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ABSTRACT

Limitations on position-time precision are analyzed in
energy-constrained GNSS receivers. The goal of this work
is to determine the combination of sampling rate, number
of quantization bits, number of satellites tracked, and co-
herent integration time that maximizes the position-time
precision under a fixed low-energy constraint. In this pa-
per, only the measurement errors due to spectrally flat
Gaussian thermal noise are considered. Analytical expres-
sions relating the foregoing parameters to precision and
energy consumption are developed. Based on these ex-
pressions, a constrained optimization problem is formu-
lated. Optimal solutions indicate that under a tight en-
ergy constraint energy should be allocated toward increas-

ing the sampling rate at the expense of the other parame-
ters. Moreover, the quantization resolution should be set
above 1-bit only under an energy surplus. Interestingly,
optimum settings under tight energy constraints approx-
imately match those chosen by the designers of energy-
efficient commercial GNSS receivers.

I. Introduction

Over the past decade, the performance parameters of
consumer electronic devices such as disk capacity, proces-
sor speed, and wireless transfer data rate have experienced
a Moore’s-law-type exponential increase [1]. Battery en-
ergy density, on the other hand, has remained relatively
stagnant [1]. For microchips, energy efficiency improves
with decreasing feature size, making lithography technol-
ogy the limiting factor. By contrast, for batteries, en-
ergy density is significantly limited by the size of the ions
used to transfer charge [2]. Finding viable chemical pro-
cesses with smaller ions has proven difficult. Consequently,
power-conscious consumer-electronic engineers have been
pressed to design more energy efficient devices. In the
navigation industry, this means lower power GNSS chips
as these have been shown to be a significant factor in the
overall energy consumption of handheld electronic devices
[3], [4].

There has been much prior work in the area of energy
efficient GNSS receivers. Trends in state-of-the-art GNSS
chipsets have led to power consumption levels on the order
of 50 milliwatts for continuous tracking and 15 milliwatts
for duty-cycled tracking [5]. Designers of these chipsets
have focused on lowering their power consumption at the
expense of positioning performance. A natural question to
ask is as follows: what is the fundamental limit to the pre-
cision of a position-time fix under a specified energy con-
straint and what are the design parameters that achieve
this limit? If this question could be answered, then de-
vice manufacturers could tune their devices to more nearly
achieve it. This paper takes a first step by answering these
questions under the simplifying assumption that all mea-
surement errors are due to spectrally flat Gaussian thermal
noise. Moreover, this paper focuses only on minimizing
energy expended by the correlation and accumulation op-
erations in the baseband processing, which is known to
contribute significantly to a GNSS chip’s overall energy
budget.

This paper makes two main contributions. First, it
identifies the analytical relationship between position-time
precision, energy consumption, and four parameters of in-
terest: sampling rate, quantization resolution, number of
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satellites tracked, and coherent integration time. Second,
it formulates a constrained optimization problem based on
these analytical relationships. The solution to this prob-
lem reveals the combination of parameter values which
maximizes the precision of a single-shot position-time fix
that is limited to consume less than a specified amount of
Joules.

Prior work has studied the effect that subsets of the
parameters of interest have on the final position-time pre-
cision. For example, there has been work studying the ef-
fect that the number of quantization bits and the sampling
rate have on a signal’s carrier-to-noise ratio [6], [7]. Other
work has derived lower bounds on code-tracking precision
as a function of the carrier-to-noise ratio and the coherent
integration time [8], [9]. Lastly, there has been work relat-
ing the code-tracking precision and the number of tracked
satellites to the precision of the final position-time solution
[10], [11]. The present study derives a succinct analytical
relationship between the precision of the position-time so-
lution and all four parameters of interest.

There has also been prior work studying the energy con-
sumption of GNSS receivers. Researchers have shown that
baseband processing accounts for over half of the energy
consumed in modern GNSS receivers [12], [13]. This paper
will focus solely on the energy consumed by the correla-
tion and accumulation operations in the baseband proces-
sor. Although the full GNSS receiver energy consumption
is not considered in this paper, as it leaves out, for exam-
ple, the energy consumption of the radio-frequency (RF)
front-end, valuable insights can still be gained from solving
an optimization solution on behalf of the correlation and
accumulation energy consumption alone.

The remainder of this paper is organized as follows. Sec-
tion II derives the energy consumption of the baseband
correlation and accumulation operations as a function of
the four parameters of interest. Section III derives the re-
ceiver position-time precision as a function of the same four
parameters. Section IV poses and solves the constrained
optimization problem and studies parameter tradeoffs that
are made to minimize the position-time error under fixed
energy consumption. Section V discusses future work and
conclusions are made in Section VI.

II. Receiver Energy Consumption

Of the energy consumed in baseband processing, a signif-
icant amount is assumed to be due to the bit-wise multiply
and addition operations that occur during signal correla-
tion and accumulation (CAA) [12], [14], that is, the dot
product that occurs between the incoming intermediate-
frequency signal and the locally-generated replica. This
section will attempt to derive a simple, yet useful metric
by which the total energy consumed by the CAA opera-
tions can be related to the sampling rate fs, the number
of quantization bits NQ, the number of satellites tracked
NSV, and the code tracking integration time Tcoh. Here-
after, these four quantities will be referred to as “parame-

ters of interest.”

A. Correlation and Accumulation Operation Count

During each CAA operation, a continuous batch of
samples is multiplied sample-by-sample with a locally-
generated signal replica and then summed together. The
energy consumption of a CAA operation can be broken
down into a series of binary multiplication and addi-
tion operations. In particular, a K-sample CAA consists
of K NQ-bit multiplication operations followed by K-1
(NQ+log2K)-bit addition operations [15]. The log2K ex-
pression accounts for the maximum accumulator size that
will be needed to store the final result.

A simple NQ-bit carry-ripple binary adder consists of
NQ, 1-bit full-adders, and a simple NQ-bit binary multi-
plier consists of a series of NQ − 1, NQ-bit carry-ripple
binary adders. Accordingly, the entire CAA operation can
be broken down into NA, 1-bit full-adders where

NA = (K − 1) (NQ + log2K)︸ ︷︷ ︸
Accumulation Cost

+ K(N − 1)(N)︸ ︷︷ ︸
Multiplication Cost

≈ K(NQ + log2K +N2
Q −NQ) for large K (1)

= K(N2
Q + log2K).

K is the total number samples in the CAA operation de-
fined as

K = fsTcoh (2)

If operating a 1-bit full-adder costs EA Joules, the total
energy consumed by a CAA operation ECAA can be ap-
proximated as

ECAA = EANA

= EAfsTcoh

(
N2
Q + log2 [fsTcoh]

)
. (3)

B. Approximation of Total Energy Consumption

Most GNSS receivers use an early-late code discrimina-
tor to estimate the code-phase of each GNSS signal and
compute a pseudorange to each satellite. Receivers im-
plementing this discriminator usually have two to three
correlators: an early, a late, and, oftentimes, a prompt cor-
relator. Each of these correlators computes complex corre-
lation over a batch interval of length Tcoh. A complex cor-
relation consists of two separate correlations, an in-phase
and quadrature-phase correlation. These correlations must
be performed separately for each satellite tracked. Conse-
quently, the total energy consumed by the CAA operations
in a GNSS receiver ETotal can be written as a function of
the number of CAAs to be performed and ECAA:

ETotal = 3 · 2 ·NSV︸ ︷︷ ︸
Number of CAAs

ECAA

= 6 ·NSVECAA (4)

where NSV is the number of satellites being tracked.
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III. Receiver Position-Time Error

The previous section approximated the total energy con-
sumption due to signal correlation and accumulation in a
GNSS receiver as a function of the four parameters of in-
terest. This section will attempt to derive a lower bound
on the position-time precision as a function of the same
four parameters.

A. Relating Position-Time Error to Code-Tracking
Error

This subsection will relate the overall position-time error
to the channel-by-channel code-tracking error using what
is known as the Geometric Dilution of Precision (GDOP).
The RMS error of the combined position-time solution can
be approximately modeled as a function of the GDOP and
the code-tracking RMS error σu:

σxyzt = σu ·GDOP. (5)

GDOP is defined as

GDOP =
√

Tr (GTG)−1 (6)

where G is the (M–by–4) geometry matrix constructed
from the approximate unit direction vectors from the re-
ceiver to each tracked satellite. G and is defined as

G =


1(1) 1
1(2) 1

...
...

1(M) 1

 , (7)

where

1(k) =

(
x(k) − x0, y

(k) − y0, z
(k) − z0

)
‖
(
x(k) − x0, y(k) − y0, z(k) − z0

)
‖

(8)

is the (1–by–3) unit direction vector from the receiver to
satellite k, and xk, yk, and zk and x0, y0, and z0 repre-
sent the respective positions of satellite k and the receiver
in the Earth-centered, Earth-fixed reference frame. This
definition of GDOP is dependent on a specific satellite ge-
ometry. For the optimization analysis presented hereafter,
it is beneficial to obtain an estimate of GDOP that is not
dependent on satellite geometry, but rather just a function
of the number of satellites tracked. Along these lines, prior
work has computed lower bounds on GDOP as a function
of the number of satellites NSV, assuming that these satel-
lites are in an optimal geometry configuration [11], [16].
Reference [11] offers the following lower bound on GDOP:

GDOPmin =

√
10

NSV
. (9)

This bound assumes that the receiver can receive signals
from any direction including negative elevation angles. Al-
though a considerable simplification is made using this def-
inition of GDOP, it will be beneficial to subsequent opti-
mization analysis as it offers a smooth lower bound on
GDOP as a function of NSV.

B. Derivation of Code-Tracking Error

Equation (5) relates the RMS error of the position-time
solution σxyzt to the RMS error of the pseudorange esti-
mate σu as a function of GDOP. A lower bound on GDOP
was presented in (9) as a function of NSV, one of the four
parameters of interest. This section will derive a practical
lower-bound on σu as a function of the other three param-
eters fs, Tcoh, and NQ, allowing us to derive σxyzt in terms
of all four parameters.

B.1 Cramer-Rao Lower Bound

The Cramer-Rao lower-bound (CRLB) represents the
absolute lower bound on the code-tracking error [17]. In
[9], the CRLB for code-tracking error was derived for a
batch of data of length Tcoh:

σ2
u,CRLB =

1

2(2π)2Tcoh

∫ Br/2

−Br/2
f2CsGs(f)

Gw(f) df
(10)

=
1

2(2π)2Tcoh
Cs

N0

∫ Br/2

−Br/2
f2Gs(f)df

(11)

where
Br is the captured signal bandwidth which is equal to

the sampling rate for an ideal filter, i.e. Br = fs

Cs is the total received signal power
Gs is the GNSS signal power spectral density
Gw is the power spectral density of the noise plus inter-

ference
N0 is the single-sided noise power spectral density

We are invoking the assumption, in (11), that our position-
time precision is only affected by thermally flat Gaussian
spectral noise.

For an infinitely long random square wave sequence, the
power spectral density (PSD) can be derived as [18]:

Gs(f) = TCsinc2(πfTC) (12)

where TC is the chip-length of the square wave, in seconds.
Although the GPS L1 C/A code is not infinitely long, the
PSD in (12) is a close approximation to the true PSD for
this code. Assuming a receiver is tracking a GPS L1 C/A
code, the CRLB for batch code-phase estimation can be
simplified using (11) and (12) to

σ2
u,CRLB =

1

4Tcoh
1
TC

Cs

N0

(
fs − sin(fsπTC)

πTC

) . (13)

B.2 Coherent Early-Late Discriminator

Although the CRLB offers a closed-form equation on the
code-tracking error, it does so independent of a discrim-
inator design [9]. Some estimators, like the batch least-
squares estimator, have been shown to meet the CRLB,
however, these require a large amount of computation, and
consequently, energy, as code-phase estimates are found by
computing cross correlations over a large number of time
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Fig. 1. Coherent early-late discriminator code-tracking error versus
the Cramer-Rao lower bound as a function of the early-late tap spac-
ing ∆. Here a GPS L1 C/A code is assumed with receiver parameters

Tcoh = 2 seconds, Cs
N0

= 45 dB-Hz, fs = 2 MHz.

offsets or by taking the Fourier transform over all samples
and solving a least squares problem in the frequency do-
main [19]. More preferable would be a lower-bound on a
more-commonly used, lower-power discriminator. In par-
ticular, this paper will focus on the coherent early-late dis-
criminator (CELD) as first introduced earlier in Sec. II-B
during the discussion on energy consumption. A lower
bound on the CELD code-tracking error would allow us to
consider both the code-tracking error and the energy con-
sumption in terms of the same discriminator mechaniza-
tion, laying down the framework to pose the optimization
problem in Sec. IV. The code-tracking error variance for
a CELD has been derived as [9]:

σ2
u,CELD =

∫ fs/2
−fs/2Gs(f) sin2(πf∆)df

2(2π)2Tcoh
Cs

N0

(∫ fs/2
−fs/2 fGs(f) sin(πf∆)df

)2

(14)

where ∆ is the early-late tap spacing, in seconds. In the
limit as ∆→ 0, (14) becomes equivalent to the CRLB, as
illustrated in Fig. 1.

lim
∆→0

σ2
u,CELD = σ2

u,CRLB (15)

∆ should be made as small as possible as it minimizes
the estimated error variance. In application, however, the
minimum ∆, in seconds, is limited by the sample spacing,
that is

min ∆ =
1

fs
. (16)

C. Effective Carrier-to-Noise Ratio

According to [6], the effective signal power received after
complex correlation can be written as:

Ceff = |E[zk]|2 = (K̄ · h̄01)2R̄2
s̃s[0] · C = C/Lc (17)

where Lc is the loss in power due to bandlimiting, sam-
pling, and quantization

Lc =
1[

K̄ · h̄01 · R̄s̃s[0]
]2 . (18)

with the following definitions
zk is the complex correlation sum
K̄ is the quantizer gain coefficient defined in [6] as a

function of the quantization resolution NQ and the
quantizer level thresholds.

h̄01 is a quantizer coefficient defined in [6] as a function
of the quantization resolution NQ.

R̄s̃s[0] is the time-average of the discretized cross-
correlation function between the filtered and desired
signal. The parameter captures the signal power loss
due to bandlimiting.

C the total received signal power impinging on the an-
tenna, in watts

It is possible to show that:

lim
fs→∞,NQ→∞

Ceff = C. (19)

The signal power loss due to fs is already captured by
the limits of integration in (14). However (14) does not
account for the signal power losses due to NQ. Conse-
quently, it becomes important to replace the signal power
term Cs in (14) by a term C ′s that accounts for this loss

C ′s =
Cs
L′c

(20)

where L′c is the loss in signal power due to quantization
only:

L′c =
1[

K̄ · h̄01

]2 . (21)

Table I lists values of the signal power loss L′c as a function
NQ, assuming optimal quantization threshold levels [6].

IV. Constrained Optimization Problem

This section sets up the constrained optimization prob-
lem using the analytical expressions defined for energy con-
sumption and position-time error in Sections II and III.
The problem is designed to minimize position-time error
over the four parameters of interest subject to an energy
constraint and is posed as follows:

minimize
NSV,NQ,fs,Tcoh

σxyzt(NSV, NQ, fs, Tcoh) (22)

subject to ETotal ≤ β.
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TABLE I

Signal power loss L′
c versus quantization resolution [6]

Quantization Resolution, NQ (bits) Signal Power Loss (dB)
1 1.96
2 0.55
3 0.17
4 0.05
5 0.02
6 0.01

The objective function is highly non-linear and has both
real and integer objective variables. The sampling rate
fs and the integration time Tcoh are real-valued while the
number of tracked satellites NSV and the quantization res-
olution NQ are integer-valued. However, to make the so-
lution tractable, these parameters will be assumed real-
valued for subsequent analysis.

A. Tradeoffs Under Fixed Energy

Before solving the optimization problem posed in (22),
it becomes useful to build intuition as to the significance
of each parameter in terms of its benefit to the overall
position-time precision per Joule consumed. A tradeoff
analysis among the four parameters of interest assuming
constant energy is produced as follows:

1. Fix receiver energy consumption according to (4)
at 1011 · EA Joules and the carrier-to-noise ratio at
C/N0 = 45 dB-Hz.

2. Fix parameter values at fs = 2 MHz, Tcoh = 1 sec-
ond, NSV = 8 satellites, and NQ = 1 bit when not
being varied.

3. Solve for one parameter (the dependent parameter)
as a function of a a second parameter (the indepen-
dent parameter) using Eqns. (1), (3), (4), and the
fixed energy constraint.

4. For each value of the dependent and independent
variable, solve for the position-time error using Eqns.
(5), (14), (20), and the default values for the non-
varying parameters.

5. Plot the position-time error as a function of the two
varied parameters of interest.

Three tradeoff analyses are explored next, each involving
two varied parameters of interest.

A.1 Integration Time versus Sampling Rate

This subsection analyzes the tradeoff between sampling
rate fs and integration time Tcoh under fixed energy con-
sumption. Fig. 2 plots the logarithm of the position-time
RMS error σxyzt as a function of these two parameters.
The dark trace, which is also projected onto the x-y axis
for better visualization of the parameter values, illustrates
parameter tradeoffs that can be made to maintain con-
stant energy consumption. Naturally as fs increases, Tcoh

decreases, because the added energy required to correlate
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Fig. 2. Logarithm of the position-time error as a function of sampling
rate fs and integration time Tcoh at fixed energy consumption.

at a faster sampling rate must by counteracted by a smaller
integration time. From the figure, it is clear that energy
should be allocated toward increasing the sampling rate
past at least 1 MHz at the expense of a reduced integration
interval, as the position-time error decreases rapidly up to
that point. This is likely due to the large amount of signal
power that is captured in the main lobe of the GPS sig-
nal power spectral density, which is approximately 2 MHz
wide. After the sampling rate reaches 2 MHz, there is lit-
tle change in the achievable position-time error as there
is little remaining signal power to be gained from the sig-
nal side lobes. Any gains in positioning performance to
be had from increasing fs past this point will be offset by
the necessary decrease in Tcoh to maintain fixed energy
consumption.

A.2 Number of Satellites versus Integration Time

This subsection analyzes the tradeoff between the num-
ber of tracked satellites NSV and the integration time Tcoh

under fixed energy consumption. Fig. 3 plots the position-
time RMS error σxyzt as a function of these two param-
eters. Once again, the dark trace illustrates parameter
tradeoffs that can be made to maintain constant energy
consumption. As NSV increases, Tcoh must be decreased
to maintain constant energy consumption. Unlike in the
first scenario, however, there is no benefit to any specific
combination of the two parameters as the position-time
error remains unchanged as one parameter is increased at
the expense of decreasing the other. The intuition here is
that the effect that Tcoh has on the position-time precision
is equivalent to that of NSV for all combinations of the two
under constant energy.

A.3 Quantization Resolution versus Sampling Rate

This subsection analyzes the tradeoff between quantiza-
tion resolution NQ and the sampling rate fs under fixed
energy consumption. Fig. 4 plots the position-time RMS
error σxyzt as a function of these two parameters. Similar
to the first scenario, increasing the sampling rate at the
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Fig. 4. Position-time error as a function of quantization resolution
NQ and sampling rate fs at fixed energy consumption.

expense of decreasing the quantization resolution seems
to yield the lowest position-time error. Unlike the first
scenario, however, there is seemlingly no plateau in the
position-time error. The error continues to decrease as the
sampling rate is increased to well in excess of 2 MHz. This
insight suggests that to obtain the best positioning per-
formance, the quantization resolution should be reduced
to 1 bit and the remaining energy should be put toward
maximizing the sampling rate.

B. Optimization Results

This subsection solves the constrained optimization
problem posed in (22). As it is unwieldy to test all possible
energy constraints and because some parameters must be
bounded above or below, i.e. 4 ≤ NSV ≤ 14, an optimiza-
tion solution will be performed around a set of nominal
parameter bounds that model a typical low-power receiver
setup. The solution strategy is as follows:

1. Fix C/N0 = 45 dB-Hz and the energy constraint to
β = 1× 1013 · EA Joules.

2. Bound each objective variable to the values listed in
Table II.

TABLE II

Objective Variable Bounds

fs (MHz) Tcoh (s) NSV NQ (bits)
Lower Bound 0.2 0.01 4 1
Upper Bound 3 10 12 10
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Fig. 5. Objective variable solutions to (22) as a function of a de-
creasing energy constraint. Objective variables are constrained by
the bounds as listed in Table II.

3. Solve the constrained optimization problem of (22)
using MATLAB’s fconmin function [20], storing the
objective variable values of the solution.

4. Decrease the energy constraint by one order of mag-
nitude and repeat step 3 until the energy constraint
reaches β = 1× 105 · EA Joules.

As discussed previously, to make the optimization prob-
lem tractable, all objective variables will be assumed real-
valued, even though they may not be in practice.

Figure 5 illustrates objective variable solutions to the op-
timization problem as a function of the decreasing available
energy. It is apparent from the figure that with an abun-
dance of energy, the solution to the optimization problem
sets all objective variables to their upper bounds. How-
ever, as the available energy is decreased, it becomes clear
that some of the objective variables are reduced prior to
others. For example, the quantization resolution NQ is
the first objective variable to be reduced and is reduced
almost immediately to its lower-bound-value of 1 bit. This
result is reasonable because earlier derivations have shown
that the baseband energy consumption increases as a func-
tion of N2

Q (see (3)), while the increase in captured signal
power C ′s and thus the effect of NQ on σxyzt levels off when
NQ > 2 bits (see Table I). The integration time Tcoh and
number of tracked satellites NSV were the next two pa-
rameters to be reduced. The sampling rate was the last
parameter to be reduced.

These results suggest an order of significance of the pa-
rameters of interest. By reducing some parameters while
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keeping others maximized, the optimization problem de-
termined that some parameters were “more valuable” per
Joule in terms of minimizing σxyzt than others. The op-
timization problem performed as it was designed: strike
the optimal balance between the impact each parameter
has on minimizing σxyzt versus the impact it has on total
energy consumption.

V. Future Work

Future work will relax the spectrally flat Gaussian ther-
mal noise assumption and consider also the effect of mul-
tipath on the position-time precision. Multipath has been
shown to be a dominant source of error in code-ranging
systems [21], [22]. Multipath introduces a bias in the mea-
sured time delay that cannot be removed by increasing the
integration time or narrowing the correlator taps [23]. Em-
pirical tests performed in [23] suggest that the bias is often
significant, but can be reduced by increasing fs (see [23],
Fig. 2). Future work will also consider a more complete
energy consumption model where the energy consumed by
the RF front-end will be analyzed as a function of the pa-
rameters of interest and incorporated into the optimization
framework.

VI. Conclusions

Optimal tradeoffs between sampling rate, number of
quantization bits, number of satellites tracked, and coher-
ent integration time have been explored in maximizing the
precision of a GNSS receiver’s position-time solution under
a fixed energy constraint. Analytical expressions relating
these tradeoffs to the position-time error and the baseband
energy consumption have been developed and then used as
objective and constraint functions in a constrained opti-
mization problem. Results have revealed that quantization
resolution is the least significant parameter in terms of its
effect on the position-time error while the sampling rate is
the most significant parameter. Accordingly, these results
indicate that an energy-constrained GNSS receiver should
allocate its energy resources toward increasing the sam-
pling rate while decreasing the quantization resolution to
1-bit resolution. Finally, results have revealed that the op-
timal settings under the tight energy constraints explored
in this paper approximately match those currently imple-
mented in commercial GNSS receivers, revealing that de-
vice designers have naturally come to anticipate many of
the same conclusions.
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