is tested. A proof

of weak local observability only demonstrates that there exists a neighborhood around

the true value inside which the solution is unique, but not necessarily a globally unique

solution. Stronger observability results are then proven under the more restrictive

assumption that the projection is orthographic.

2.1.1 Perspective Projection Analysis

A perspective projection, also known as a central projection, projects a view

of a three-dimensional scene onto an image plane through rays connecting three-

dimensional locations and a center of projection. This is the type of projection that

results from a camera image. A perspective projection can be expressed mathemati-

cally, assuming a calibrated camera, as

p(xC) =
1

zC

[

xC
yC

]

(2.5)

To demonstrate weak local observability, the measurements from Eqs. 2.2

and 2.3 were linearized about the true values of the camera poses and the feature
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locations in G. The resulting matrix was tested for full column rank under a series of

scenarios. This test is a necessary and sufficient condition for weak local observabil-

ity, which means the solution is unique within a small neighborhood about the true

values of the quantities to be estimated but not necessarily globally unambiguous.

The weak local observability tests revealed that with as few as three keyframes

of three point features the problem is fully locally observable provided the following

conditions are satisfied:

1. The three feature points are not collinear.

2. The positions of the camera for each frame are not collinear.

3. The positions of the reference point for each frame are not collinear.

2.1.2 Orthographic Projection Analysis

An orthographic projection projects a view of a three-dimensional scene onto

an image plane through rays parallel to the normal of the image plane. Although

this projection does not describe how images are formed in a camera, this is a good

approximation to a perspective projection in a small segment of the image, so long

as the distance from the camera to the point features is much larger than the dis-

tance between the point features [34]. An orthographic projection can be expressed

mathematically as

p(xC) =

[

xC
yC

]

(2.6)

A theorem for global observability of this problem can be stated as follows
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Theorem 2.1.1. Assume that p(·) represents an orthographic projection. Given s
pj
Ii

and x
ri
G

for M = 4 non-coplanar point features and N = 3 distinct keyframes such

that the x
Ci

L
are not collinear and the x

ri
G

are not collinear, the similarity transform

between G and L and the quantities x
Ci

L
, qLCi

, and x
pj
L

for i = 1, 2, 3 and j = 1, 2, 3, 4

can be uniquely determined.

To prove Theorem 2.1.1, consider the structure from motion (SFM) theorem

given as

Given three distinct orthographic projections of four non-coplanar points

in a rigid configuration, the structure and motion compatible with the

three views are uniquely determined up to a reflection about the image

plane [35].

The reflection about the image plane can be discarded, as it exists behind the camera.

Thus, the SFM theorem states that a unique solution for xCi

L
, qL

Ci
, and x

pj
L

can be

found using only s
pj
Ii

for i = 1, 2, 3 and j = 1, 2, 3, 4. The SFM theorem was proven

by Ullman using a closed-form solution procedure [35].

The remainder of Theorem 2.1.1 is proven using the closed-form solution for

finding a similarity transformation presented by Horn in [36]. Horn demonstrated that

the similarity transform between two coordinate systems can be uniquely determined

based on knowledge of the location of three non-collinear points in both coordinate

systems. In the case of Theorem 2.1.1, this result allows the similarity transform

between G and L to be recovered from the three locations of the reference point in

the two frames, since the locations xri
G
for i = 1, 2, 3 are given and the reference points

xri
L
can be computed from
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xri
L
= xCi

L
+R(qL

Ci
)Txr

C, for i = 1, 2, 3 (2.7)

2.1.3 Interpretation of Results

Theorem 2.1.1 provides a sufficient condition for global observability of the

locations of the point features and the pose of the camera in G. This demonstrates

that absolute pose can be recovered from the coupling of GPS, which provides the

measurements of xri
G
, and visual SLAM in spite of neither being capable of determining

absolute attitude alone. Interestingly, this means that an AR system that fully couples

GPS and visual SLAM does not need to rely on an IMU for absolute attitude. This

system would therefore not be susceptible to disturbances in the magnetic field, which

can cause large pointing errors in the magnetometers in IMUs.

While the conditions specified in Theorem 2.1.1 are sufficient, they are cer-

tainly not necessary. Ullman mentions in his proof of the SFM theorem that under

certain circumstances a unique solution still exists even if the four point features are

coplanar [35]. The inclusion of GPS measurements may also have an effect on the

required conditions for observability. While the weak local observability results from

Sec. 2.1.1 do not prove the existence of a globally unambiguous solution, the results

suggest that it may be possible to get by with just three point features. However,

this thesis employs visual SLAM algorithms that track hundreds or even thousands of

points, so specifying the absolute minimum conditions under which a solution exists

is not of concern for this thesis.
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2.2 Estimation Methods

The optimal approach to any causal estimation problem would be to gather

all the measurements collected up to the current time and produce an estimate of

the state from this entire batch by minimizing a cost function whenever a state es-

timate is desired [37]. The most commonly employed cost function is the weighted

square of the measurement error in which case the estimation procedure is referred

to as least-squares. In the case of linear systems, the batch least-squares estimation

procedure simply involves gathering the measurements into a single matrix equation

and performing a generalized matrix inversion [38]. In the case of nonlinear systems,

the batch least-squares estimation procedure is somewhat more involved. Compu-

tation of the nonlinear least-squares solution typically involves linearization of the

measurements about the current best estimate of the state, performing a general-

ized matrix inversion, and iteration of the procedure until the estimate settles on a

minimum of the cost function [38]. While this approach is optimal, it often becomes

enormously computationally intensive as more measurements are gathered and is thus

often impractical for real-time applications.

This issue led to the development of the Kalman filter [39, 40], which is also

optimal for linear systems where all noises are white and Gaussian distributed. The

Kalman filter is a sequential estimation method that summarizes the information

gained up to the current time as a multivariate Gaussian probability distribution.

This development eliminated the need to process all the measurements at once, thus

providing a more computationally-efficient process for real-time estimation.

The use of the Kalman filter was later extended to nonlinear systems by lin-

earizing the system about the current best estimate of the state, as was done for

the batch solution procedure. This method was coined the extended Kalman filter
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(EKF). However, errors in the linearization applied by the EKF cause the filter to

develop a bias and make the filter sub-optimal [41]. Iteration over the measurements

within a certain time window can be performed to reduce the resulting bias without

resorting to a batch process over all the measurements [41]. However, it is typically

assumed that the linearization is close enough that these errors are small and this

small bias is acceptable in order to enable real-time estimation. Non-Gaussianity can

also be a problem with EKFs due to propagation of the distribution through non-

linear functions. Other filtering methods have also been developed to better handle

issues of non-Gaussianity caused by nonlinearities [42, 43].

As explained previously, batch estimation methods are typically dismissed in

favor of sequential methods for real-time application because of the inherent com-

putational expense of batch solutions. However, the unique nature of visual SLAM

makes batch estimation appealing even for real-time application [44]. These unique

aspects of the visual SLAM problem are

High Dimensionality: The images on which visual SLAM operates inherently have

high dimensionality. Each image has hundreds or thousands of individual fea-

tures that can be identified and tracked between images. These tracked features

each introduce their own position as parameters that must be estimated in order

for the features to be used for navigation. If all of the hundreds or thousands

of image features from all the images in a video stream are to be used for nav-

igating, then the problem quickly becomes infeasible for real-time applications

based on computational requirements even for a sequential estimation method.

Therefore, compromises must be made regarding either the number of features

tracked, the frame rate, or both. This compromise is different for batch and

sequential estimators; this point will be explained in detail in Sec. 2.2.1.
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Inherent Sparsity: Linearized measurement equations in the visual SLAM problem

have a banded structure in the columns corresponding to the feature locations

when measurements taken from multiple frames are processed together. Sparse

matrix structures such as this result in drastic computational savings when

properly exploited. This inherent sparsity collapses if one tries to summarize

data as in a recursive estimator.

Superfluity of Dynamic Constraints: While dynamic constraints on the camera

poses from different frames do provide information to aid in estimation, this ad-

ditional information is unnecessary for visual SLAM and may not be as valuable

as preserving sparsity. Removing these dynamic constraints creates a block di-

agonal structure in the linearized measurement equations for a batch estimator

in the columns corresponding to the camera poses. This sparse structure can be

exploited by the batch estimator for additional computational savings. Thus,

more features can be tracked by the batch estimator for the same computational

expense by ignoring dynamic constraints.

Spatial Correlation: Since visual features must be in view of the camera to be use-

ful for determining the current camera pose, past images that no longer contain

visual features currently in view of the camera provide little or no information

about the current camera pose. Thus, the images with corresponding camera

poses and features that are not in the neighborhood of the current camera pose

can be removed from the batch estimation procedure, reducing the size of both

the state vector and the measurement vector in a batch solution procedure.
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2.2.1 Methodologies for Visual SLAM

Two primary methodologies have been applied to the visual SLAM prob-

lem; each addresses the constraint of limited computational resources in fundamen-

tally different ways. These methodologies are filter-based visual SLAM and bundle-

adjustment-based visual SLAM. Each of these methods and the concessions made to

reduce their computational expense are described below.

2.2.1.1 Filter-Based Visual SLAM

Filter-based visual SLAM employs a sequential-type estimator that marginal-

izes out past camera poses and the corresponding feature measurements by summa-

rizing the information gained as a multi-variate probability distribution (typically

Gaussian) of the current pose. For most problems, this marginalization of past poses

maintains a small state vector and prevents the computational cost of the filter from

growing. This is not the case for visual SLAM where each image could add many

new features whose location must be estimated and maintained in the state vector.

Typical filter-based visual SLAM algorithms have computational complexity

that is cubic with the number of features tracked due to the need for adding the

feature locations to the state vector and propagating the state covariance through

the filter [37]. To reduce computational expense, filter-based visual SLAM imposes

limits on the number of features extracted from the images, thus preventing the state

vector from becoming too large. Examples of implementations of filter-based visual

SLAM can be found in [23–26].

Mourikis Method Of the filter-based visual SLAM methods reported in literature,

the method designed by Mourikis et al. [23] is of particular interest. Mourikis created a
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measurement model for the feature measurements that expresses these measurements

in terms of constraints on the camera poses for multiple images or frames. This

linearized measurement model for a single feature over multiple frames is expressed

as

zpj = spj − ŝpj =
∂spj

∂X

∣

∣

∣

∣

X̄,x̄pj

δX+
∂spj

∂xpj

∣

∣

∣

∣

X̄,x̄pj

δxpj +wpj

= Hpj ,XδX+Hpj ,x
pj δxpj +wpj

(2.8)

where spj is formed by stacking the feature measurements s
pj
Ii

from Eq. 2.2 for each

frame being processed, X is the state vector which includes the camera poses for the

frames being processed, ŝpj is the expected value of the feature measurements based

on the a priori state X̄, δX and δxpj are the errors in the a priori state and feature

location respectively, and wpj is white Gaussian measurement noise with a diagonal

covariance matrix. The estimate of the feature location xpj is simply computed from

the feature measurements and camera pose estimates from other frames that were

not used in Eq. 2.8, but have already been collected and added to the state.

The measurement model in Eq. 2.8, however, still contains the error in the

estimated feature locations. To obtain a measurement model that contains only the

error in the state, Mourikis transformed Eq. 2.8 by left multiplying by a matrix, AT
pj
,

that spans the left null space of Hpj ,x
pj to obtain

AT
pj
zpj = z′pj = H ′

pj,X
δX+w′

pj
(2.9)

This operation reduces the number of equations from 2Nf , where Nf is the number

of frames used in Eq. 2.8, to 2Nf −3, since the rank of Hpj ,x
pj is 3. This assumes that
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Nf > 1, since the null space of Hpj ,x
pj would be empty otherwise. The remaining 3

equations, which are thrown out, are of the form

HT
pj ,x

pjzpj = zrpj = Hr
pj ,X

δX+Hr
pj ,x

pj δx
pj +wr

pj
(2.10)

Since no guarantee can be made that Hr
pj ,X

in Eq. 2.10 will be zero, this procedure

sacrifices information about the state by ignoring these 3 equations.

Therefore, the Mourikis implementation does not require the feature positions

to be added to the state, but requires a limited number of camera poses to be added

to the state instead. Once a threshold on the number of camera poses in the state is

reached, a third of the camera poses are marginalized out of the state after processing

the feature measurements associated with those frames using Eq. 2.9. This approach

has computational complexity that is only linear with the number of features, but is

cubic with the number of camera poses in the state. The number of camera poses

maintained in the state can be made much smaller than the number of features,

so this method is significantly more computationally efficient than traditional filter-

based visual SLAM. Thus, this method allows more features to be tracked than with

traditional filter-based visual SLAM for the same computational expense.

Modified Mourikis Method The Mourikis method has the undesirable qualities

that (1) it throws away information that could be used to improve the state estimate

and (2) the measurement update cannot be performed on a single frame. These

drawbacks can be eliminated by recognizing that the feature locations are simply

functions of the camera poses from the state in this method. This means that the

error in the feature location can be expressed as
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δxpj =
∂xpj

∂X

∣

∣

∣

∣

X̄

δX (2.11)

These partial derivatives are quite complex and may need to be computed numerically.

This allows the measurement equations to be expressed entirely in terms of the state

vector by substituting Eq. 2.11 into Eq. 2.8, so no information needs to be discarded

and the measurement update can be performed using a single frame.

This modified version of the Mourikis method has a state vector that can

be partitioned into two sections. The first portion of the state contains the current

camera pose. The second portion of the state contains the camera poses for frames

that are specially selected to be spatially diverse. These specially selected frames are

referred to as keyframes.

Measurements from the keyframes are used to compute the estimates of the

feature locations and are not processed by the filter. The estimates of the feature

locations can be updated in a thread separate from the filter whenever processing

power is available using the current best estimate of the keyframe poses from the

state vector. New features are also identified in the keyframes as allowed by available

processing power. This usage of keyframes is inspired by the bundle-adjustment-based

visual SLAM algorithm developed by Klein and Murray [45], which will be detailed

in Sec. 2.2.1.2.

When a new frame is captured, this method first checks if this frame should

be added to the list of keyframes. If so, then the current pose is appended to the

end of the state vector and the measurements from the frame are not processed by

the filter. Otherwise, the linearized measurement equations are formed from Eqs. 2.8

and 2.11 and used to update the state.

32



To prevent the number of keyframes from growing without bound, the keyframes

are removed from the state whenever the system is no longer in the neighborhood

where the keyframe was taken. This condition can be detected by a set of heuristics

that compare the keyframe pose and the current pose of the system to see if the two

are still close enough to keep the keyframe in the state. When a keyframe is removed,

the current best estimate and covariance of the associated pose and the associated

measurements can be saved for later use. If the system returns to the neighborhood

again, then the keyframes from that neighborhood can be reloaded into the state. This

should enable loop closure, which most visual SLAM implementations have difficulty

accomplishing.

2.2.1.2 Bundle-Adjustment-Based Visual SLAM

Bundle-adjustment-based visual SLAM, in contrast to filter-based visual SLAM,

does not marginalize out the past poses. Bundle Adjustment (BA) is a batch nonlinear

least-squares algorithm that collects measurements of features from all of the frames

collected and processes them together. Implementing this process as a batch solution

allows the naturally sparse structure of the visual SLAM problem to be exploited

and eliminates the need to compute state covariances. This allows BA to obtain

computational complexity that is linear in the number of features tracked [44, 46].

This approach is optimal, but computing global BA solutions for visual SLAM

is a computationally intensive process that cannot be performed at the frame-rate

of the camera. As such, BA-based visual SLAM only selects certain “keyframes”

to incorporate into the global BA solution, which is computed only occasionally or

as processing power is available [37]. Pose estimates for each frame can then be

computed directly using the feature positions obtained from the global BA solution
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and the measured feature coordinates in the image. BA-based visual SLAM typically

does not compute covariances, which are not required for BA and would increase the

computational cost significantly.

Parallel Tracking and Mapping The predominant BA-based visual SLAM al-

gorithm was developed by Klein and Murray [45] and is called parallel tracking and

mapping (PTAM). PTAM is capable of tracking thousands of features and estimat-

ing relative pose up to an arbitrary scale-factor at 30 Hz frame-rates on a dual-core

computer. PTAM is divided into two threads designed to operate in parallel. The

first thread is the mapping thread, which performs BA to compute a map of the

environment and identifies new point features in the images. The second thread is

the tracking thread, which identifies point features from the map in new frames, com-

putes the camera pose for the new frames, and determines if new frames should be

added to the list of keyframes or discarded. PTAM is only designed to operate in

small workspaces, but can be adapted to larger workspaces by trimming the map in

the same way described for the modified Mourikis method in Sec. 2.2.1.1.

2.2.2 Optimal Approach for Visual SLAM

The two methodologies for visual SLAM, filter-based and BA-based, have been

discussed, but the question remains as to which approach gives the best performance

for visual SLAM. Filter-based visual SLAM has the advantage of processing every

camera frame, but imposes severe limits on the number of point features tracked due

to cubic computational complexity. The modified Mourikis method attains linear

computational complexity with the number of tracked features, but has cubic com-

putational complexity with the number of poses in the state. Filter-based methods

also suffer from linearization errors during the marginalization of frames. BA-based
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Table 2.1: Ranking of Visual SLAM Methodologies
Estimator Methodology Accuracy Robustness Computational

Type Efficiency
Batch Bundle Adjustment 1 1 1

Sequential
Traditional SLAM 3 3 3
Modified Mourikis 2 2 2

visual SLAM has several advantages over filter-based visual SLAM including linear

computational complexity in the number of tracked features and the elimination of

linearization errors through iteration over the entire set of data, but must reduce

the number of frames incorporated into the batch processing to achieve real-time

operation.

Strasdat et al. performed a comparative analysis of the performance of both

visual SLAM methodologies which revealed that BA-based visual SLAM is the opti-

mal choice based on the metric of accuracy per computational cost [37]. The primary

argument that Strasdat et al. present was that accuracy is best increased by tracking

more features. Their results demonstrated that after adding a few keyframes from

a small region of operation only extremely marginal benefit was obtained by adding

more frames. Based on this fact, BA was able to obtain better accuracy per computa-

tional cycle than the filter due to the difference in computational complexity with the

number of features tracked. Strasdat et al. did not consider any method like the mod-

ified Mourikis method in their analysis, which would have significant improvements

in accuracy per computational cost over traditional filter-based methods. However,

there is no reason to expect the modified Mourikis method would outperform BA. To

summarize this analysis, Table 2.1 shows a ranking of these methods for the metrics

of accuracy, robustness, and computational efficiency.
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2.2.3 Methodologies for Coupled Visual SLAM, GPS, and Inertial Sen-
sors

Now consider adding GPS and inertial measurements to the visual SLAM

problem. The addition of GPS measurements links the pose estimate to a global

coordinate system, as proven in Sec. 2.1. Inertial measurements from a three-axis

accelerometer and a three-axis gyro help to smooth out the solution between mea-

surement updates and limit the drift of this global reference during periods when

GPS is unavailable.

Although BA proved to be the optimal method for visual SLAM alone, this

may not be the case for combined visual SLAM, GPS, and inertial sensors. Filtering is

generally the preferred technique for navigating with GPS and inertial sensors for good

reason. Inertial measurements are typically collected at a rate of 100 Hz or greater

to accurately reconstruct the dynamics of the system between measurements. Taking

inertial measurements much less frequently would defeat the purpose of having the

measurements, so they should not be ignored to reduce the number of measurements.

The matrices resulting from a combined GPS and inertial sensors navigation system

are also not sparse like in visual SLAM, so the computational efficiency associated

with sparseness cannot be exploited. This means that a solely batch estimation

algorithm is computationally infeasible for this problem. Therefore, a hybrid batch-

sequential or entirely sequential method that obtains high accuracy and robustness

with low computational cost is desired.

2.2.3.1 Coupled Bundle-Adjustment-Based Visual SLAM, GPS, and In-
ertial Sensors

One potential method for coupling these navigation techniques is to process

the keyframes using BA and process the measurements from the other frames, GPS,
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and inertial sensors through a filter without adding the feature locations to the fil-

ter state. Specifically, BA would estimate the feature locations and keyframe poses

based on the visual feature measurements from the keyframes and a priori keyframe

pose estimates provided by the filter. Adding these a priori keyframe pose estimates

to the BA cost function does not destroy sparseness because the a priori keyframe

poses are represented as independent from one another. The BA solution for the

feature locations will also be expressed in the same global reference frame as the a

priori keyframe pose estimates. The filter would process all GPS measurements in a

standard fashion and use the inertial measurements to propagate the state forward

in time between measurements. Frames not identified as keyframes would also be

processed by the filter using the estimated feature locations from BA.

An important detail in this approach is precisely how the feature locations

from BA are used to process the non-keyframes in the filter. Using the BA esti-

mated feature locations in the filter measurement equations without representing

their covariance will cause issues with the filter covariance estimate being overly opti-

mistic. This overly optimistic covariance will then feed back into BA whenever a new

keyframe is added and could cause divergence of the estimated pose. This is clearly

unacceptable, so the covariance of the estimated feature locations should be computed

for use in the filter. However, computing this covariance matrix can only be done at

considerable computational expense, which cuts against the main benefit of using BA.

To reduce the computational load of computing these covariance matrices in BA, the

covariance matrix of each individual feature may be computed efficiently by ignor-

ing cross-covariances between camera poses and other features. This approximation

will be somewhat optimistic, but this could be accounted for by slightly inflating the

measurement noise.
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By separating the estimation of the feature locations and keyframe poses

from the filter, the coupling between the current state, keyframe poses, and feature

measurements is not fully represented. The estimator essentially ignores the cross-

covariances between these quantities. This prevents GPS and IMU measurements

from aiding BA, except by providing a better a priori estimate of the keyframe poses.

While this feature of the estimator is undesirable, it may not significantly degrade

performance.

2.2.3.2 Coupled Filter-Based Visual SLAM, GPS, and Inertial Sensors

Another approach to this problem would be to transition entirely to a filter

implementation, which allows full exploitation of the coupling between the states.

One could implement this approach using either the traditional visual SLAM ap-

proach or the modified Mourikis method for visual SLAM presented in Sec. 2.2.1.1.

The filter would process all GPS measurements in a standard fashion and use the

inertial measurements to propagate the state forward in time between measurements.

However, the traditional visual SLAM approach has no benefits over the modified

Mourikis method and has much greater computational cost, so there is no advantage

to considering it here.

2.2.4 Optimal Approach for Coupled Visual SLAM, GPS, and Inertial
Sensors

Table 2.2 shows an incomplete ranking of a full batch solution, the hybrid

batch-sequential method employing BA for visual SLAM, and the entirely sequential

approach employing the modified Mourikis method for visual SLAM. While the com-

putational complexity for all the methods is known, the accuracy and robustness of

the two proposed methods are unknown at this time. The hybrid method using BA
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Table 2.2: Ranking of Combined Visual SLAM, GPS, and Inertial Sensors Method-
ologies

Estimator Methodology Accuracy Robustness Computational
Type Efficiency
Batch Full Batch 1 1 3
Hybrid BA SLAM + Filter ? ? 1

Sequential Modified Mourikis ? ? 2

has the advantage of being able to track more features and maintain more keyframes

for the same computational cost compared to the sequential method, though this ad-

vantage is somewhat diminished by the need to compute a covariance matrix. On the

other hand, the hybrid method does not represent the coupling between the current

state, the keyframe poses, and the feature locations and thus sacrifices this informa-

tion for computational efficiency. The sequential method properly accounts for this

coupling.

It is difficult to tell which method will perform better for the same compu-

tational cost without implementing and testing these methods. The remainder of

this thesis presents a navigation filter and prototype AR system that implements

a looser coupling of these navigation techniques as a first step towards the goal of

implementing the methodologies discussed in this chapter.
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Chapter 3

Measurement and Dynamics Modeling

Assuming a mobile AR system with internet access is given that rigidly con-

nects a GPS receiver, a camera, and an IMU, a navigation system estimating absolute

pose of the AR system can be designed that couples CDGPS, visual SLAM, and an

INS. Potential optimal strategies for fusing measurements from these navigation tech-

niques were discussed previously in Sec. 2.2.3. These strategies, however, all require

a tighter coupling of the visual SLAM algorithm with the GPS observables and in-

ertial measurements than can be obtained using stand-alone visual SLAM software.

Thus, these methods necessitate creation of a new visual SLAM algorithm or sig-

nificant modification to an existing stand-alone visual SLAM algorithm. In keeping

with a staged developmental approach, the prototype system whose results are re-

ported in this thesis implements a looser coupling of the visual SLAM algorithm with

the GPS observables and inertial measurements. In particular, this thesis instead

considers a navigation filter that employs GPS observables measurements, IMU ac-

celerometer measurements and attitude estimates, and relative pose estimates from

a stand-alone visual SLAM algorithm. While this implementation does not allow the

navigation system to aid visual SLAM, it still demonstrates the potential of such

a system for highly-accurate pose estimation. Additionally, the accuracy of both

globally-referenced position and attitude are improved over a coupled CDGPS and

INS navigation system through the incorporation of visual SLAM in this framework.

This chapter introduces measurement and dynamics models that are used in
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creating a navigation filter in Chapter 4. The chapter begins by providing an overview

of the navigation system developed in this thesis that includes a block diagram of

the overall system and the definition of the state vector of the filter. Next, the

measurement models for the GPS observables, IMU accelerometer measurements and

attitude estimates, and visual SLAM relative pose estimates are derived and linearized

about the filter state. Finally, the dynamics models of the system both with and

without accelerometer measurements from the IMU are presented.

3.1 Navigation System Overview

The navigation system presented in this thesis is an improved version of that

presented in [47]. This prior version of the system did not incorporate visual SLAM

measurements nor did it represent attitude estimates properly in the filter.

3.1.1 Reference Frames

The navigation system developed in this thesis utilizes five different reference

frames. These reference frames are

Earth-Centered, Earth-Fixed (ECEF) Frame: This is one of the standard global

reference frames whose origin is at the center of the Earth and rotates with the

Earth.

East, North, Up (ENU) Frame: This reference frame is defined by the local east,

north, and up directions which can be determined by simply specifying a loca-

tion in ECEF as the origin of the frame.

Camera (C) Frame: A reference frame that is centered on the focal point of the

camera with the z-axis pointing down the bore-sight of the camera, the x-axis

41



pointing toward the right in the image frame, and the y-axis completing the

right-handed triad.

Body (B) Frame: A reference frame that is centered at a point on the AR system

and rotates with the AR system. This reference frame is assigned differently

based on the types measurements employed by the filter. When INS measure-

ments are present, this frame is centered on the IMU origin and aligned with

the axes of the IMU to simplify the dynamics model given in Sec. 3.3.1. If there

are visual SLAM measurements and no INS measurements, then this frame is

the same as the camera frame. This is the most sensible definition of the body

frame, since estimating the camera pose is the goal of this navigation filter. If

only GPS measurements are present, then this frame is centered on the phase

center of the mobile GPS antenna because attitude cannot be determined by

the system.

Vision (V) Frame: A reference frame arbitrarily assigned by the visual SLAM algo-

rithm during initialization. The vision frame is related to ECEF by a constant,

but unknown, similarity transform — a combination of translation, rotation,

and scaling.

3.1.2 Block Diagram of the Navigation System

A block diagram of the navigation system is shown in Fig. 3.1. This block dia-

gram identifies the subsystems within the navigation system as a whole by encircling

the corresponding blocks with a colored dashed line. These colors are red for the INS,

blue for CDGPS, and green for the visual navigation system (VNS). The navigation

filter is responsible for combining the measurements from these independent subsys-

tems to estimate the state of the AR system. Blocks within the navigation filter are
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Figure 3.1: A block diagram of the navigation system.

encircled by a black dashed line. The sensors for the system are all aligned in a single

column on the far left side of Fig. 3.1. The outputs from the navigation system are

the state of the camera, which includes the absolute pose, and the video from the

camera.

This type of navigation system can be implemented on a large scale with

minimal infrastructure. The required sensors for this navigation system are all located

on the AR system, except for the reference receiver, and none of the sensors require

the area of operation to be prepared in any way. The reference receiver is a stationary

GPS receiver at a known location that provides GPS observables measurements to

the system via the internet. A single reference receiver can provide measurements
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to an unlimited number of systems at distances as large as 10 km away from the

reference receiver for single-frequency CDGPS and even further for dual-frequency

CDGPS. This means that only a sparsely populated network of reference receivers

is required to service an unlimited number of navigation systems similar to this one

over a large area.

The navigation system developed in this thesis has several modes of operation

depending on what measurements are provided to it. These modes are CDGPS-

only, CDGPS and INS, CDGPS and VNS, and CDGPS, VNS, and INS. This allows

testing and comparison of the performance of the different subsystems. Whenever

measurements from a subsystem are not present, the portion of the block diagram

corresponding to that subsystem shown in Fig. 3.1 is removed and the state vector

is modified to remove any states specific to that subsystem. In the case that INS

measurements are not present, the propagation step block is modified to use an INS-

free dynamics model instead of being entirely removed.

3.1.3 State Vector of the Navigation System

A typical CDGPS navigation filter has a state of the form

XCDGPS =
[

(xB
ECEF )

T (vB
ECEF )

T (N)T
]T

(3.1)

where xB
ECEF and vB

ECEF are the position and velocity of the origin of the B-frame in

ECEF and N is the vector of CDGPS carrier-phase integer ambiguities. The carrier-

phase integer ambiguities are constant and arise as part of the CDGPS solution, which

is described in detail in Sec. 3.2.1.

Adding an INS that provides accelerometer measurements and attitude esti-

mates to the CDGPS navigation filter necessitates the addition of the accelerometer
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bias, ba, and the attitude of the B-frame relative to ECEF, qB
ECEF , to the state. The

resulting state for coupled CDGPS and INS is

XCDGPS/INS =
[

(xB
ECEF )

T (vB
ECEF )

T (ba)
T (qB

ECEF )
T (N)T

]T
(3.2)

If, instead of an INS, a VNS that provides relative pose estimates in some

arbitrary V-frame is coupled to the CDGPS filter, then the constant similarity trans-

form between the V-frame and ECEF must be added to the state in addition to the

attitude of the B-frame relative to ECEF. The need for the arbitrarily assigned V-

frame could be eliminated if the navigation filter provided the VNS with estimates of

the absolute pose at each camera frame, as shown in Sec. 2.1, but this is not the case

for the navigation system presented in this thesis. The resulting state for coupled

CDGPS and VNS is

XCDGPS/V NS

=
[

(xB
ECEF )

T (vB
ECEF )

T (qB
ECEF )

T (xV
ECEF )

T (qECEF
V )T λ (N)T

]T
(3.3)

where xV
ECEF , q

ECEF
V , and λ are the translation, rotation, and scale-factor respectively

which parameterize the similarity transform relating the V-frame and ECEF.

The state vector for the full navigation filter that couples CDGPS, VNS, and

INS is obtained by adding the accelerometer bias to the state for coupled CDGPS

and VNS from Eq. 3.3. This results in

X = XCDGPS/V NS/INS

=
[

(xB
ECEF )

T (vB
ECEF )

T (ba)
T (qB

ECEF )
T (xV

ECEF )
T (qECEF

V )T λ (N)T
]T

(3.4)

45



This state vector will be used throughout the remainder of this thesis. It should

be noted that the models for the other modes of the navigation filter, CDGPS-only,

CDGPS and INS, and CDGPS and VNS, can be obtained from the models for the full

navigation filter by simply ignoring the terms in the linearized models corresponding

to states not present in that mode’s state vector.

Each of the state vectors can be conveniently partitioned to obtain

X =

[

x
N

]

(3.5)

where x contains the real-valued part of the state and N contains the integer-valued

portion of the state, which is simply the vector of CDGPS carrier-phase integer am-

biguities. This partitioning of the state will be used throughout the development of

the filter, since it is convenient for solving for the state after measurement updates.

Attitude of both the AR system and the V-frame is represented using quater-

nions in the state vector. Quaternions are a non-minimal attitude representation

that is constrained to have unit norm. To enforce this constraint in the filter, the

quaternions qB
ECEF and qECEF

V are replaced in the state with a minimal attitude

representation, denoted as δeBECEF and δeECEF
V respectively, during measurement

updates and state propagation [48]. This is accomplished through the use of differ-

ential quaternions, which are described in detail in Appendix A. These differential

quaternions represent a small rotation from the current attitude to give an updated

estimate of the attitude through the equation

q′ = δq(δe)⊗ q (3.6)

where q′ is the updated attitude estimate and δq(δe) is the differential quaternion.
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As a matter of notation, the state itself or elements of the state vector when

substituted into models will be denoted with either a bar, (̄·), for a priori estimates or

a hat, (̂·), for a posteriori estimates. Any term representing the state or an element of

the state without these accents is the true value of that parameter. When the state

or an element of the state has a delta in front of it, δ(·), this represents a linearized

correction term to the current value of the state. The same accent rules that apply

to the state also apply to delta states.

3.2 Measurement Models

3.2.1 CDGPS Measurement Models

The signal tracking loops of a GPS receiver produce a set of three mea-

surements, typically referred to as observables, which are used in computing the

receivers position-velocity-time (PVT) solution. These observables are pseudorange,

beat carrier-phase, and Doppler frequency. In SPS GPS, the pseudorange and Doppler

frequency measurements are used to compute the position and velocity of the receiver

respectively. The carrier-phase measurement, which is the integral of the Doppler fre-

quency, is typically ignored or not even produced.

Carrier-phase can be measured to millimeter-level accuracy, but there exists an

inherent range ambiguity that is difficult to resolve in general. CDGPS is a technique

that arose to reduce the difficulty in resolving this ambiguity. This is accomplished by

differencing the measurements between two receivers, a stationary reference receiver

(RX A) and a mobile receiver (RX B), and between two satellites. The resulting mea-

surements are referred to as double-differenced measurements. Differencing the mea-

surements eliminates many of the errors in the measurements and results in integer

ambiguities that can be determined much quicker than their real-valued counterparts
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by enforcing the integer constraint. The downside to this process is that only relative

position between the antennas of the two receivers can be determined to centimeter-

level or better accuracy. However, the reference receiver can be placed at a surveyed

location so that its absolute position can be nearly perfectly known ahead of time.

As such, the analysis presented in this thesis will assume that the coordinates of the

reference receiver are known. Further information on the GPS measurement models

and CDGPS in general can be found in [49–52].

The navigation filter forms double-differenced measurements for both pseudo-

range and carrier-phase measurements from the civil GPS signal at the L1 frequency.

Differencing the pseudorange measurements is not strictly necessary, but simplifies

the filter development and reduces the required state vector. Time alignment of the

pseudorange and carrier-phase measurements from both receivers must be obtained to

form the double-differenced measurements. It is highly unlikely that the receiver time

epochs when the pseudorange and carrier-phase measurements are taken for both re-

ceivers would correspond to the same true time. Therefore, these measurements must

be interpolated to the same time instant before the double-differenced measurements

are formed. This is typically performed using the Doppler frequency and the SPS

GPS time solution, which are already reported by the receivers.

3.2.1.1 Undifferenced pseudorange and Carrier-Phase Measurement Mod-
els

The undifferenced pseudorange and carrier-phase models for RX B are

ρiB(k) = riB(k) + c (δtRXB
(k)− δtSVi

(k)) + I iB(k) + T i
B(k)

+M i
B(k) + wi

ρ,B(k)
(3.7)
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λL1φ
i
B(k) = riB(k) + c (δtRXB

(k)− δtSVi
(k)) + λL1(γ

i
B − ψi)

− I iB(k) + T i
B(k) +mi

B(k) + wi
φ,B(k)

(3.8)

where ρiB(k) and φ
i
B(k) are the pseudorange and carrier-phase measurements in meters

and cycles respectively from RX B for the ith satellite vehicle (SV), riB(k) is the true

range from RX B to the ith SV, c is the speed of light, δtRXB
(k) is the receiver clock

offset for RX B, δtSVi
(k) is the satellite clock offset for the ith SV, I iB(k) and T

i
B(k)

are the Ionosphere and Troposphere delays respectively, M i
B(k) and mi

B(k) are the

multipath errors on the pseudorange and carrier-phase measurements respectively,

λL1 is the wavelength of the GPS L1 frequency, γiB is the initial carrier-phase of the

signal when the ith SV was acquired by RX B, ψi is the initial broadcast carrier-phase

from the ith SV, and wi
ρ,B(k) and w

i
φ,B(k) are zero-mean Gaussian white noise on the

pseudorange and carrier-phase measurements respectively. The model for RX A is

identical to this one with the appropriate values referenced to RX A instead.

The true range to the ith SV from RX B can be written as

riB(k) =
∣

∣

∣

∣xSVi

ECEF (k)− xRXB

ECEF (k)
∣

∣

∣

∣ (3.9)

where xSVi

ECEF (k) is the position of the ith SV at the time the signal was transmitted

and xRXB

ECEF (k) is the position of the phase center of the GPS antenna at the time

the signal was received. The position of the satellites can be computed from the

broadcast ephemeris data on the GPS signal. The position of the phase center of the

GPS antenna is related to the pose of the system through the equation

xRXB

ECEF (k) = xB
ECEF (k) +R(qB

ECEF (k))x
GPS
B (3.10)
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where xGPS
B is the position of the phase center of the GPS antenna in the B-frame.

The standard deviation of the pseudorange and carrier-phase measurement

noises depend on the configuration of the tracking loops of the GPS receiver and

the received carrier-to-noise ratio of the signal. Based on a particular tracking loop

configuration, these standard deviations can be expressed in terms of the standard

deviation of the pseudorange and carrier-phase measurements for a signal at some

reference carrier-to-noise ratio through the relations

E
[

(

wi
ρ,B(k)

)2
]

=
(

σi
ρ,B(k)

)2
= σ2

ρ

(

(

C

N0

)

ref

)(

(C/N0)ref

(C/N0)
i
B (k)

)

(3.11)

E
[

(

wi
φ,B(k)

)2
]

=
(

σi
φ,B(k)

)2
= σ2

φ

(

(

C

N0

)

ref

)(

(C/N0)ref

(C/N0)
i
B (k)

)

(3.12)

where (C/N0)ref is the reference carrier-to-noise ratio in linear units, (C/N0)
i
B (k) is

the received carrier-to-noise ratio of the signal from the ith SV by RX B in linear

units, and σρ

(

(C/N0)ref

)

and σφ

(

(C/N0)ref

)

are the standard deviations of the

pseudorange and carrier-phase measurements respectively for the particular track-

ing loop configuration at the reference carrier-to-noise ratio. Reasonable values for

σρ

(

(C/N0)ref

)

and σφ

(

(C/N0)ref

)

at a reference carrier-to-noise ratio of 50 dB-Hz

are 1 m and 2.5 mm respectively. The standard deviation of the pseudorange and

carrier-phase measurement noise for RX A follows this same relation assuming that

the tracking loop configurations are the same. It should be noted that the pseudor-

ange and carrier-phase measurements are only negligibly correlated with one another

and they are not correlated between receivers or SVs.
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3.2.1.2 Single-Differenced pseudorange and Carrier-Phase Measurement
Models

The pseudorange and carrier-phase measurements from Eqs. 3.7 and 3.8 are

first differenced between the two receivers. This requires that both receivers be track-

ing the same set of satellites, which may be a subset of the satellites tracked by each

receiver alone. The resulting single-differenced measurements are modeled as

∆ρiAB(k) = ∆riAB(k) + c (δtRXA
(k)− δtRXB

(k))

+ ∆M i
AB(k) + ∆wi

ρ,AB(k)
(3.13)

λL1∆φ
i
AB(k) = ∆riAB(k) + c (δtRXA

(k)− δtRXB
(k))

+ λL1(γ
i
A − γiB) + ∆mi

AB(k) + ∆wi
φ,AB(k)

(3.14)

where the single-difference operator ∆ is defined as

∆(·)AB = (·)A − (·)B (3.15)

The single-differenced pseudorange and carrier-phase measurement noises are still

independent zero-mean Gaussian white noises, but the standard deviation is now

E
[

(

∆wi
ρ,AB(k)

)2
]

=
(

σi
ρ,AB(k)

)2
=
(

σi
ρ,A(k)

)2
+
(

σi
ρ,B(k)

)2
(3.16)

E
[

(

∆wi
φ,AB(k)

)2
]

=
(

σi
φ,AB(k)

)2
=
(

σi
φ,A(k)

)2
+
(

σi
φ,B(k)

)2
(3.17)

Differencing these measurements between the two receivers eliminated several

error sources in the measurements. First, the satellite clock offset was eliminated,
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since this is common to both measurements. This error can also be removed by

computing the satellite clock offset from the broadcast ephemeris data on the GPS

signal, although these estimates are not perfect. Second, Ionosphere and Troposphere

delays were eliminated under the assumption that the two receivers are close enough

to one another that the signal traveled through approximately the same portion of

the atmosphere. This assumption is the primary limitation on the maximum distance

between the two receivers. As this baseline distance increases and this assumption

is violated, the performance of CDGPS degrades. For a single-frequency CDGPS

algorithm, the maximum baseline for centimeter-level positioning accuracy is about

10 km. Dual-frequency CDGPS algorithms can estimate the ionospheric delay at each

receiver and remove it independent of the baseline distance, which can increase this

baseline distance limit significantly.

Another effect of performing this first difference is the elimination of the initial

broadcast carrier-phase of the satellite. This was one of the contributing factors

to the carrier-phase ambiguity. However, the ambiguity on the single-differenced

measurements is still real-valued.

3.2.1.3 Double-Differenced pseudorange and Carrier-Phase Measurement
Models

Of the satellites tracked by both receivers, one satellite is chosen as the “ref-

erence” satellite which is denoted with the index 0. The single differenced measure-

ments from this reference satellite are subtracted from those from all other satel-

lites tracked by both receivers to form the double-differenced measurements. These

double-differenced measurements are modeled as
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∇∆ρi0AB(k) = ∆ρiAB(k)−∆ρ0AB(k)

= ∇∆ri0AB(k) +∇∆M i0
AB(k) +∇∆wi0

ρ,AB(k)
(3.18)

λL1∇∆φi0
AB(k) = λL1

(

∆φi
AB(k)−∆φ0

AB(k)
)

= ∇∆ri0AB(k) + λL1N
i0
AB +∇∆mi0

AB(k) +∇∆wi0
φ,AB(k)

(3.19)

where N i0
AB are the carrier-phase integer ambiguities and the double-difference oper-

ator is defined as

∇∆(·)ijAB = ∆(·)iAB −∆(·)jAB (3.20)

The double-differenced pseudorange and carrier-phase measurement noises are

still zero-mean Gaussian white noises, but the standard deviation is now

E
[

(

∇∆wi0
ρ,AB(k)

)2
]

=
(

σi0
ρ,AB(k)

)2
=
(

σi
ρ,AB(k)

)2
+
(

σ0
ρ,AB(k)

)2
(3.21)

E
[

(

∇∆wi0
φ,AB(k)

)2
]

=
(

σi0
φ,AB(k)

)2
=
(

σi
φ,AB(k)

)2
+
(

σ0
φ,AB(k)

)2
(3.22)

This second difference also created cross-covariance terms given by

E
[

∇∆wi0
ρ,AB(k)∇∆wj0

ρ,AB(k)
]

=
(

σi0,j0
ρ,AB(k)

)2
=
(

σ0
ρ,AB(k)

)2
, for i 6= j (3.23)

E
[

∇∆wi0
φ,AB(k)∇∆wj0

φ,AB(k)
]

=
(

σi0,j0
φ,AB(k)

)2
=
(

σ0
φ,AB(k)

)2
, for i 6= j (3.24)
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This suggests that the satellite with the lowest single-differenced measurement noise

should be chosen as the reference satellite to minimize the double-differenced mea-

surement covariance.

Taking this second difference had two primary effects on the measurements.

First, the receiver clock bias for both receivers was eliminated, since the biases are

common to all single-differenced measurements. This means that the receiver clock

biases no longer need to be estimated by the filter. Second, the ambiguities on the

carrier-phase measurements are now integer-valued. This simplification only occurs if

the receivers are designed such that the beat carrier-phase measurement is referenced

to the same local carrier replica or local carrier replicas that only differ by an integer

number of cycles. Under this assumption, the terms γiA − γ0A and γiB − γ0B are both

integers and, thus, their difference is an integer.

This integer ambiguity is also constant provided that the phase-lock loops

(PLLs) in both receivers for both satellites do not slip cycles. If any of these four

carrier-phases drop or gain any cycles, then the integer ambiguity will no longer be

the same and the CDGPS solution will suffer. For satellites above 10 or 15 degrees

in elevation, cycle slips are rare if there are no obstructions blocking the line-of-sight

signal. However, cycle slip robustness is still an important issue for both receiver

design and CDGPS algorithm design.

The only remaining error source in the double-differenced measurements, be-

sides noise, is the double-differenced multipath error. The worst-case carrier-phase

multipath error is only on the order of centimeters, while the pseudorange multipath

error can be as high as 20 m. This means that multipath will not significantly de-

grade performance of CDGPS once the carrier-phase integer ambiguities have been

determined, since the pseudorange measurements have almost no effect on the pose
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solution at this point. However, pseudorange multipath errors can cause difficulty

during the initial phase when the integer ambiguities are being determined. Multi-

path errors are also highly correlated in time, which further complicates the issue.

Additionally, carrier-phase multipath may cause cycle slips, which cuts against ro-

bustness of the system. Multipath errors can largely be removed by masking out

low elevation satellites, but any tall structures in the area of operation may create

multipath reflections. In the end, the integer ambiguities will converge to the correct

value, but it will take significantly longer and the carrier-phase may slip cycles in the

presence of severe multipath.

3.2.1.4 Linearized Double-Differenced pseudorange and Carrier-Phase Mea-
surements Models

Eqs. 3.18 and 3.19 are linearized about the a priori estimate of the real-valued

portion of the state assuming that multipath errors are not present. The resulting

linearized double-differenced measurements are

zi0ρ (k) = ∇∆ρi0AB(k)−∇∆r̄i0AB(k)

=
(

r̂0,BECEF (k)− r̂i,BECEF (k)
)T

δxB
ECEF (k)

+ 2
(

r̂0,BECEF (k)− r̂i,BECEF (k)
)T
[(

R
(

q̄B
ECEF (k)

)

xGPS
B

)

×
]

δeBECEF (k)

+∇∆wi0
ρ,AB(k)

(3.25)

zi0φ (k) = λL1∇∆φi0
AB(k)−∇∆r̄i0AB(k)

=
(

r̂0,BECEF (k)− r̂i,BECEF (k)
)T

δxB
ECEF (k)

+ 2
(

r̂0,BECEF (k)− r̂i,BECEF (k)
)T
[(

R
(

q̄B
ECEF (k)

)

xGPS
B

)

×
]

δeBECEF (k)

+ λL1N
i0
AB +∇∆wi0

φ,AB(k)

(3.26)
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where∇∆r̄i0AB(k) is the expected double-differenced range based on satellite ephemeris

and the a priori state estimate, r̂i,BECEF (k) is the unit vector pointing to the ith SV

from RX B, δxB
ECEF (k) is the a prosteriori correction to the position estimate, [(·)×]

is the cross-product equivalent matrix of the argument, and δeBECEF (k) is the minimal

representation of the differential quaternion, defined in Appendix A, representing the

a posteriori correction to the attitude estimate.

If both receivers are tracking the same M+1 satellites, then M linearized

double-differenced measurements are obtained of the form given in Eqs. 3.25 and 3.26.

Gathering these M equations into matrix form gives

[

zρ(k)
zφ(k)

]

=

[

Hρ,x(k) 0
Hφ,x(k) Hφ,N

] [

δx(k)
N

]

+

[

∇∆wρ

∇∆wφ

]

(3.27)

where δx(k) is the a posteriori correction to the real-valued component of the state

and

Hρ,x(k) = Hφ,x(k)

=











∂∇∆ρ10
AB

∂xB
ECEF

∣

∣

∣

X̄(k)
01×6

∂∇∆ρ10
AB

∂δeB
ECEF

∣

∣

∣

X̄(k)
01×7

...
...

...
...

∂∇∆ρM0
AB

∂xB
ECEF

∣

∣

∣

X̄(k)
01×6

∂∇∆ρM0
AB

∂δeB
ECEF

∣

∣

∣

X̄(k)
01×7











(3.28)

Hφ,N = λL1I (3.29)

where I is the identity matrix. The partial derivatives in Eq. 3.28 can be determined

from Eq. 3.25 as

∂∇∆ρi0AB

∂xB
ECEF

∣

∣

∣

∣

X̄(k)

=
(

r̂0,BECEF (k)− r̂i,BECEF (k)
)T

(3.30)
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∂∇∆ρi0AB

∂δeBECEF

∣

∣

∣

∣

X̄(k)

= 2
(

r̂0,BECEF (k)− r̂i,BECEF (k)
)T
[(

R
(

q̄B
ECEF (k)

)

xGPS
B

)

×
]

(3.31)

The covariance matrices for the double-differenced measurement noise can be assem-

bled from Eqs. 3.21, 3.22, 3.23, and 3.24 as

Rρ(k) = E
[

∇∆wρ(k)∇∆wT
ρ (k)

]

=













(

σ10
ρ,AB(k)

)2 (

σ0
ρ,AB(k)

)2
· · ·

(

σ0
ρ,AB(k)

)2

(

σ0
ρ,AB(k)

)2 (

σ20
ρ,AB(k)

)2
· · ·

(

σ0
ρ,AB(k)

)2

...
. . .

...
(

σ0
ρ,AB(k)

)2
· · ·

(

σM0
ρ,AB(k)

)2













(3.32)

Rφ(k) = E
[

∇∆wφ(k)∇∆wT
φ (k)

]

=













(

σ10
φ,AB(k)

)2 (

σ0
φ,AB(k)

)2
· · ·

(

σ0
φ,AB(k)

)2

(

σ0
φ,AB(k)

)2 (

σ20
φ,AB(k)

)2
· · ·

(

σ0
φ,AB(k)

)2

...
. . .

...
(

σ0
φ,AB(k)

)2
· · ·

(

σM0
φ,AB(k)

)2













(3.33)

3.2.2 INS Measurement Models

An INS is typically composed of an IMU with a three-axis accelerometer, a

three-axis gyro, and a magnetometer. The accelerometer measurements are useful

for propagating position forward in time and estimation of the gravity vector. Es-

timation of the gravity vector can only be performed using a low-pass filter of the

accelerometer measurements under the assumption that the IMU is not subject to

long-term sustained accelerations. This is typically the case for pedestrian and vehic-

ular motion over time constants of a minute or longer. The magnetometer can also be

used to estimate the direction of magnetic north under the assumption that magnetic
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disturbances are negligible or calibrated out of the system. However, a low-pass filter

with a large time constant must also be applied to the magnetometer measurements

to accurately estimate the direction of magnetic north, since the Earth’s magnetic

field is extremely weak.

Once the gravity vector and direction of magnetic north have been determined,

the IMU is capable of estimating its attitude relative to the local ENU frame after

correcting for magnetic declination. Due to the long time constant filters, the attitude

estimate must be propagated using the angular velocity measurements from the gyro

to provide accurate attitude during dynamics. This means that the attitude estimated

by the IMU is highly correlated with the angular velocity measurements.

The navigation filter presented in this thesis relies on the accelerometer mea-

surements and attitude estimates from the IMU. The accelerometer measurements

aid in propagating the state forward in time, while the IMU estimated attitude pro-

vides the primary sense of absolute attitude for the system. As demonstrated in

Sec. 2.1, coupled GPS and visual SLAM is capable of estimating absolute attitude,

but this navigation filter has difficulty doing so without an IMU because of the need

to additionally estimate the similarity transform between ECEF and the V-frame.

Therefore, the navigation filter must rely on the IMU estimated attitude. Since the

angular velocity measurements are highly correlated with the IMU estimated attitude,

the angular velocity measurements are discarded.

3.2.2.1 Accelerometer Measurement Model

The accelerometer measurements from the IMU are modeled as follows

58



f(k) = R
(

qB
ECEF (k)

)T (
v̇B
ECEF (k) + 2 [ωE×]vB

ECEF (k)
)

+R
(

qENU
B (k)

)





0
0

g(k)



+ ba(k) + ν
′

a(k)
(3.34)

where f(k) is the accelerometer measurement, ωE is the angular velocity vector of the

Earth, ν ′

a(k) is zero-mean Gaussian white noise with a diagonal covariance matrix,

and g(k) is the gravitational acceleration of Earth at the position of the IMU that is

approximated as

g(k) =
GE

||xB
ECEF (k)||

2 (3.35)

where GE is the gravitational constant of Earth. This accelerometer measurement

model is similar to the model in [53]. Equation 3.34 can be solved for the acceleration

of the IMU expressed in ECEF to obtain

v̇B
ECEF (k) = R

(

qB
ECEF (k)

)

(f(k)− ba(k)) +R(qENU
ECEF (k))





0
0

−g(k)





− 2 [ωE×]vB
ECEF (k) + νa(k)

(3.36)

where νa(k) is a rotated version of ν ′

a(k) and thus identically distributed. These

measurements will be used in the dynamics model in Sec. 3.3.1.

3.2.2.2 INS Attitude Estimate Model

The attitude estimates from the IMU are modeled as follows

q̃B
ENU(k) = qECEF

ENU (k)⊗ qB
ECEF (k) +wI′

q (k)

= qECEF
ENU (k)⊗ δqB

ECEF (k)⊗ q̄B
ECEF (k) +wI′

q (k)
(3.37)
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where q̃B
ENU(k) is the IMU attitude estimate and wI′

q (k) is zero-mean Gaussian white

noise with a diagonal covariance matrix. Modeling the noise on the attitude estimates

as white is not strictly correct as there will be strongly time-correlated biases in the

attitude estimates from the IMU, but these time-correlated errors are assumed small.

The quaternion qECEF
ENU (k) can be computed from the a priori estimate of the position

of the IMU. This dependence on position, however, will be ignored for linearization,

since it is extremely weak. In linearizing Eq. 3.37, the following relation is defined

based on the quaternion left ([·]) and right ({·}) multiplication matrices defined in

Appendix A

[

HI
q0,δ(q0)BECEF

(k) HI
q0,δeBECEF

(k)

HI
e,δ(q0)BECEF

(k) HI
e,δeB

ECEF

(k)

]

=
[

qECEF
ENU (k)

] {

q̄B
ECEF (k)

}

(3.38)

The linearized attitude measurement can then be expressed in minimal form as

zIq(k) = ẽBENU(k)− ēBENU(k)

=
[

HI
q,x 0

]

[

δx
N

]

+wI
q(k)

(3.39)

where ẽBENU(k) and ēBENU(k) are the measured and expected values of the vector

portion of the quaternion qB
ENU(k) respectively, wI

q(k) is the last three elements of

wI′
q (k), and

HI
e,x(k) =

[

03×9 HI
q,δeB

ECEF

(k) 03×7

]

(3.40)

The covariance matrix for these attitude estimates is

RI
q =

(

σI
q

)2
I (3.41)
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A reasonable value for σI
q is 0.01, which corresponds to an attitude error of approx-

imately 2◦. Since the IMU considered here includes a magnetometer, the IMU’s

estimate of attitude does not drift.

3.2.3 VNS Measurement Models

A BA-based stand-alone visual SLAM algorithm is employed to provide rela-

tive pose estimates of the system [45]. These estimates are represented in the V-frame,

which has an unknown translation, orientation, and scale-factor relative to ECEF that

must be estimated. The visual SLAM algorithm does not provide covariances for its

relative pose estimates to reduce computational expense of the algorithm. Therefore,

all noises for the visual SLAM estimates are assumed to be independent. Although

this is not strictly true, it is not an unreasonable approximation.

3.2.3.1 VNS Position Estimate Model

The position estimates from the visual SLAM algorithm are modeled as

x̃C
V (k) = λR

(

qECEF
V

) (

xB
ECEF (k) +R

(

qB
ECEF (k)

)

xC
B − xV

ECEF

)

+wV
p (k) (3.42)

where x̃C
V (k) is the position estimate of the camera in the V-frame, xC

B is the position

of the camera lens in the B-frame, and wV
p (k) is zero-mean Gaussian white noise with

a diagonal covariance matrix given by

RV
p =

(

σV
p

)2
I (3.43)

The value of σV
p depends heavily on the depth of the scene features tracked by the

visual SLAM algorithm. A reasonable value of σV
p for a depth of a few meters is 1
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cm.

The measurement model from Eq. 3.42 is linearized about the a priori state

estimate to obtain

zVp (k) = x̃C
V (k)− λ̄(k)R

(

q̄ECEF
V (k)

) (

x̄B
ECEF (k) +R

(

q̄B
ECEF (k)

)

xC
B − x̄V

ECEF (k)
)

=
[

HV
p,x 0

]

[

δx
N

]

+wV
p (k)

(3.44)

where

HV
p,x(k)

=





















(

λ̄(k)R
(

q̄ECEF
V (k)

))T

06×3
(

2λ̄(k)R
(

q̄ECEF
V (k)

) [(

R
(

q̄B
ECEF (k)

)

xC
B

)

×
])T

(

−λ̄(k)R
(

q̄ECEF
V (k)

))T

(

2λ̄(k)
[(

R
(

q̄ECEF
V (k)

) (

x̄B
ECEF (k) +R

(

q̄B
ECEF (k)

)

xC
B − x̄V

ECEF (k)
))

×
])T

(

R
(

q̄ECEF
V (k)

) (

x̄B
ECEF (k) +R

(

q̄B
ECEF (k)

)

xC
B − x̄V

ECEF (k)
))T





















T

(3.45)

3.2.3.2 VNS Attitude Estimate Model

The attitude estimates from the visual SLAM algorithm are modeled as

q̃C
V (k) = qECEF

V ⊗ qB
ECEF (k)⊗ qC

B +wV ′

q (k)

= δqECEF
V (k)⊗ q̄ECEF

V (k)⊗ δqB
ECEF (k)⊗ q̄B

ECEF (k)⊗ qC
B +wV ′

q (k)
(3.46)

where q̃C
V (k) is the attitude estimate of the camera relative to the V-frame, qC

B is the

attitude of the camera relative to the B-frame, and wV ′

q (k) is zero-mean Gaussian

white noise with a diagonal covariance matrix. In linearizing Eq. 3.46, the following
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relations are defined based on the quaternion left and right multiplication matrices

defined in Appendix A

[

HV
q0,δ(q0)BECEF

(k) HV
q0,δeBECEF

(k)

HV
e,δ(q0)BECEF

(k) HV
e,δeB

ECEF

(k)

]

=
[

q̄ECEF
V (k)

] {

q̄B
ECEF (k)

}{

qC
B(k)

}

(3.47)

[

HV
q0,δ(q0)ECEF

V

(k) HV
q0,δeECEF

V

(k)

HV
e,δ(q0)ECEF

V

(k) HV
e,δeECEF

V

(k)

]

=
{

q̄ECEF
V (k)

}{

q̄B
ECEF (k)

}{

qC
B(k)

}

(3.48)

The linearized attitude measurement can then be expressed in minimal form as

zVq (k) = ẽCV (k)− ēCV (k)

=
[

HV
q,x 0

]

[

δx
N

]

+wV
q (k)

(3.49)

where ẽCV (k) and ēCV (k) are the measured and expected values of the vector portion

of the quaternion qC
V (k) respectively, w

V
q (k) is the last three elements of wV ′

q (k), and

HV
q,x(k) =

[

03×9 HV
e,δeB

ECEF

(k) 03×3 HV
e,δeECEF

V

(k) 03×1

]

(3.50)

The covariance matrix for these attitude estimates is

RV
q =

(

σV
q

)2
I (3.51)

A reasonable value for σV
q is 0.005, which corresponds to an attitude error of approx-

imately 1◦.
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3.3 Dynamics Models

The development of the dynamics models presented in this section follows the

notation presented in Appendix B for the propagation step. Two separate dynamics

models are used in the navigation filter depending on whether or not INS measure-

ments are provided to the filter.

3.3.1 INS Dynamics Model

Whenever INS measurements are present, the navigation filter uses the ac-

celerometer measurements from the IMU to propagate the position and velocity of

the system forward in time using Eq. 3.36. The accelerometer bias is modeled as

a first-order Gauss-Markov process. Angular velocity measurements from the IMU

cannot be used for propagation of the attitude of the system since the filter uses at-

titude estimates from the IMU, which are highly correlated with the angular velocity

measurements. Therefore, the attitude is held constant over the propagation step

with some added process noise to account for the unmodeled angular velocity. All

other parameters in the real-valued portion of the state are constants and are mod-

eled as such. The integer ambiguities are excluded from the propagation step, since

they are constants anyways. However, the cross-covariance between the real-valued

portion of the state and the integer ambiguities is propagated forward properly. This

is explained in greater detail in Chapter 4.

The resulting dynamics model for the state is
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f (x(t),u(t), t) =

































vB
ECEF (t)









R
(

qB
ECEF (t)

)

(f(t)− ba(t)) +R
(

qENU
ECEF (t)

)





0
0

−g(t)





−2 [ωE×]vB
ECEF (t)









0
0
0
0
0

































(3.52)

where u(t) is the input vector given by

u(t) =

[

f(t)
−g(t)

]

(3.53)

Process noise is added to the dynamics model to account for un-modeled effects and

is given by

D(t)v′(t) =





03×9

I9×9

07×9









νa(t)
νb(t)
νω(t)



 (3.54)

The process noise covariance is

Q′(t) = E
[

v′(t)v′T (t)
]

=





σ2
aI 0 0
0 σ2

bI 0
0 0 1

4
σ2
ωI



 (3.55)

The term 1
4
σ2
ω comes from the following relation which can be derived from quaternion

kinematics, presented in Appendix A, under the initial condition that δeBECEF = 0

δėBECEF (t) =
1

2
ω(t) = νω(t) (3.56)
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where ω(t) is the angular velocity vector of the system which is modeled as zero-mean

Gaussian white noise with a diagonal covariance matrix. The values of σa and σb from

Eq. 3.55 depend on the quality of the IMU and can typically be found on the IMU’s

specifications provided by the manufacturer. On the other hand, σω depends on the

expected dynamics of the system.

Since the IMU measurements are reported at a rate of 100 Hz, the propagation

interval, ∆t, is at most 10 ms. This interval is small enough that the dynamics model

can be assumed constant over the interval and higher order terms in ∆t are negligible

compared to lower order terms.

Under this assumption, the dynamics model is then integrated over the prop-

agation interval to form a difference equation of the form

x(k + 1) ≈ x(k) + ∆tf (x(k),u(k), tk) + Γ(k)v(k) (3.57)

where v(k) is the discrete-time zero-mean Gaussian white process noise vector, and

Γ(k) =

[

I12×12

07×12

]

(3.58)

The partial derivative of the difference equation from Eq. 3.57 is taken with respect

to the state and evaluated at the a posteriori state estimate at time tk to obtain the

state transition matrix

F (k) = I +∆t

×







03×3 I3×3 03×3 03×3 03×7

03×3 −2 [ωE×] −R
(

q̂B
ECEF (k)

)

2
[(

R
(

q̂B
ECEF (k)

)

(

f(k)− b̂a(k)
))

×
]

03×7

013×3 013×3 013×3 013×3 013×7







(3.59)
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This linearization neglects the extremely weak coupling of the position of the system

to the terms R
(

qENU
ECEF (k)

)

and g(k). The discrete-time process noise covariance,

Q(k), can be determined as described in Appendix B. This covariance matrix is

given by

Q(k) = E
[

v(k)vT (k)
]

=









Q(1,1)(k) Q(1,2)(k) 0 0
QT

(1,2)(k) Q(2,2)(k) Q(2,3)(k) Q(2,4)(k)

0 QT
(2,3)(k) Q(3,3)(k) 0

0 QT
(2,4)(k) 0 Q(4,4)(k)









(3.60)

where the terms in Q(k) are as follows

Q(1,1)(k) =
1

3
∆t3σ2

aI (3.61)

Q(1,2)(k) =
1

2
∆t2σ2

aI (3.62)

Q(2,2)(k) =

(

∆tσ2
a +

1

3
∆t3σ2

b

)

I +
1

3
∆t3σ2

ω

×
[(

R
(

q̂B
ECEF (k)

)

(

f(k)− b̂a(k)
))

×
] [(

R
(

q̂B
ECEF (k)

)

(

f(k)− b̂a(k)
))

×
]T

≈ ∆tσ2
aI

(3.63)

Q(2,3)(k) = −
1

2
∆t2σ2

bR
(

q̂B
ECEF (k)

)

(3.64)

Q(2,4)(k) =
1

4
∆t2σ2

ω

[(

R
(

q̂B
ECEF (k)

)

(

f(k)− b̂a(k)
))

×
]

(3.65)
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Q(3,3)(k) = ∆tσ2
b I (3.66)

Q(4,4)(k) =
1

4
∆tσ2

ωI (3.67)

3.3.2 INS-Free Dynamics Model

Whenever INS measurements are not present, the INS-free dynamics model

reverts to a velocity-random-walk model for the velocity in place of the accelerometer

measurements. This is necessary because no other information about the dynamics

of the system is available. All other states are propagated using models identical to

those for the INS dynamics model. The accelerometer bias would typically not be

represented in this model because this model would only be used if there were no

accelerometer measurements and thus no need to have the bias in the state vector.

However, it is maintained here primarily for notational consistency. The filter could

also revert to this model if the accelerometer measurements were temporarily lost for

whatever reason and it was desirable to maintain the accelerometer bias in the state.

The resulting dynamics model for the state is simply

f (x(t),u(t), t) =





















vB
ECEF (t)

0
0
0
0
0
0





















(3.68)

with additive process noise given by
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D(t)v′(t) =





03×9

I9×9

07×9









ν v̇(t)
νb(t)
νω(t)



 (3.69)

The process noise covariance is assumed to be

Q′(t) = E
[

v′(t)v′T (t)
]

=





σ2
v̇I 0 0
0 σ2

bI 0
0 0 1

4
σ2
ωI



 (3.70)

where σv̇ and σω depend on the expected dynamics of the system and σb can be

obtained from the IMU’s specifications.

These propagation steps occur much less often than with the INS dynamics

model. For a CDGPS-only filter, the propagation interval could be as large as 1 s,

since many receivers only report observables at 1 s intervals. Therefore, the assump-

tions about the interval being small that were made for the INS dynamics model

cannot be made here. However, this dynamics model is in fact linear and can be

integrated directly to obtain the difference equation

x(k + 1) = F (k)x(k) + Γ(k)v(k) (3.71)

where Γ(k) is the same as in Eq. 3.58. It can easily be shown that the state transition

matrix and discrete-time process noise covariance for this dynamics model are

F (k) =





I3×3 ∆tI3×3 03×13

03×3 I3×3 03×13

013×3 013×3 I13×13



 (3.72)

and
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Q(k) = E
[

v(k)vT (k)
]

=









1
3
∆t3σ2

v̇I
1
2
∆t2σ2

v̇I 0 0
1
2
∆t2σ2

v̇I ∆tσ2
v̇I 0 0

0 0 ∆tσ2
b I 0

0 0 0 1
4
∆tσ2

ωI









(3.73)
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Chapter 4

Navigation Filter

Measurement and dynamics models for a mobile AR system employing double-

differenced GPS observables measurements, IMU accelerometer measurements and

attitude estimates, and relative pose estimates from a stand-alone visual SLAM al-

gorithm were derived in Chapter 3. With these measurement and dynamics models,

a navigation filter for the AR system is designed that couples CDGPS, visual SLAM,

and an INS. This navigation filter is capable of providing at least centimeter-level po-

sition and degree-level attitude accuracy in open outdoor areas. If the visual SLAM

algorithm was coupled tighter to the GPS and INS measurements, then this system

could also transition indoors and maintain highly-accurate global pose for a limited

time without GPS availability. The current filter only operates in post-processing,

but could be made to run in real time.

This chapter presents a square-root EKF (SREKF) implementation of such

a navigation filter. The chapter begins by discussing how the filter state is encoded

as measurement equations while accomodating the use of quaternions and a mixed

real-integer valued state. Then, the measurement update and propagation steps are

outlined. The method for handling changes in the satellites tracked by the GPS re-

ceivers is also discussed. A general overview of the SREKF is provided in Appendix B

for further reference.
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4.1 Filter State Encoded as Measurements

In square-root filter implementations, the state estimate and state covariance

are represented by a set of measurement equations. These measurement equations

express the filter state as a measurement of the true state with added zero-mean

Gaussian white noise that has a covariance matrix equal to the state covariance.

After normalizing these measurements so that the noise has a covariance matrix of

identity, the state measurement equations are given by

zX(k) = RXX(k)X(k) +wX(k) (4.1)

where zX(k) are the state measurements, RXX(k) is the upper-triangular Cholesky

factorization of the inverse of the state covariance P−1(k), and wX(k) is the normal-

ized zero-mean Gaussian white noise.

For the filter reported in this thesis, these equations are expressed slightly

differently to properly handle the integer portion of the state and the elements of the

state which are quaternion attitude representations. To handle the integer portion of

the state, the state is simply partitioned into real-valued and integer components as

mentioned in Sec. 3.1.3. This partitioning is useful in solving for the state after mea-

surement update and propagation steps, which is described in Sec. 4.1.1. To handle

the quaternions properly, the filter must ensure that the quaternions are constrained

to have unity magnitude, as required by the definition of a quaternion, during mea-

surement update and propagation steps. This constraint is enforced by expressing the

quaternions in the state instead as differential quaternions, which can be reduced to a

minimal attitude representation that does not require the unity magnitude constraint

through a small angle assumption [48], as shown in Appendix A. These differential
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quaternions represent a small rotation from the current best estimate of the corre-

sponding quaternion as seen in Eq. 3.6.

Based on these considerations, the resulting state measurement equations are

[

zx(k)
zN(k)

]

=

[

Rxx(k) RxN(k)
0 RNN (k)

] [

x(k)
N

]

+

[

wx(k)
wN(k)

]

(4.2)

where the quaternion elements of x(k) are stored separately and replaced by differ-

ential quaternions in minimal form. This set of equations is used in the filter in place

of Eq. 4.1, which is used in the standard SREKF shown in Appendix B.

4.1.1 Computing the State and State Covariance from the State Mea-
surement Equations

Equation 4.2 is updated in the filter as new measurements are collected through

a measurement update step and as the filter propagates the state forward in time

through a propagation step. Whenever the state estimate and state covariance are

desired, they can be computed from Eq. 4.2 as follows

1. The integer valued portion of the state is first determined through an integer

least squares (ILS) solution algorithm taking zN(k) and RNN (k) as inputs. The

ILS problem and ILS algorithms are described briefly in Appendix C. This

thesis uses a modified version of MILES [54] which returns both the optimal

integer set, Nopt(k), and a tight lower bound on the probability that the integer

set is correct, Plow(k).

2. Once the optimal integer set is determined, the expected value of the real-valued

portion of the state can be determined through the equation
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E [x(k)] = R−1
xx (k) (zx(k)−RxN(k)Nopt(k)) (4.3)

3. The quaternion elements of the state must be updated in a second step, since

they are not represented directly in the state measurement equations. Their

corresponding differential quaternions, which were computed in Eq. 4.3, are

used to update the quaternions through Eq. 3.6. The differential quaternions

must also be zeroed out in the state measurement equations so that this update

is only performed once. This is accomplished for each differential quaternion

through the equation

z′x(k) = zx(k)−Rxδe(k)E [δe] (4.4)

where Rxδe(k) is the matrix containing the columns of Rxx(k) corresponding

to the differential quaternion. Updating the quaternions this way after every

measurement update and propagation step prevents the differential quaternions

from becoming large and violating the small angle assumption.

4. The covariance matrix can be computed through the equation

P (k) =

(

[

Rxx(k) RxN(k)
0 RNN (k)

]T [
Rxx(k) RxN(k)

0 RNN (k)

]

)−1

(4.5)

4.1.2 Initialization

The elements of the filter state are initialized as follows

xB
ECEF and vB

ECEF are initialized from the pseudorange-based navigation solution

already computed by the mobile GPS receiver.
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ba is initialized to zero.

qB
ECEF is initialized with the IMU’s estimate of attitude.

xV
ECEF , q

ECEF
V , and λ are initialized by comparing the visual SLAM solution to the

coupled CDGPS and INS solution, which must be computed first, over the entire

dataset. First, the quaternion qECEF
V can be computed as the difference between

the attitude estimate from the visual SLAM solution and the coupled CDGPS

and INS solution at a particular time. Second, the range to the reference GPS

antenna can be plotted for both solutions based on initial guesses for xV
ECEF

and λ of xB
ECEF and 1 and the value for qECEF

V that was already determined.

After subtracting out the mean range from both solutions, the scale-factor λ

can be computed as the ratio of amplitudes of the two traces. This assumes

that the navigation system moved at some point during the dataset. Third, the

position xV
ECEF can be computed as the difference between the ECEF positions

of the two solutions at a particular time.

N is initialized to zero.

4.2 Measurement Update Step

Measurements are grouped by subsystem and processed in the measurement

update step in the order they arrive using the models developed in Chapter 3. Ta-

ble 4.1 provides a list of the equations for the measurement models as a reference.

The measurement update step proceeds in the same fashion as shown in Appendix B.

A summary of this procedure is as follows

1. The linearized measurements are formed by subtracting the expected value of

the measurements based on the a priori state and the non-linear measurement
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Table 4.1: List of Equations for the Measurement Models
Subsystem Measurement Non-linear Linearized Covariance

Model Model
h(·) Hx HN R

CDGPS

double-differenced Eq. 3.18 Eq. 3.28 0 Eq. 3.32
pseudorange

double-differenced Eq. 3.19 Eq. 3.28 Eq. 3.29 Eq. 3.33
carrier-phase

INS attitude estimate Eq. 3.37 Eq. 3.40 0 Eq. 3.41

VNS
position estimate Eq. 3.42 Eq. 3.45 0 Eq. 3.43
attitude estimate Eq. 3.46 Eq. 3.50 0 Eq. 3.51

model from the actual measurements. Equation numbers for the non-linear

measurement models are listed in Table 4.1 for each measurement.

2. The linearized measurements and measurement models are then normalized

using the Cholesky factorization of the inverse of the measurement covariance.

Equation numbers for the linearized measurement models and measurement

covariances are listed in Table 4.1 for each measurement.

3. The a priori estimate x̄(k) is subtracted out of the state measurement equations

to obtain the a priori delta-state measurement equations as

[

δz̄x(k)
z̄N(k)

]

=

[

R̄xx(k) R̄xN(k)
0 R̄NN (k)

] [

δx(k)
N

]

+

[

wx(k)
wN(k)

]

(4.6)

where δz̄x(k) is given by

δz̄x(k) = z̄x(k)− R̄xx(k)x̄(k) (4.7)

4. The normalized measurement equations are stacked above Eq. 4.6. Using a

QR factorization, the a posteriori delta-state measurement equations are then

obtained in the same form as Eq. 4.6.
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5. Adding back in the a priori estimate x̄(k) to the a posteriori delta-state mea-

surement equations results in the a posteriori state measurement equations in

the same form as Eq. 4.2.

6. The a posteriori state and state covariance are then determined through the

procedure specified in Sec. 4.1.1.

4.2.1 Handling Changes in the Tracked Satellites

Before performing a CDGPS measurement update, the satellites tracked by

the reference and mobile GPS receivers are checked to see if the reference satellite

should be changed or if any satellites should be dropped from or added to the list of

satellites used in the measurement update. These changes necessitate modifications

to the a priori state measurement equations prior to the CDGPS measurement update

to account for changes in the definition of the integer ambiguity vector.

4.2.1.1 Changing the Reference Satellite

To obtain the lowest possible covariance for the double-differenced measure-

ments, the reference satellite should be chosen as the satellite with the largest carrier-

to-noise ratio. This roughly corresponds to the satellite at the highest elevation for

most GPS antenna gain patterns. The highest elevation satellite will change as satel-

lite geometry changes. Thus, a procedure for changing the reference satellite is de-

sired. It is assumed that the new reference satellite was already in the list of tracked

satellites before this measurement update step.

Before swapping the reference satellite, the portion of the a priori state mea-

surement equations corresponding to the integer ambiguities is given as
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z̄N(k) =















z̄1N(k)
...

z̄iN(k)
...

z̄MN (k)















= R̄NN(k)N+wN(k)

=















R̄11
NN(k) · · · R̄1i

NN(k) · · · R̄1M
NN(k)

0
. . .

...
...

0 0 R̄ii
NN(k) · · · R̄iM

NN(k)

0 0 0
. . .

...
0 0 0 0 R̄MM

NN (k)





























N10

...
N i0

...
NM0















+wN(k)

(4.8)

where the ith SV is the new reference satellite. Recall that the integer ambiguities

can be decomposed into

N j0 = N j −N0, for j = 1, . . . ,M (4.9)

where N j is the real-valued ambiguity on the single-differenced carrier-phase mea-

surement for the jth SV. Therefore, the integer ambiguities with the ith SV as the

reference can be related to the integer ambiguities with the original reference SV

through the equation

N ji =

{

N j0 −N i0 ; j 6= 0, i
−N i0 ; j = 0

(4.10)

Using this relation, Eq. 4.8 can be rewritten with integer ambiguities referenced to

the ith SV by modifying R̄NN (k) and N as
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+wN(k)

(4.11)

where all elements of R̄′

NN(k) are equal to the corresponding elements in R̄NN (k)

except for the ith column. Note that the terms in the ith row have been given

different superscripts, but these terms are all equal to the corresponding elements of

R̄NN (k) except for R̄
00
NN(k). The elements of the ith column are given by the following

equation

R̄j0
NN(k) =

{

−
∑M

l=j R̄
jl
NN (k) ; j 6= 0, i

−
∑M

l=i R̄
il
NN (k) ; j = 0

(4.12)

The cross-term between the real-valued and integer-valued portions of the state

in the a priori state measurement equation, R̄xN (k), must also be modified to account

for this change in the integer ambiguity vector. Once again, only the ith column of

R̄xN(k) changes in value during this procedure. The elements of the ith column, using

the same indexing scheme as before, are given by
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R̄j0
xN(k) = −

M
∑

l=1

R̄jl
xN(k) (4.13)

4.2.1.2 Dropping Satellites

Whenever one of the GPS receivers is no longer tracking a particular satellite,

the corresponding integer ambiguity must be removed from the filter state. If this

satellite is the reference satellite, then the reference satellite must first be changed

following the procedure in Sec. 4.2.1.1 so that only one integer ambiguity involves the

measurements from the satellite to be removed. The satellite no longer tracked by

both receivers will be referred to as the ith SV for the remainder of this section.

The integer ambiguity for the ith SV can be removed by first shifting the ith

integer ambiguity to the beginning of the state and swapping columns in R̄xx(k),

R̄xN(k), and R̄NN (k) accordingly. After performing a QR factorization, the following

equations are obtained





z̄i′N (k)
z̄′x(k)
z̄′N(k)



 =





R̄′

N i0N i0(k) R̄
′

N i0x(k) R̄
′

N i0N(k)
0 R̄′

xx(k) R̄′

xN(k)
0 0 R̄′

NN (k)









N i0

x(k)
N′



+





wN i0(k)
wx(k)
w′

N(k)



 (4.14)

The first equation and the integer ambiguity N i0 can simply be removed with minimal

effect on the rest of the state. If N i0 were real-valued, then there would be no

information lost regarding the values of the other states by this method. Since N i0 is

constrained to be an integer, some information is lost in this reduction. However, this

method minimizes the loss in information to only that which is necessary for removal

of the ambiguity from the state.
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4.2.1.3 Adding Satellites

Adding a satellite is necessary whenever a new satellite is being tracked by

both receivers. This procedure is much simpler than removing satellites from the

state, since all that is necessary is to append the new ambiguity to the state and add

a column of zeros and a row containing the prior to the a priori state measurement

equations. Since no a priori information is available about the integer ambiguity for

the new satellite, a defuse prior is used in its place in the a priori state measurement

equations. The defuse prior assumes that the new integer ambiguity has an expected

value of 0 and infinite variance, which can be represented with a 0 in information

form. The resulting appended a priori state measurement equations are





z̄x(k)
z̄N(k)
0



 =





R̄xx(k) R̄xN(k) 0
0 R̄NN(k) 0
0 0 0









x(k)
N

N (M+1)0



+





wx(k)
wN(k)

wN(M+1)0(k)





=

[

z̄x(k)
z̄′N(k)

]

=

[

R̄xx(k) R̄′

xN(k)
0 R̄′

NN (k)

] [

x(k)
N′

]

+

[

wx(k)
w′

N(k)

]

(4.15)

4.3 Propagation Step

Between measurement updates, the state measurement equations are propa-

gated forward in time using either the INS or INS-free dynamics model derived in

Chapter 3, depending on whether or not accelerometer measurements from the IMU

are available. A propagation step is triggered by either an accelerometer measure-

ment or a measurement update at a different time from the time index of the current

filter state. Table 4.2 provides a list of equations for the dynamics models as a ref-

erence. The propagation step proceeds in the same fashion as shown in Appendix B.

A summary of this procedure is as follows
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Table 4.2: List of Equations for the Dynamics Models
Type Difference State Transition Process Noise

Equation Matrix Covariance
x(k + 1) F (k) Q(k)

INS Eq. 3.57 Eq. 3.59 Eq. 3.60
INS-Free Eq. 3.71 Eq. 3.72 Eq. 3.73

1. The a priori estimate x̄(k + 1) is computed from the state difference equation

evaluated at the a posteriori estimate x̂(k) and the time interval of the propa-

gation step, ∆t. Equation numbers for the state difference equations are listed

in Table 4.2 for both dynamics models.

2. The a posteriori state measurement equations at the beginning of the propaga-

tion interval are stacked below the process noise measurement equation given

as

zv(k) = 0 = Rvv(k)v(k) +wv(k) (4.16)

where Rvv(k) is the Cholesky factorization of the inverse of the process noise

covariance. Equation numbers for the process noise covariances are listed in

Table 4.2 for both dynamics models.

3. x(k + 1) is substituted for x(k) in the stacked process noise and state mea-

surement equations through the linearized dynamics equation. The linearized

dynamics equation is simply the difference equation evaluated at the a posteri-

ori estimate x̂(k) plus the term F (k)(x(k) − x̂(k)). Equation numbers for the

state transition matrix, F (k), are listed in Table 4.2 for both dynamics models.

4. Using a QR factorization, the a priori state measurement equations at the end

of the propagation interval are obtained in the same form as Eq. 4.2. If the a
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priori state covariance is desired, then it can be computed through the procedure

specified in Sec. 4.1.1.
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Chapter 5

Prototype Augmented Reality System

A prototype AR system based on the navigation filter defined in Chapters 3

and 4 was designed and built to demonstrate the accuracy of such a system. Fig-

ure 5.1 shows a picture of the prototype AR system, which is composed of a tablet

computer attached to a sensor package. A webcam points out the side of the sensor

package opposite from the tablet computer to provide a view of the real world that is

displayed on the tablet computer and augmented with virtual elements. The tablet

computer could thus be thought of as a “window” into the AR environment; a user

looking “through” the tablet computer would see an augmented representation of the

real world on the other side of the AR system. However, the navigation filter and

augmented visuals are currently only implemented in post-processing. Therefore, the

tablet computer simply acts as a data recorder at present. This prototype AR system

is an advanced version of that presented in [47].

This chapter describes the hardware and software used for the sensor package

in the prototype AR system. This sensor package can be divided into three navigation

“subsystems”, CDGPS, INS, and VNS, which are detailed separately in the following

sections. For reference, a picture of the sensor package with each of the hardware

components labeled is shown in Fig. 5.2. Each of the labeled components, except

the Lithium battery, are detailed in the hardware section for their corresponding

subsystem.
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Figure 5.1: The assembled prototype augmented reality system.

Figure 5.2: A labeled picture of the sensor package for the prototype augmented
reality system.
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5.1 CDGPS

The CDGPS subsystem is represented in the block diagram in Fig. 3.1 by the

boxes encircled by a blue dashed line. The sensors for the CDGPS subsystem are the

mobile GPS receiver and the reference GPS receiver, which is not part of the sensor

package. The reference GPS receiver used for the tests detailed in Chapter 6 was a

CASES software-defined GPS receiver developed by The University of Texas at Austin

and Cornell University. CASES can report GPS observables and pseudorange-based

navigation solutions at a configurable rate, which was set to 5 Hz for the prototype

AR system. These data can be obtained from CASES over the internet. Further

information on CASES can be found in [55]. For the tests detailed in Chapter 6,

CASES operated on data collected from a high-quality Trimble antenna located at a

surveyed location on the roof of the W. R. Woolrich Laboratories at The University

of Texas at Austin. The mobile GPS receiver, which is part of the sensor package, is

composed of the hardware and software described below.

5.1.1 Hardware

5.1.1.1 FOTON GPS Receiver

The mobile GPS receiver used for the prototype AR system was the FOTON

software-defined GPS receiver developed by The University of Texas at Austin and

Cornell University. FOTON is a dual-frequency receiver that is capable of tracking

GPS L1 C/A and L2C signals, but only the L1 C/A signals were used in the prototype

AR system. FOTON can be seen in the lower right-hand corner of Fig. 5.2. The

workhorse of FOTON is a digital signal processor (DSP) running the GRID software

receiver, which is described in Sec. 5.1.2.1.
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5.1.1.2 Single-Board Computer

The single-board computer (SBC) is used for communications between FO-

TON and the tablet computer. FOTON sends data packets to the SBC over a serial

interface. These data packets are then buffered by the SBC and sent to the tablet

computer via Ethernet. The SBC is not strictly necessary and could be removed

from the system in the future if a direct interface between FOTON and the tablet

computer were created.

The SBC is located under the metal cover in the lower left-hand corner of

Fig. 5.2. This metal cover was placed over the SBC because the SBC was emitting

noise in the GPS band that was reaching the antenna and causing significant degra-

dation of the received carrier-to-noise ratio. The addition of the metal cover largely

eliminated this problem.

5.1.1.3 Antcom GPS Antenna

The GPS antenna used for the prototype AR system was a 3.5” GPS L1/L2

antenna from Antcom [56]. This antenna can be seen in the upper right-hand corner of

Fig. 5.2. This antenna has good phase-center stability, which is necessary for CDGPS,

but is admittedly quite large. Reducing the size of the antenna much below this while

maintaining good phase-center stability is a difficult antenna design problem that has

yet to be solved. Therefore, the size of the antenna is currently the largest obstacle

to miniaturizing the sensor package for an AR system employing CDGPS.
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5.1.2 Software

5.1.2.1 GRID Software Receiver

As mentioned in Sec. 5.1.1.1, the GRID software receiver, which was developed

by The University of Texas at Austin and Cornell University, runs on the FOTON’s

DSP [57, 58]. GRID is responsible for

1. performing complex correlations between the digitized samples from FOTON’s

radio-frequency front-end at an intermediate frequency and local replicas of the

GPS signals.

2. acquiring and tracking the GPS signals based on these complex correlations.

3. computing the GPS observables measurements and pseudorange-based naviga-

tion solutions.

GPS observables measurements and pseudorange-based navigation solutions can be

output from GRID at a configurable rate, which was set to 5 Hz for the prototype

AR system.

Carrier-phase cycle slips are a major problem in CDGPS-based navigation be-

cause cycle slips result in changes to the integer ambiguities on the double-differenced

carrier-phase measurements. Thus, cycle slip prevention is paramount for CDGPS.

GRID was originally developed for Ionospheric monitoring. As such, GRID has a scin-

tillation robust PLL and databit prediction capability, which both help to prevent

cycle slips [55].
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5.2 Inertial Navigation System

The INS subsystem is represented in the block diagram in Fig. 3.1 by the boxes

encircled by a red dashed line. The sensors for the INS subsystem are contained within

a single IMU located on the sensor package. This IMU is detailed below.

5.2.1 Hardware

5.2.1.1 XSens MTi IMU

The IMU used for the prototype AR system was the XSens MTi, which can

be seen in the center of the left-hand side of Fig. 5.2. This IMU is a complete gyro-

enhanced attitude and heading reference system (AHRS). It houses four sensors, (1)

a magnetometer, (2) a three-axis gyro, (3) a three-axis accelerometer, and (4) a

thermometer. The MTi also has a DSP running a Kalman filter, referred to as the

XSens XKF, that determines the attitude of the MTi relative to the north-west-up

(NWU) coordinate system, which is converted to ENU for use in the navigation filter.

The XKF is described in Sec. 5.2.2.1.

In addition to providing attitude, the MTi also provides access to the highly-

stable, temperature-calibrated (via the thermometer and high-fidelity temperature

models) magnetometer, gyro, and accelerometer measurements. The MTi can output

these measurements and the attitude estimate from the XKF at a configurable rate,

which was set to 100 Hz for the prototype AR system. In order to obtain a time

stamp for the MTi data, the MTi measurements were triggered by FOTON, which

also reported the GPS time the triggering pulse was sent.
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5.2.2 Software

5.2.2.1 XSens XKF

As mentioned in Sec. 5.2.1.1, the XSens XKF is a Kalman filter that runs

on the MTi’s DSP and produces estimates of the attitude of the MTi relative to

NWU. This Kalman filter determines attitude by ingesting temperature-calibrated

(via the MTi’s thermometer and high-fidelity temperature models) magnetometer,

gyro, and accelerometer measurements from the MTi to determine magnetic North

and the gravity vector. If the XKF is given magnetic declination, which can be

computed from models of the Earth’s magnetic field and the position of the system,

then true North can be determined from magnetic North. Knowledge of true North

and the gravity vector is sufficient for full attitude determination relative to NWU.

This estimate of orientation is reported in the MTi specifications as accurate to better

than 2o RMS for dynamic operation. However, magnetic disturbances and long-term

sustained accelerations can cause the estimates of magnetic North and the gravity

vector respectively to develop biases.

5.3 Visual Navigation System

The VNS subsystem is represented in the block diagram in Fig. 3.1 by the boxes

encircled by a green dashed line. The VNS subsystem uses video from a webcam

located on the sensor package to extract navigation information via a stand-alone

BA-based visual SLAM algorithm. This webcam and the visual SLAM software are

detailed below.
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5.3.1 Hardware

5.3.1.1 FV Touchcam N1 Webcam

The webcam used for the prototype AR system was the FV Touchcam N1,

which can be seen in the center of Fig. 5.2. The Touchcam N1 is an HD webcam

capable of outputting video in several formats and frame-rates including 720P-format

video at 22 fps and WVGA-format video at 30 fps. The Touchcam N1 also has a

wide angle lens with a 78.1o horizontal field of view.

5.3.2 Software

5.3.2.1 Parallel Tracking and Mapping

The visual SLAM algorithm used for the prototype AR system was PTAM

developed by Klein and Murray [45]. PTAM is capable of tracking thousands of

point features and estimating relative pose up to an arbitrary scale-factor at 30 Hz

frame-rates on a dual-core computer. Further details on PTAM can be found in

Sec. 2.2.1.2 and [45].

Time alignment of the relative pose estimates from PTAM with GPS time was

performed manually, since the webcam video does not contain time stamps traceable

GPS time. This time alignment was performed by comparing the relative pose from

PTAM and the coupled CDGPS and INS solution over the entire dataset. The initial

guess for the GPS time of the first relative pose estimate from PTAM is taken as the

GPS time of the first observables measurement of the dataset. The time rate offset is

assumed to be zero, which is a reasonable assumption for short datasets. From a plot

of the range to the reference GPS antenna assuming initial guesses for xV
ECEF , q

ECEF
V ,

and λ of xB
ECEF ,

[

1 0 0 0
]T

and 1 respectively, the time offset between GPS time

and the initial guess for PTAM’s solution can be determined by aligning the changes
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in the range to the reference GPS receiver in time. Note that the traces in this plot

will not align because xV
ECEF , q

ECEF
V , and λ have yet to be determined. However, the

times when the range to the reference GPS receiver changes can be aligned. Better

guesses for xV
ECEF , q

ECEF
V , and λ can be determined from the initialization procedure

described in Sec. 4.1.2 once the data has been time aligned.
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Chapter 6

Test Results for the Prototype Augmented Reality

System

The prototype AR system presented in Chapter 5 was tested in several different

modes of operation to demonstrate the accuracy and precision of the prototype AR

system. These modes were CDGPS, coupled CDGPS and INS, and coupled CDGPS,

INS, and VNS. Testing these modes incrementally allows for demonstration of the

benefits of adding each additional navigation subsystem to the prototype AR system.

This chapter presents test results from the prototype AR system for each of

these modes of operation and details the performance of the prototype AR system.

The chapter begins by presenting results from the CDGPS subsystem operating alone

in both static and dynamic scenarios. These results demonstrate the positioning accu-

racy and precision of the CDGPS subsystem. Next, results from the coupled CDGPS

and INS mode are presented for the dynamic scenario. The addition of the INS pro-

vides both absolute attitude information and inertial measurements to smooth out

the position solution between CDGPS measurements. The coupled CDGPS and INS

solution is also compared to the VNS solution after determining the similarity trans-

form between the V-frame and ECEF. Finally, results from the complete navigation

system, which couples CDGPS, INS, and VNS, are given for the dynamic scenario.

These results demonstrate significant improvement of performance over the coupled

CDGPS and INS solution in both absolute positioning and absolute attitude.
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6.1 Results for CDGPS Mode

In CDGPS mode, the prototype AR system only processes measurements from

the CDGPS subsystem. Therefore, attitude cannot be estimated by the navigation

filter in this mode. However, this mode is useful for demonstrating the positioning

accuracy and precision attained by the CDGPS subsystem. The following sections

present test results for both static and dynamic tests of the system in this mode.

6.1.1 Static Test Results

The static test was performed using two antennas, identified in Fig. 6.1, sep-

arated by a short baseline distance and located on top of the W. R. Woolrich Lab-

oratories (WRW) at The University of Texas at Austin. This baseline distance be-

tween the two receivers was measured by tape measure to be approximately 21.155

m [47]. Twenty minutes of GPS observables data was collected at 5 Hz from receivers

connected to each of the antennas. This particular dataset had data from 11 GPS

satellites with one of the satellites rising 185.2 s into the dataset and another setting

953 s into the dataset.

Figure 6.2 shows a lower bound on the probability that the integer ambiguities

have converged to the correct solution for the first 20 s of the static test. Details on

how to compute this lower bound are provided in Appendix C. A probability of 0.999

was used as the metric for declaring that the integer ambiguities have converged to

the correct values and was attained 15.8 s into the test. The integer ambiguities

actually converged to the correct values and remained at the correct values after the

first 10.6 s of the test, even with a satellite rising and another setting during the

dataset. This demonstrates that the methods for handling adding and dropping of

integer ambiguities to/from the filter state outlined in Sec. 4.2.1 are performing as
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Figure 6.1: Picture showing the approximate locations of the two antennas used for
the static test. Antenna 1 is the reference antenna, which is also used as the reference
antenna for the dynamic test.

expected.

Although the true convergence of the integer ambiguities occurred prior to

reaching the 0.999 lower bound probability metric for this test, other tests not pre-

sented in this thesis revealed that this is all too often not the case for the CDGPS

algorithm as implemented for this thesis. This is likely due to ignoring the time-

correlated multipath errors on the double-differenced GPS observables measurements.

The GPS antennas and receivers used for the prototype system do not have good mul-

tipath rejection capabilities. Therefore, future versions of the prototype system will

need to better handle multipath errors on the double-differenced GPS observables

measurements to enable confidence in the convergence metric. This could be accom-

plished through the use of receiver processing techniques to mitigate the effects of

multipath on the GPS observables.

A trace of the East and North coordinates of the mobile antenna relative to the

reference antenna, whose location is known in ECEF, as estimated by the prototype

AR system in CDGPS mode is shown in Fig. 6.3 for the static test. Only position esti-
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Figure 6.2: This plot shows a lower bound on the probability that the integer ambi-
guities are correct as a function of time for the static test. Only the first 20 s of the
test are shown, since the probability is 1 for the remainder of the test.

mates from after the integer ambiguities were declared converged are shown in Fig. 6.3.

These position estimates all fit inside a 2 cm by 2 cm by 4 cm rectangular prism in

ENU centered on the mean position, which demonstrates the precision of the CDGPS

subsystem. The mean of the position estimates expressed in the ENU-frame centered

on the reference antenna was E
[

xB
ENU

]

=
[

−16.8942 −11.3368 −5.8082
]

m. This

results in an estimated baseline distance of 21.1583 m, which is almost exactly the

measured baseline distance of 21.155 m. This difference between the estimated and

measured baselines is well within the expected error of the measured baseline, thus

demonstrating the accuracy of the CDGPS subsystem.

To further illustrate the precision of the CDGPS subsystem, Fig. 6.4 shows

plots of the deviations (in blue) of the East, North, and Up position estimates from

the mean over the entire dataset from after the integer ambiguities were declared

converged. The +/- 1 standard deviation bounds are also shown in Fig. 6.4 based
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Figure 6.3: This plot shows a trace of the East and North position of the mobile
antenna as estimated by the prototype AR system in CDGPS mode for the static test
from after the integer ambiguities were declared converged. The position estimates
are expressed in the ENU frame centered on the reference antenna.

on both the filter covariance estimate (in red) and the actual standard deviation

(in green) of the position estimates over the entire dataset. The actual standard

deviations were σE = 0.002 m, σN = 0.002 m, and σU = 0.0051 m. As can be

seen from Fig. 6.4, the filter covariance estimates closely correspond to the actual

covariance of the data over the entire dataset, which is a highly desirable quality that

arises because the noise on the GPS observables measurements is well modeled.

6.1.2 Dynamic Test Results

The dynamic test was performed using the same reference antenna, identified

as 1 in Fig. 6.1, as the static test. The prototype AR system, which was also on the

roof of the WRW for the entire dataset, remained stationary for the first four and

a half minutes of the dataset to ensure that the integer ambiguities could converge

before the system began moving. This is not strictly necessary, but ensured that good
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Figure 6.4: These three plots show the East (top), North (middle), and Up (bottom)
deviations about the mean of the position estimate from the prototype AR system
in CDGPS mode for the static test. The deviations, shown in blue, are expressed
in the ENU frame centered on the reference antenna. The green and red lines in
each plot represent +/- 1 standard deviation from the mean based on the estimated
positions over the entire test and the navigation filter covariance as a function of time
respectively.
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data was collected for analysis. After this initial stationary period, the prototype AR

system was walked around the front of a wall for one and a half minutes before

returning to its original location. Virtual graffiti was to be augmented onto the

real-world view of the wall provided by the prototype AR system’s webcam. This

approximately 6 minute dataset contained data from 10 GPS satellites with one of

the satellites rising 320.4 s into the dataset.

One of the satellites was excluded from the dataset because it was blocked by

the wall when the system began moving, which caused a number of cycle slips prior to

the mobile GPS receiver loosing lock on the satellite. Most cycle slips are prevented

by masking out low elevation satellites, but environmental blockage such as this can

pose significant problems. Therefore, a cycle slip detection and recovery algorithm

would be useful for the AR system and is an area of future work.

Figure 6.5 shows a lower bound on the probability that the integer ambiguities

have converged to the correct solution for the first 40 s of the dynamic test. The

integer ambiguities were declared converged by the filter after a probability of 0.999

was attained 31.4 s into the test. This took almost twice as long as for the static test

because this dataset only had data from 8 GPS satellites during this interval while

the static test had data from 10 GPS satellites. The integer ambiguities actually

converged to the correct value and remained at the correct value after the first 10.6 s

of the test, which only coincidentally corresponds to actual convergence time for the

static test.

A trace of the East and North coordinates of the mobile antenna relative to

the reference antenna as estimated by the prototype AR system in CDGPS mode

is shown in Fig. 6.6 for the dynamic test. Only position estimates from after the

integer ambiguities were declared converged are shown in Fig. 6.6. The system began
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Figure 6.5: This plot shows a lower bound on the probability that the integer ambi-
guities are correct as a function of time for the dynamic test. Only the first 40 s of
the test are shown, since the probability is 1 for the remainder of the test.

at a position of roughly [-43.077, -5.515, -6.08] m before being picked up, shaken

from side to side a few times, and carried around while looking toward a wall that

was roughly north of the original location. Position estimates were output from the

navigation filter at 30 Hz, while GPS measurements were only obtained at 5 Hz. The

INS-free dynamics model described in Sec. 3.3.2 is used to propagate the solution

between GPS measurements. This dynamics model knows nothing about the actual

dynamics of the system. Therefore, the positioning accuracy suffers during motion

of the system. The position estimate is also not very smooth, which may cause any

augmented visuals based on this position estimate to shake relative to the real world.

Therefore, a better dynamics model is desired in order to preserve the illusion of

realism of the augmented visuals during motion.

To illustrate the precision of the estimates, Figs. 6.7 and 6.8 show the standard

deviations of the ENU position estimates of the mobile antenna based on the filter
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Figure 6.6: This plot shows a trace of the East and North position of the mobile an-
tenna as estimated by the prototype AR system in CDGPS mode for the dynamic test
from after the integer ambiguities were declared converged. The position estimates
are expressed in the ENU frame centered on the reference antenna.

covariance estimates from the prototype AR system in CDGPS mode from just before

and just after CDGPS measurement updates respectively. Taking standard deviations

of the position estimates from these two points in the processing demonstrates the

best and worst case standard deviations for the system. These standard deviations

are an order of magnitude larger than those for the static test because the standard

deviation of the velocity random walk term in the dynamics model was increased

from 0.001 m/s3/2 (roughly stationary) to 0.5 m/s3/2, which is a reasonable value for

human motion. Velocity random walk essentially models the acceleration as zero-

mean Gaussian white noise with an associated covariance. This is typically a good

model for human motion provided that the associated covariance is representative

of the true motion. Assuming that the chosen velocity random walk covariance is

representative of the true motion, the position estimates are accurate to centimeter-

level at all times, as can be seen in Figs. 6.7 and 6.8.
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Figure 6.7: This plot shows the standard deviations of the East (blue), North (green),
and Up (red) position estimates of the mobile antenna based on the filter covariance
estimates from the prototype AR system in CDGPS mode for the dynamic test from
just before CDGPS measurement updates. The standard deviations are expressed in
the ENU frame centered on the reference antenna.

6.2 Results for Coupled CDGPS and INS Mode

The addition of an INS to the system allows for determination of attitude rel-

ative to ECEF and a better dynamics model that leverages accelerometer measure-

ments to propagate the state between CDGPS measurements. This mode produces

precise and globally-referenced pose estimates that can be used for AR. However, the

IMU attitude solution is susceptible local magnetic disturbances and long-term sus-

tained accelerations, which may cause significant degradation of performance. This

will be illustrated in the following sections, which provide results for the dynamic test

described in Sec. 6.1.2.
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Figure 6.8: This plot shows the standard deviations of the East (blue), North (green),
and Up (red) position estimates of the mobile antenna based on the filter covariance
estimates from the prototype AR system in CDGPS mode for the dynamic test from
just after CDGPS measurement updates. The standard deviations are expressed in
the ENU frame centered on the reference antenna.

6.2.1 Positioning Results

A trace of the East and North coordinates of the mobile antenna relative to the

reference antenna as estimated by the prototype AR system in coupled CDGPS and

INS mode is shown in Fig. 6.9 for the dynamic test. Only position estimates from

after the integer ambiguities were declared converged, which occurred at the same

time as in CDGPS mode, are shown in Fig. 6.9. From comparing Figs. 6.9 and 6.6, it

can be seen that the addition of the INS resulted in a much more smoothly varying

estimate of the position. While accuracy of the position estimates is very important

for AR to reduce the registration errors, accurate position estimates that have a jerky

trajectory will result in virtual elements that shake relative to the background. If the

magnitude of this shaking is too large, then the illusion of realism of the virtual object

will be broken.
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Figure 6.9: This plot shows a trace of the East and North position of the mobile
antenna as estimated by the prototype AR system in coupled CDGPS and INS mode
for the dynamic test from after the integer ambiguities were declared converged. The
position estimates are expressed in the ENU frame centered on the reference antenna.

To illustrate the precision of the position estimates, Figs. 6.10 and 6.11 show

the standard deviations of the ENU position estimates of the IMU based on the

filter covariance estimates from the prototype AR system in coupled CDGPS and

INS mode from just before and just after CDGPS measurement updates respectively.

The standard deviations taken from before the CDGPS measurement updates for this

mode are significantly smaller than those from the CDGPS mode, shown in Fig. 6.7,

as expected. This is due to the improvement in the dynamics model of the filter

enabled by the accelerometer measurements from the IMU. In fact, the reduction in

process noise enabled by the IMU accelerometer measurements lowers the standard

deviations to the point that the standard deviations taken from before the CDGPS

measurement updates for this mode are slightly smaller than those from after the

CDGPS measurement updates for CDGPS mode, shown in Fig. 6.8.
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Figure 6.10: This plot shows the standard deviations of the East (blue), North (green),
and Up (red) position estimates of the IMU based on the filter covariance estimates
from the prototype AR system in coupled CDGPS and INS mode for the dynamic
test from just before CDGPS measurement updates. The standard deviations are
expressed in the ENU frame centered on the reference antenna.
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Figure 6.11: This plot shows the standard deviations of the East (blue), North (green),
and Up (red) position estimates of the IMU based on the filter covariance estimates
from the prototype AR system in coupled CDGPS and INS mode for the dynamic test
from just after CDGPS measurement updates. The standard deviations are expressed
in the ENU frame centered on the reference antenna.

6.2.2 Attitude Results

The attitude estimates, expressed as standard yaw-pitch-roll Euler angle se-

quences, from the prototype AR system in coupled CDGPS and INS mode are shown

in Fig. 6.12 for the dynamic test. It was discovered during analysis of this dataset

that the IMU estimated attitude had a roughly constant 26.5◦ bias in yaw, likely due

to a magnetic disturbance throwing off the IMU’s estimate of magnetic North. The

discovery of the bias is detailed in Sec. 6.3.1. This bias was removed from the IMU

data and the dataset reprocessed such that all results presented in this thesis do not

contain this roughly constant portion of the bias. In future versions of the prototype

AR system, it is thus desirable to eliminate the need of a magnetometer to estimate

attitude. This can be accomplished through a tighter coupling of CDGPS and VNS,

as explained in Chapter 2.

106



Figure 6.12: This plot shows the attitude estimates from the prototype AR system
in coupled CDGPS and INS mode for the dynamic test. Attitude is expressed here
in the standard yaw-pitch-roll Euler angles for ease of interpretation.

To illustrate the precision of the attitude estimates, Fig. 6.13 shows the ex-

pected standard deviation of the rotation angle between the true attitude and the

estimated attitude from the prototype AR system in coupled CDGPS and INS mode

for the dynamic test. This is computed from the filter covariance estimate based on

the definition of the quaternion, given in Appendix A, as follows

θ(k) = 2 arcsin
(
√

P(δe1,δe1)(k) + P(δe2,δe2)(k) + P(δe3,δe3)(k)
)

(6.1)

where P(δe1,δe1)(k), P(δe2,δe2)(k), and P(δe3,δe3)(k) are the diagonal elements of the filter

covariance estimate corresponding to the elements of the differential quaternion. This

shows that the filter believes the error in its estimate of attitude has a standard

deviation of no worse than 1.35◦ at any time. It should be noted that since no truth

data is available it is not possible to verify the accuracy of the attitude estimate,

but consistency, or lack of consistency, between this solution and the VNS solution is
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Figure 6.13: This plot shows the expected standard deviation of the rotation angle
between the true attitude and the estimated attitude based on the filter covariance
estimates from the prototype AR system in coupled CDGPS and INS mode for the
dynamic test.

shown in Sec. 6.3.1.

6.3 Results for Coupled CDGPS, INS, and VNS Mode

The addition of a VNS to the system provides a second set of measurements

of both position and attitude. The additional attitude measurement is of particular

consequence because VNS attitude measurements are not susceptible to magnetic

disturbances like the INS attitude measurements. The loose coupling of the VNS

to both CDGPS and INS implemented in this prototype AR system does enable

improvement of the estimates of both absolute position and absolute attitude over

the coupled CDGPS and INS solution. However, this requires that the prototype AR

system estimate the similarity transform between ECEF and the V-frame. In the

future, this intermediate V-frame could be eliminated through a tighter coupling of
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the VNS and CDGPS, as explained in Chapter 2.

This section begins by demonstrating that the VNS solution is consistent,

except for a roughly constant bias in the IMU attitude estimate, with the coupled

CDGPS and INS solution for the dynamic test. Then, the results for the prototype

AR system in coupled CDGPS, INS, and VNS mode are provided for the dynamic

test described in Sec. 6.1.2.

6.3.1 Consistency of Solutions

Before coupling the VNS to the CDGPS and INS solution, consistency between

the two solutions can be demonstrated with a single constant estimate of the similarity

transform between ECEF and the V-frame. While this does not prove the accuracy

of either solution in an absolute sense, consistency of the two solutions demonstrates

accurate reconstruction of the trajectory of the prototype AR system. Combining

this with the proven positioning accuracy of the CDGPS-based position estimates

and motion of the system results in verification of the accuracy of the complete pose

estimates. To be more specific, a bias in the attitude estimates from the IMU would

find its way into the estimate of the similarity transform between ECEF and the

V-frame and, for the procedure for determining this similarity transform described in

Sec. 4.1.2, would result in a rotation of the VNS position solution about the initial

location of the prototype AR system. This is how the bias in the IMU’s estimate of

yaw was discovered.

The estimate of the similarity transform between ECEF and the V-frame is de-

termined through the initialization procedure described in Sec. 4.1.2. This procedure

may not result in the best estimate of the similarity transform, but it will be close

to the best estimate. The VNS solution after transformation to absolute coordinates
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through the estimate of the similarity transform will be referred to as the calibrated

VNS solution for the remainder of this section.

Figure 6.14 shows the norm of the difference between the position of the we-

bcam as estimated by the prototype AR system in coupled CDGPS and INS mode

and the calibrated VNS solution from PTAM for the dynamic test. During stationary

portions of the dataset, the position estimates agree to within 2 cm of one another

at all times after an initial settling period. During periods of motion, the position

estimates still agree to within 5 cm for more than 90% of the time. This larger dif-

ference between position estimates during motion occurs primarily because errors in

the estimate of the similarity transform between ECEF and the V-frame are more

pronounced during motion. Even with these errors, centimeter-level agreement of the

position estimates between the two solutions is obtained at all times. The agreement

might be even better if a more accurate estimate of the similarity transform between

ECEF and the V-frame were determined.

Figure 6.15 shows the rotation angle between the attitude of the webcam as

estimated by the prototype AR system in coupled CDGPS and INS mode and the

calibrated VNS solution from PTAM for the dynamic test. The attitude estimates

agree to within a degree for the entirety of the stationary period of the dataset. Once

the system begins moving, the attitude estimates diverge from one another. By the

end of the dataset, the two solutions only agree to within about 3◦. This divergence

was a result of the IMU trying to correct the 26.5◦ bias in yaw that was mentioned in

Sec. 6.2.2 and removed from the IMU data. In the absence of the magnetic disturbance

that caused this IMU bias to occur in the first place, the IMU should be accurate

to 2◦ during motion and 1◦ when stationary according to the datasheet. While these

solutions are not consistent due to the IMU bias, it is reasonable to expect based on
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Figure 6.14: This plot shows the norm of the difference between the position of the
webcam as estimated by the prototype AR system in coupled CDGPS and INS mode
and the calibrated VNS solution from PTAM for the dynamic test.

these results that the two solutions would be consistent if there were no bias in the

IMU attitude estimates.

6.3.2 Positioning Results

A trace of the East and North coordinates of the mobile antenna relative to the

reference antenna as estimated by the prototype AR system in coupled CDGPS, INS,

and VNS mode is shown in Fig. 6.16 for the dynamic test. Only position estimates

from after the integer ambiguities were declared converged, which occurred at the

same time as in CDGPS mode, are shown in Fig. 6.16. This solution is nearly the

same as the coupled CDGPS and INS solution from Fig. 6.9, which was expected

based on the consistency of the two solutions demonstrated in Sec. 6.3.1. The VNS

corrections to the position estimates were small and are difficult to see at this scale,

except for a few places.
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Figure 6.15: This plot shows the rotation angle between the attitude of the webcam
as estimated by the prototype AR system in coupled CDGPS and INS mode and the
calibrated VNS solution from PTAM for the dynamic test.

Figure 6.16: This plot shows a trace of the East and North position of the mobile
antenna as estimated by the prototype AR system in coupled CDGPS, INS, and
VNS mode for the dynamic test from after the integer ambiguities were declared
converged. The position estimates are expressed in the ENU frame centered on the
reference antenna.
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Figure 6.17: This plot shows the standard deviations of the East (blue), North (green),
and Up (red) position estimates of the IMU based on the filter covariance estimates
from the prototype AR system in coupled CDGPS, INS, and VNS mode for the dy-
namic test from just before CDGPS measurement updates. The standard deviations
are expressed in the ENU frame centered on the reference antenna.

To illustrate the precision of the position estimates, Figs. 6.17 and 6.18 show

the standard deviations of the ENU position estimates of the IMU based on the filter

covariance estimates from the prototype AR system in coupled CDGPS, INS, and

VNS mode from just before and just after CDGPS measurement updates respectively.

These standard deviations are significantly smaller than those for the coupled CDGPS

and INS mode, shown in Figures 6.10 and 6.11. Note that the covariance on the VNS

position estimates was not provided by the VNS, but instead simply chosen to be

a diagonal matrix with elements equal to 0.012 m2 based on the consistency results

from Sec. 6.3.1.
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Figure 6.18: This plot shows the standard deviations of the East (blue), North (green),
and Up (red) position estimates of the IMU based on the filter covariance estimates
from the prototype AR system in coupled CDGPS, INS, and VNS mode for the
dynamic test from just after CDGPS measurement updates. The standard deviations
are expressed in the ENU frame centered on the reference antenna.
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Figure 6.19: This plot shows the attitude estimates from the prototype AR system
in coupled CDGPS, INS, and VNS mode for the dynamic test. Attitude is expressed
here in the standard yaw-pitch-roll Euler angles for ease of interpretation.

6.3.3 Attitude Results

The attitude estimates, expressed as standard yaw-pitch-roll Euler angle se-

quences, from the prototype AR system in coupled CDGPS, INS, and VNS mode

are shown in Fig. 6.19 for the dynamic test. This solution is nearly the same as the

coupled CDGPS and INS solution from Fig. 6.12, which was expected based on the

consistency of the two solutions demonstrated in Sec. 6.3.1. One point of difference

to note occurs in the yaw estimate near the end of the dataset. It was mentioned in

Sec. 6.3.1 that the IMU yaw drifted toward the end of the dataset. The yaw at the end

of the dataset should exactly match that during the initial stationary period, since

the prototype AR system was returned to the same location at the same orientation

for the last 15 to 20 s of the dataset. The inclusion of VNS attitude helped to correct

some of this bias. However, this is an unmodeled error in the dataset that could not

be completely removed by the filter.

115



Figure 6.20: This plot shows the standard deviation of the rotation angle between the
true attitude and the estimated attitude based on the filter covariance estimates from
the prototype AR system in coupled CDGPS, INS, and VNS mode for the dynamic
test.

To illustrate the precision of the attitude estimates, Fig. 6.20 shows the ex-

pected standard deviation of the rotation angle between the true attitude and the

estimated attitude from the prototype AR system in coupled CDGPS, INS, and VNS

mode for the dynamic test. This is computed from the filter covariance estimate using

Eq. 6.1. This shows that the filter believes the error in its estimate of attitude has a

standard deviation of no worse than 0.75◦ at any time after an initial settling period,

which is almost twice as small as that obtained from the prototype AR system in

coupled CDGPS and INS mode, as seen in Fig. 6.13. Note that the covariance on the

VNS attitude estimates was not provided by the VNS, but instead simply chosen to

be a diagonal matrix with elements equal to 0.0052, which corresponds to a standard

deviation of 1◦, based on the consistency results from Sec. 6.3.1.
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Chapter 7

Conclusions & Future Work

When people think of AR, they imagine a world where both entirely virtual

objects and real objects imbued with virtual properties could be used to bring the

physical and virtual worlds together. Most existing AR technology has either suffered

from poor registration of the virtual objects or been severely limited in application.

Some successful AR techniques have been created using visual navigation, but these

methods either are only capable of relative navigation, require preparation of the

environment, or require a pre-surveyed environment. To reach the ultimate promise

of AR, we imagine an ideal AR system that is capable of attaining centimeter-level

or better absolute positioning and degree-level or better absolute attitude accuracies

in any space, both indoors and out, on a platform that is easy to use and priced

reasonably for consumers.

This thesis proposed methods for combining CDGPS, visual SLAM, and iner-

tial measurements to obtain precise and globally-referenced pose estimates of a rigid

structure connecting a GPS receiver, a camera, and an IMU. Such a system should be

capable of reaching the lofty goals of an ideal AR system. These methods for combin-

ing CDGPS, visual SLAM, and inertial measurements include sequential estimators

and hybrid batch-sequential estimators. Further analysis is required to identify a

single best methodology for this problem, since an optimal solution is computation-

ally infeasible. Prior to defining these estimation methodologies, the observability

of absolute attitude based solely on GPS-based position estimates and visual feature
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measurements was first proven. This eliminates the need for an attitude solution

based on magnetometer and accelerometer measurements, which is inaccurate near

magnetic disturbances or during long-term sustained accelerations. However, an IMU

is still useful for smoothing out dynamics and reduces the drift of the reference frame

in GPS-challenged environments.

A prototype AR system was developed as a first step towards the goal of imple-

menting the methods for coupling CDGPS, visual SLAM, and inertial measurements

presented in this thesis. This prototype only implemented a loose coupling of CDGPS

and visual SLAM, which has difficulty estimating absolute attitude alone because of

the need to additionally estimate the similarity transform between ECEF and the

arbitrarily-defined frame in which the visual SLAM pose estimates are expressed.

Therefore, a full INS was employed by the prototype rather than just inertial mea-

surements. However, the accuracy of both globally-referenced position and attitude

are improved over a coupled CDGPS and INS navigation system through the incor-

poration of visual SLAM in this framework. This prototype demonstrated an upper

bound on the precision that such a combination of navigation techniques could attain

through a test performed using the prototype AR system. In this test, sub-centimeter-

level positioning precision and sub-degree-level obtained precision was attained in a

dynamic scenario. This level of precision would enable convincing augmented visuals.

Future work on implementing the proposed methodologies for combining CDGPS,

visual SLAM, and inertial measurements and improving the CDGPS algorithm could

be performed to bring the system closer to realizing the ultimate promise of AR.

First, a comparative performance analysis of the proposed methodologies for combin-

ing CDGPS, visual SLAM, and inertial measurements could be performed to deter-

mine which methodology is the best based on accuracy and computational expense.
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Second, a GPS carrier-phase cycle slip detection and mitigation algorithm could be

designed to prevent cycle slips from affecting the CDGPS algorithm.
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Appendix A

Quaternion Math

This appendix is intended as a brief overview of quaternion math as required

by this thesis. More extensive discussions on attitude representations and dynamics

can be found in [59, 60].

A.1 Definition of Quaternions

An Irish mathematician named William Rowan Hamilton invented a system of

hypercomplex numbers in 1844 called quaternions [61]. This mathematical construct

was later adopted for purposes of attitude representation. A quaternion used for

attitude representation is composed of a vector and scalar part as follows

q =









q0
q1
q2
q3









=

[

q0
e

]

=

[

cos
(

θ
2

)

ê sin
(

θ
2

)

]

(A.1)

where θ and ê are the angle to rotate through and the axis to rotate about, re-

spectively. The quaternion is also constrained, due to the representation being non-

minimal, such that

qTq = 1 (A.2)

The quaternion representation of attitude is typically preferred for two reasons
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• Quaternions avoid the numerical singularity experienced by Euler Angle atti-

tude representations referred to as Gimbal Lock.

• Quaternions typically have better numerical stability as compared to other at-

titude representations.

A.2 Relation to Direction-Cosine Matrices

It is often more convenient to express attitude as a direction-cosine matrix

(DCM) in some calculations because DCMs lend themselves readily to manipulation

on computers. The quaternion can be converted into its corresponding direction-

cosine matrix as follows

R (q ) =





q20 + q21 − q22 − q23 2(q1q2 + q3q0) 2(q1q3 − q2q0)
2(q1q2 − q3q0) q20 − q21 + q22 − q23 2(q2q3 + q1q0)
2(q1q3 + q2q0) 2(q2q3 − q1q0) q20 − q21 − q22 + q23



 (A.3)

where R (q ) is the direction-cosine matrix. Eq. A.3 can be written more compactly

as

R (q ) =
(

q20 − ||e||2
)

I3×3 + 2eeT − 2q0[e×] (A.4)

where the cross-product equivalent matrix, [e×] is defined as

[e×] =





0 −q3 q2
q3 0 −q1
−q2 q1 0



 (A.5)

A.3 Quaternion Multiplication

It is conventional to define quaternion multiplication such that
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R
(

qB
C

)

R
(

qA
B

)

= RB
CR

A
B = RA

C = R
(

qB
C ⊗ qA

B

)

(A.6)

where qA
B and RA

B both represent a rotation from the A-frame to the B-frame. This

multiplication can be expressed in matrix form as

qB
C ⊗ qA

B =
[

qB
C

]

qA
B (A.7)

where
[

qB
C

]

is the quaternion left multiplication matrix of qB
C defined as

[q] =









q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0









(A.8)

The quaternion multiplication can be equivalently expressed as

qB
C ⊗ qA

B =
{

qA
B

}

qB
C (A.9)

where
{

qA
B

}

is the quaternion right multiplication matrix of qA
B defined as

{q} =









q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0









(A.10)

A.4 Quaternion Kinematics

The time derivative of the quaternion can be expressed in terms of the angular

velocity vector as

q̇ =
1

2
Ω(ω)q (A.11)
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where

Ω(ω) =









0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0









(A.12)

A.5 Differential Quaternion

For small rotations, the quaternion can be closely approximated as follows

δq =

[

cos
(

δθ
2

)

ê sin
(

δθ
2

)

]

≈

[ √

1− ||êδθ
2
||2

ê δθ
2

]

=

[ √

1− ||δe||2

δe

]

(A.13)

where cos
(

δθ
2

)

is approximated as
√

1− ||δe||2 instead of the typical 1 to comply with

the quaternion constraint. This approximation allows for reduction of the quaternion

to a minimal three-element representation, δe, and is useful for preserving the quater-

nion constraint in a Kalman Filter, as shown in [48]. During initial convergence of

a Kalman Filter, the assumption that δθ is small may be violated and could cause
√

1− ||δe||2 to become imaginary. To protect against this scenario, a less accurate

form of the differential quaternion is used whenever ||δe||2 > 1. This form of the

differential quaternion is

δq =
1

√

1 + ||δe||2

[

1
δe

]

(A.14)

A useful relation between the differential quaternion and its DCM can be found

by linearizing Eq. A.4 about δe = 0. This results in the relation

R(δq) ≈ I3×3 − 2[δe×] (A.15)
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Appendix B

Square-Root Extended Kalman Filter

A brief overview of the square-root extended Kalman filter (SREKF) is pre-

sented here to provide notational consistency and a brief reference for those familiar

with other estimation algorithms. A more in depth discussion of estimation algorithms

is included in [38, 62]. Specifically, [62] presents details on square-root information

filters for linear systems and [38] discusses estimation algorithms for both linear and

non-linear systems primarily in covariance form.

B.1 Propagation Step

The propagation step takes the best estimate of the state, X̂(k), and state

covariance, P (k), at time tk and evolves these estimates through the state dynamics

equations, which may be non-linear, to determine the apriori state, X̄(k + 1), and

apriori state covariance, P̄ (k + 1) at time tk+1. The state dynamics equation can be

written in a general form as

Ẋ(t) = f (X(t),u(t), t) +D(t)v′(t) (B.1)

where u(t) is the known input to the system, f (X(t),u(t), t) is the dynamics model

of the state, v(t) is the process noise vector, and D(t) maps the process noise to

the time derivative of the state vector. The process noise vector is assumed to be

zero-mean Gaussian white noise with a covariance given by
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E[v′(t)v′T (τ)] =

{

Q′(t) ; t = τ
0 ; otherwise

(B.2)

B.1.1 Discretization of Dynamics

For this thesis, the time step, ∆t, between propagation steps is small. There-

fore, the dynamics model of the state can be approximated as piece-wise constant

over the time intervals of the propagation steps:

f (X(t),u(t), t) ≈ f
(

X̂(k),u(k), tk

)

, ∀ k = 0, 1, . . . & tk ≤ t ≤ tk+1 (B.3)

Under this assumption, the state transition matrix is given by

F (k) = eA(X̂(k),u(k),tk)

≈ I +∆tA
(

X̂(k),u(k), tk

) (B.4)

where

A
(

X̂(k),u(k), tk

)

=
∂f (X(k),u(k), tk)

∂X

∣

∣

∣

∣

(X̂(k),u(k),tk)
(B.5)

The a priori state estimate at time tk+1 can also be computed as

X̄(k + 1) = E[X(k + 1)] = X̂(k) + ∆tf
(

X̂(k),u(k), tk

)

(B.6)

The discrete-time process noise covariance matrix is required for propagation

of the state covariance. This matrix can be computed as
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Q(k) =

∫ tk+1

tk

F (k)D(t)Q′(t)DT (t)F T (k)dt (B.7)

This definition can cause problems with the square-root propagation step if the result-

ing Q(k) is singular. Specifically, Q(k) becomes singular if some of the states are not

affected by process noise. This condition often occurs when constants are included

as part of the state. To prevent this issue, the columns and rows of Q(k) containing

elements along the primary diagonal which are zero are removed and a matrix Γ(k)

is defined which maps the reduced discrete-time process noise vector to the state at

time tk+1.

The discretized state dynamics equation is thus

X(k + 1) = X(k) + ∆tf(X(k),u(k), tk) + Γ(k)v(k) (B.8)

where v(k) is the discrete-time process noise with a covariance matrix given by

E[v(k)vT (j)] =

{

Q(k) ; k = j
0 ; otherwise

(B.9)

B.1.2 Formation of Cost Function

The state and process noise can be viewed as the solutions to a set of mea-

surement equations given as

zX(k) = RXX(k)X(k) +wX(k) (B.10)

zv(k) = 0 = Rvv(k)v(k) +wv(k) (B.11)
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where wX(k) and wv(k) are zero-mean Gaussian white noise vectors with identity

covariance matrices and RXX(k) and Rvv(k) are the Cholesky factorizations of P−1(k)

and Q−1(k) respectively. These equations can be stacked and expressed as a cost

function to be minimized as follows

Ja =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

[

Rvv(k) 0
0 RXX(k)

] [

v(k)
X(k)

]

−

[

0
zX(k)

]∣

∣

∣

∣

∣

∣

∣

∣

2

(B.12)

B.1.3 Propagating Cost Function Forward in Time

To propagate the state forward in time within the cost function in Eq. B.12,

X(k + 1) is substituted for X(k). This substitution is made by solving the following

linearizated version of Eq. B.8 for X(k)

X(k + 1) = X̂(k) +∆tf
(

X̂(k),u(k), tk

)

+ F (k)
(

X(k)− X̂(k)
)

+ Γ(k)v(k) (B.13)

The resulting cost function is

Jb =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

[

Rvv(k) 0
−RXX(k)F

−1(k)Γ(k) RXX(k)F
−1(k)

] [

v(k)
X(k + 1)

]

−

[

0

zX(k) +RXX(k)
(

F−1(k)
(

X̂(k) + ∆tf
(

X̂(k),u(k), tk

))

− X̂(k)
)

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(B.14)

To minimize this cost function, a QR factorization is employed to give

[

Rvv(k) 0
−RXX(k)F

−1(k)Γ(k) RXX(k)F
−1(k)

]

= Q̄(k)R̄(k)

= Q̄(k)

[

R̄vv(k) R̄vX(k)
0 R̄XX(k + 1)

] (B.15)
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Multiplying by Q̄T (k) from the left inside the norm of the cost function does not

change the cost, since Q̄(k) is an orthonormal matrix, and results in a cost function

Jc =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

[

R̄vv(k) R̄vX(k)
0 R̄XX(k + 1)

] [

v(k)
X(k + 1)

]

−

[

z̄v(k)
z̄X(k + 1)

]∣

∣

∣

∣

∣

∣

∣

∣

2

(B.16)

where

[

z̄v(k)
z̄X(k + 1)

]

= Q̄T (k)

×

[

0

zX(k) +RXX(k)
(

F−1(k)
(

X̂(k) + ∆tf
(

X̂(k),u(k), tk

))

− X̂(k)
)

] (B.17)

and

P̄ (k + 1) =
(

R̄T
XX(k + 1)R̄XX(k + 1)

)−1
(B.18)

Some filter implementations maintain the process noise equations to help

smooth out the past states after more data has been consumed. This operation is re-

ferred to as smoothing. Since this filter does not employ a smoother, these equations

are no longer used and can be discarded.

B.2 Measurement Update Step

The measurement update step uses information obtained from measurements

to correct the a priori state estimate, X̄(k), to obtain the a posteriori state estimate,

X̂(k). These measurements can be written in the general form

z(k) = h (X(k), k) +w(k) (B.19)
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where z(k) is the vector of measurements collected at time tk, h (X(k), k) is the

non-linear measurement model, and w(k) is the measurement noise vector. The

measurement noise is assumed to be zero-mean Gaussian white noise with a covariance

given by

E[w(k)wT (j)] =

{

R(k) ; k = j
0 ; otherwise

(B.20)

The measurement noise is also assumed to be uncorrelated with the process noise.

In an EKF, the measurement equations from Eq. B.19 are linearized about

the a priori state estimate. The linearized measurement model is given by

h (X(k), k) ≈ h
(

X̄(k), k
)

+
∂h (X(k), k)

∂X(k)

∣

∣

∣

∣

(X̄(k),k)
δX(k)

= z̄(k) +H(k)δX(k)

(B.21)

where δX(k) is a correction to X̄(k) typically defined as

δX(k) = X̂(k)− X̄(k) (B.22)

The linearized measurements are thus given by combining Eqs. B.19 and B.21 as

z′(k) = z(k)− z̄(k) = H(k)δX(k) +w(k) (B.23)

B.2.1 Formation of Cost Function

In forming the cost function for the measurement update, the linearized mea-

surements from Eq. B.23 are first normalized to obtain
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z̃(k) = R−T
z (k)z′(k) = R−T

z (k)H(k)δX(k) +R−T
z (k)w(k)

= H̃(k)δX(k) +wz(k)
(B.24)

where Rz(k) is the Cholesky factorization of R−1(k). These normalized measurement

equations are stacked on top of the a priori state encoded as measurement equations

to obtain the cost function

Jd =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

[

H̃(k)
R̄XX(k)

]

δX(k)−

[

z̃(k)
δz̄X(k)

]∣

∣

∣

∣

∣

∣

∣

∣

2

(B.25)

where

δz̄X(k) = z̄X(k)− R̄XX(k)X̄(k) (B.26)

B.2.2 Computation of A Posteriori State Estimate

As with the propagation step, a QR factorization is employed to aid in mini-

mizing the cost function which results in

[

H̃(k)
R̄XX(k)

]

= Q̂(k)R̂(k) = Q̂(k)

[

RXX(k)
0

]

(B.27)

Multiplying by Q̂T (k) from the left inside the norm of the cost function does not

change the cost, since Q̂(k) is an orthonormal matrix, and results in a cost function

Je =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

[

RXX(k)
0

]

δX(k)−

[

δzX(k)
zr(k)

]∣

∣

∣

∣

∣

∣

∣

∣

2

(B.28)

where
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[

δzX(k)
zr(k)

]

= Q̂T (k)

[

z̃(k)
δz̄X(k)

]

(B.29)

The term zr(k), typically referred to as the irreducible cost, is a constant that

is unaffected by the state. Therefore, it can be removed from the cost function. The

cost function is then minimized by choosing the state correction to be

δX(k) = R−1
XX(k)δzX(k) (B.30)

The state covariance can also be computed, if needed, as

P (k) =
(

RT
XX(k)RXX(k)

)−1
(B.31)

To prepare for the next propagation step, zX(k) is computed using the equation

zX(k) = δzX(k) +RXX(k)X̄(k) (B.32)
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Appendix C

Integer Least Squares

Integer least squares, also commonly referred to as sphere decoding, has im-

portant applications in both multiple-input multiple-output (MIMO) communications

systems and GPS. For this thesis, the integer least squares (ILS) problem arises in the

CDGPS algorithm when solving for the integer ambiguities on the double-differenced

carrier-phase measurements. This discussion is intended as a brief overview of the ILS

problem and solution algorithms. Further details on ILS can be found in [54, 63, 64].

C.1 Problem Statement

The ILS problem seeks to minimize a cost function, subject to the constraint

that N be a set of integers, of the form

J =
1

2
||RN− z||2 (C.1)

where R is a square matrix. The matrix R does not need to be square, but a QR

factorization could be employed to reduce the information into a set of Mequations,

where M is the length of N.

Assuming that R is invertible, a real-valued solution to the problem that min-

imizes the cost function is given as

Nreal = R−1z (C.2)
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While this solution does minimize the cost, it does not reflect the constraint that

N be a set of integers. One sensible approximate solution would be to round this

real valued solution to the nearest integer values for each element in Nreal to obtain

Nround. However, this method can produce very poor results depending of the shape

of the cost function.

Another approximate solution called ambiguity bootstrapping is mentioned

in [64] which rounds each element as it is solved for in a backward substitution

algorithm and uses the integer value for further steps. This approach performs much

better than simply rounding the real-valued solution, but can still settle far from the

optimal solution.

C.2 Solution Algorithms

The optimal solution to the ILS problem must be determined through a search

algorithm that tests individual lattice points to find the integer setNopt that minimizes

Eq. C.1. However, this search can be a computationally intensive process because it

requires that many lattice points be tested to ensure that the optimal integer set is

found. Theoretically, it has been shown that this problem is NP-hard [63].

Several different algorithms have been created to address the problem of re-

ducing the number of lattice points that must be tested. These algorithms involve

three primary steps as follows

reduction step: The reduction step, sometimes referred to as decorrelation, seeks

to simplify the ILS problem through matrix factorizations of R. These factor-

izations typically result in a lattice with bases that are nearly orthogonal with

near unity magnitude. For a lattice with orthogonal bases, Nround would be
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the optimal solution. Having nearly orthogonal bases makes the search step

more efficient because the approximate solution is closer in cost to the optimal

solution.

approximate solution: An approximate solution is determined using a computa-

tionally efficient, but sub-optimal, procedure. This could be as simple as round-

ing the real valued solution, but better approximations exist. The cost of this

approximate solution is computed from Eq. C.1 and is used to guide the search

algorithm.

search step: A search tree is created based on all lattice points inside the cost ellipse

at the cost of the approximate solution. The optimal solution is guaranteed to

have the same or lower cost as compared to the approximate solution, since the

approximate solution is also an admissible solution. From this discussion, it

can easily be seen that a lower cost approximate solution results in fewer lattice

points within the cost ellipse and thus better computational efficiency of the

search step.

The two most prominent algorithms employed to solve ILS are the least-squares

ambiguity decorrelation adjustment (LAMBDA) method and the Lenstra, Lenstra,

Jr., and Lovasz (LLL) method. Psiaki and Mohiuddin present an implementation

of the LAMBDA method in [64] which operates on the square-root form of the ILS

problem, as shown in Eq. C.1. An implementation of LLL by Hassibi and Boyd can

be found in [63] alongside easily-computable, tight upper and lower bounds on the

probability that the optimal integer set is correct.

Both algorithms perform well, but the LLL method was chosen for use in

this thesis due to the availability of these easily computable probability bounds. In
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particular, a modified version of MILES by Chang et al. [54] was used for this thesis.

C.3 Solution Verification

For application of ILS to CDGPS, it is important to know when the integer

ambiguities have been correctly determined. The actual probability that the integer

set is correct can be computed by integrating a multivariate Gaussian distribution

over a Voronoi cell. A Voronoi cell is defined by the set of all points closest to a single

integer set. Numerical integration over a Voronoi cell is incredibly computationally

intensive and thus infeasible for real-time applications [63].

Hassibi and Boyd presented upper and lower bounds on the probability that

the optimal integer set is correct in [63] that utilize the LLL reduced version of the

matrix R from Eq. C.1. These probability bounds become tight as the probability

approaches 1, which is a highly desirable quality. The upper bound probability is

based on an integral of the probability distribution over a Euclidean ball that contains

the entirety of the Voronoi cell. This upper bound can be computed as

Pup = Fχ2

(

(|det(G)| /αM)2/M ;M
)

(C.3)

where Fχ2 (·;M) is the χ2 cumulative distribution function withM degrees of freedom,

G is the LLL reduced version of R, and αM is given by

αM =
πM/2

Γ (M/2 + 1)
(C.4)

where Γ (·) is the Gamma function. The lower bound probability is based on an

integral of the probability distribution over a Euclidean ball entirely inside the Voronoi

cell. This lower bound can be computed as
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Plow = Fχ2

(

d2min

4
;M

)

(C.5)

where dmin is the shortest distance between lattice points. Computing dmin is NP-

hard, but a tight lower bound on dmin can be computed from the Gram-Schmidt

orthogonalization of G as

dmin ≥ min (||g∗

1|| , ||g
∗

2|| , . . . , ||g
∗

M ||) (C.6)

where g∗

i are the columns of the Gram-Schmidt orthogonalization of G.
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