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ABSTRACT  

Landing systems for large unmanned air vehicles have 

stringent integrity requirements as well as demanding 

system continuity requirements that often lead to triplex 

avionics architectures. Triplex avionics architectures are 

designs that have triple redundancy for key functions. 

Mid-level voting (MLV) algorithms that select the median 

value from among the three solutions are commonly used 

to select among available sensors and navigation 

solutions. When each solution is computed using a single 

suite of avionics, such median values are robust to single 

airborne sensor failures and provide improved unfaulted 

accuracy as well. Robustness to single faults results 

because a single faulted sensor will not impact the 

solutions computed by the other two sets of avionics. 

System accuracy is improved for zero mean error 

solutions because the median value is more concentrated 

about the truth than any of the single solutions. When 

performing fault tree analysis for integrity risk in the 

unfaulted case, it is common to treat sensors’ errors as 

being mutually independent. In the case of multiple 

carrier phase differential GPS (CDGPS) solutions, this 

assumption is invalid due to common atmospheric errors 

and common reference receiver errors. This paper aims to 

quantify the unfaulted integrity risk from triplex 

correlated CDGPS solutions for float, fixed, and almost 

fixed baselines that use a MLV algorithm. The bound on 

the integrity risk is compared with that of independent 

solutions to show the impact of incorrectly assuming 

independence of CDGPS solutions. Triplex performance 

is compared to simplex to show improvement or 

degradation in unfaulted availability of integrity. 

INTRODUCTION  

The required navigation performance for new Carrier 

Phase Differential GPS (CDGPS) applications continues 

to become more demanding with subsequent generations. 

Ground based augmentation systems (GBAS) have strict 

requirements that the probability that the navigation 

system error exceeds an alert limit of 10 m without 

warning shall be less than an integrity risk on the order of 

10
-7

 per approach. This leads to a relatively loose 95% 

accuracy requirement of 2 m [2]. Other navigation system 

applications, such as sea based landing and demonstration 

of autonomous aerial refueling, have meter-level ALs and 

decimeter-level accuracy requirements that necessitate 

carrier phase ambiguity resolution to provide sufficient 

accuracy [4, 6, 3]. The next generation of CDGPS use 

cases includes fully autonomous landing and refueling of 

large unmanned aerial vehicles (UAVs) in operational 

contexts. Operational use of unmanned systems will need 

even better continuity and integrity performance than 

previous demonstration programs. To satisfy these 

requirements, a variation of a triplex avionics architecture 

is likely to be used which has three complete sets of 

navigation equipment. 



There are a number of estimation architectures to make 

use of the triplex equipment. Perhaps the simplest is a 

federated architecture in which each of the three avionics 

strings computes a separate CDGPS solution. The 

resulting solutions may be combined by averaging or by 

mid-level voting (MLV), which selects the median of the 

three values. MLV is often the preferred approach since it 

is more robust than averaging to single solution faults. 

But if any credit is to be taken for the integrity benefits of 

MLV, then the integrity risk associated with the algorithm 

must be bounded in all cases for which there is a non-

negligible risk. For this, the joint distribution of the 

underlying variables must be taken into account, 

including any correlation among the solutions. If 

correlations among the solutions are neglected, then there 

will be a significant increase in the integrity risk of the 

overall solutions. 

This paper develops methods to account for the integrity 

implications of MLV for CDGPS-based relative 

navigation systems. In the second section, expressions are 

obtained for MLV algorithm integrity risk for generally 

and jointly Gaussian distributed solutions. The third 

section applies the preceding theory to various types of 

CDGPS solutions including float solutions, fixed 

solutions, and almost fixed solutions. The fourth section 

provides an analytical comparison of MLV applied to 

federated triplex solutions with the same type of simplex 

(single string) solutions. The fifth section describes the  

simulation methodology used to evaluate algorithm 

performance. The sixth section shows simulation results, 

which demonstrate the performance improvement 

provided by the MLV algorithm when compared to 

simplex. The conclusion summarizes this work and looks 

to future related work. 

MLV INTEGRITY FOR ARBITRARY 

DISTRIBUTIONS 

A few preliminary definitions are needed before MLV can 

be evaluated. First, integrity risk is defined in this paper to 

be the probability that the error in the relative navigation 

solution currently in use exceeds a threshold, which is 

called an alert limit (AL), without a warning. A protection 

level (PL) is a value that is guaranteed to bound the error 

in the solution in use to a specified integrity risk. This 

paper, like those which precede it [6,4,8], uses protection 

levels to provide an a priori bound on the errors in a 

CDGPS solution based upon models of the system errors 

which must be validated to bound the errors in the actual 

system. Since these bounds are a priori, they are 

deterministic values for a given satellite geometry, 

hardware configuration, measurement set, and carrier 

phase track duration.  

As such, the integrity risk is  LR WP AI    . 

Where   is the solution error, and W  is the event that no 

warning is given. Protection levels are defined as a bound 

on solution error,   | specx xPL P IR   , 

where specIR  is the specified level of integrity risk. Any 

time the PL exceeds the AL, a warning is given. This 

implies an equivalent expression for integrity risk and a 

simplified bound if the PL is assumed to correctly bound 

the error: 

 

 

   

 

|

min
|

spec

IR P

P P

I

AL PL AL

AL PL AL PL AL

IR

AL PL A
R

P L







  

  

  
  

 







  (1) 

Since the unfaulted PL is deterministic when conditioned 

on a particular satellite geometry and measurement 

smoothing interval, the realization of the error is 

statistically independent of the PL value, yielding the 

final result: 
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The use of a MLV algorithm can be treated as 

conditioning on the knowledge of the order of the 

magnitudes of the three solutions [1]. That is: 
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It is not known a priori which solution will be chosen by 

MLV, so in terms of the underlying random variables 

rather than the order statistic, we have: 
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Based upon the preceding definitions, the a priori 

integrity risk represented by the chosen MLV solution is 

derived by first expressing the MLV condition in terms of 

the original random variables, second by the probability 

of the union of a set of events, and finally by recognizing 

that for a set of three solutions, the following 

simplification can be made: 
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This is a general result that is independent of the 

distributions of the underlying random variables. In the 

case that the joint distribution of the Xi is multivariate 

normal, each of the event probabilities corresponds to an 

evaluation of the multivariate normal cumulative density 

function (CDF): 

   2

j k

X X

j

MLV

kV V
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With Vj
 
 the regions defined by the individual events, and 

Vk, the regions defined by the intersections. 

In the case that the underlying random variables are iid 

zero-mean normal, the above risk is greatly simplified: 
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It is important to note that the actual integrity risk will 

vary as a function of the degree of correlation among the 

three solutions between the values assuming complete 

independence and complete dependence. In the case of 

perfect correlation, the MLV integrity risk is equal to the 

simplex integrity risk. This illustrates the critical 

importance of correctly accounting for the correlations 

among solutions when computing MLV integrity risk. 

Correlation Agnostic Integrity Risk Bound 

In the case that there is insufficient knowledge of the 

correlations to accurately model the joint distribution of 

the three solutions, a simple a priori bound can be 

computed for the selected solution based upon the MLV 

criteria and the simplex integrity risks of the individual 

solutions: 
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Again, since there is no way to no beforehand which 

solution will be chosen, the integrity risk bounds must be 

computed separately for each solution. Taking i to be the 

solution the integrity risk of which is to be bounded and j 

and k to be the other two solutions, the integrity bound for 

solution i is as follows: 
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By first factoring the joint distribution via conditional 

probability, second recognizing the integrity risk of the 

individual solution, third recombining the joint 

distribution, and fourth bounding the remaining risk an 

upper bound is derived in equation 10.  
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This demonstrates that even if a single one of the 

solutions has very poor integrity, it can be assured that the 

integrity risk from the selected MLV solution can be 

limited to the sum of the integrity risks of the other two 

solutions. This is of no use when all three solutions are of 

similar quality, so it provides little benefit under nominal 

circumstances for fault free integrity. The bound can, 

however, be used to protect the integrity of the selected 

MLV solution in the presence of a single latent fault or 

single large integrity risk. 

APPLICATION OF MLV TO CDGPS SOLUTIONS 

To apply the analytical tools developed so far to triplex 

CDGPS solutions, the joint distributions of the three 

solutions must be derived for all types of CDGPS 

solutions of interest. This paper will examine the so called 

float solution, a fixed solution, and the Geometric Extra-

Redundant Almost Fixed Solution (GERAFS) solution 

[4]. The Enforced Position-domain Integrity-risk of Cycle 

resolution (EPIC) algorithm [6] is not evaluated. As will 

be shown, it is not appropriate to consider the joint 

probabilities of ambiguity resolution among the federated 

solutions. The EPIC algorithm will be considered in a 

future paper on integrated triplex architectures where 

there is only a single primary CDGPS solution. 

Triplex Float Solution Joint Distribution 

Each individual float solution is formed by solving the 

linearized, least squares, double-difference relative 

baseline solution. The solution is formed by linearizing 

the measurement model about an initial estimate of the 

baseline vector. Assume that the measurements comprise 

a set carrier phase observables and some prior 

information, such as pseudoranges or geometry free 

estimates of the integer ambiguities. The joint covariance 

of the measurements and the prior information must be 

known to form a weighted least squares solution. 

For the case that the prior information is a set of 

smoothed pseudoranges, when linearized about an initial 

estimate, b , the measurement model is as follows[4]: 
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The associated float solution is computed and the solution 

matrix, S, is retained for later use: 
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Each of these float solution matrices is combined with the 

total system joint measurement covariance to form the 

total solution covariance: 
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The off-block-diagonal terms of the measurement 

covariance matrix are populated by reference receiver 

errors, atmospheric errors, and lever arm errors used to 

translated the three solutions to a common reference 

point. The resulting triplex covariance can be broken 

down into several pieces: covariance among the various 

baseline estimates, among the various real valued float 

integer estimates, and between the baseline estimates and 

the integer estimates. This decomposition of the matrix is 

denoted as follows, with the upper triangular portion 

being the transpose of the lower triangular portion: 
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By extracting the desired values from this overall joint 

solution covariance matrix, MLV can be performed on the 

vertical and lateral components of the relative baseline 

solution. 

Simplex Fixed Solution Integrity 

Continuing on from the float solution obtained in the 

previous section, there exist many methods to attempt to 

fix the integer ambiguities. Among these are integer 

rounding [7], integer bootstrap [5], and Least-squares 

AMBiguity Decorrelation Adjustment (LAMBDA) [8]. 

Each algorithm has its advantages and disadvantages. 



Integer rounding is the simplest, but it has the lowest 

probability of correctly fixing the integers. Bootstrap has 

improved probability of success and has a convenient way 

to predict probability of correct fix (PCF), but it is sub-

optimal and is sensitive to the order and combination in 

which ambiguities are resolved. LAMBDA is an optimal 

method in terms of PCF, but entails a least-squares search 

of the integer space and has no simple method to predict 

PCF. High integrity CDGPS systems typically use the 

bootstrap method together with the ambiguity 

decorrelation adjustment of the LAMBDA method. By 

using the decorrelated ambiguities, the bootstrap 

algorithm fixes successive integer ambiguities in the order 

of maximum conditional PCF. This set of algorithms 

provides high integrity with predictable probability of 

correct integer fixing. 

The fixed baseline solution is not distributed according to 

a Gaussian distribution. Rather, it is a mixture of 

multivariate Gaussian distributions of equal covariance, 

but differing means [5]:  
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Assuming that the fixed solution has found the correct set 

of integer ambiguities, the baseline estimate is once again 

a zero-mean multivariate Gaussian random vector. The 

integrity risk in making this assumption is PCF. The 

covariance of the solution is now much smaller than the 

float covariance since the errors are driven by the carrier 

phase measurements which are of significantly higher 

quality than the prior information from pseudoranges. The 

integrity risk associated with the vertical component of a 

fixed solution is bounded by the following: 

 

 

 

,

,

,

|

1

1

1

1
2

2

Vfixed V V V

VCF CF V V

V
CF CF

fixed V

V
CF

fixed V

R

N

erf

P b b AL

P P P b b AL N

AL
P P

AL
eP rf





 

 

  

   

 



 
   

    

 
  

 
 

 (16) 

Triplex Fixed Solution Joint Distribution 

The transition from simplex to triplex for the float 

solution is simply a matter of extracting the appropriate 

portions of the system float covariance matrix to form the 

baseline covariance, but the fixed triplex solution is more 

complicated. Consider the fixed baseline covariance: 
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Where the off diagonal terms are computed from parts of 

the system float covariance and the block diagonal terms 

are the results of the individual fixed solutions: 
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The integrity of the MLV algorithm for the triplex fixed 

solutions depends upon all three of the fixes being correct. 

Conditioned on this event, the three fixed baselines are 

distributed as a single, correlated, zero-mean multivariate 

Gaussian random vector: 
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To upper bound the integrity risk, the probability of all 

three integer fixed solutions must both upper and lower 

bounded since it appears as both a positive and negative 

quantity. The upper bound is attained by assuming that 

the events are perfectly correlated, i.e. one correct fix 

implies that all others are correctly fixed and one 

incorrect fix implies all others are incorrectly fixed. The 

lower bound is obtained by making the opposite 

assumption, that each fix is statistically independent. The 

reality is something between the two since the 

measurements used in the solutions are only partially 

correlated: 
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Apart from the detailed information that would be 

obtained from processing a fully integrated triplex fixed 

solution, these bounds are the closest that can be obtained 

for the probability of correct fix. Substituting these 

bounds into the integrity equation yields the bound on 

triplex float integrity risk: 

   

,

,
min 0

1

,,

i

i

fixed MLV CF

i CF MLV B trip x

i

le

R

P

P

R AL







 


 

The corresponding protection level is given by iteration of 

the integrity risk equation for varying levels of error until 

the integrity risk approaches the specified level of risk. 

It is evident from examining the above expression that 

this solution is only available if the product of the 

probabilities of correct fix is very close to one. In fact, the 

demands on the probability of correct fix become even 

more stringent than for the simplex case so that the 

assumption that all three fixes are correct can hold. This 

may cause the overall system availability to be even lower 

for a federated triplex fixed solution than for the simplex 

solution if the PCF is near the required integrity risk. 

Simplex GERAFS Integrity Risk 

If the fixed solutions do not produce a sufficiently high 

probability of correct fix, then an alternative is to use an 

“almost fixing” solution. Almost fixing solutions control 

integrity risk by assessing the risk induced by biases 

which result from incorrect fixes near the fixed solution. 

Two such algorithms are GERAFS [4] and EPIC [6]. 

In the almost fixed case, the fixed baseline has the same 

underlying multi-modal mixture distribution, but more 

care is taken to address the impact of modes other than 

the chosen fixed solution. Both algorithms examine a set 

of candidate integer fixes, N , which correspond to the 

fixed solution plus integer error vectors. The set of 

candidates considered by the algorithm is called the 

enlarged pull in region (EPIR). As described, each 

candidate fix shifts the solution by a deterministic bias. 

The GERAFS algorithm addresses the integrity risk by 

accounting for the worst case bias induced by any 

candidate fix and neglecting the subtler points of the 

distribution. The magnitude of the worst case bias is 

called the incorrect fixing bias (IFB): 
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Triplex GERAFS Joint Distribution 

The covariance of the almost fixed solutions are the same 

as that of the fixed solutions, so all that remains is to 

assess the integrity ramifications of almost fixing. The 

development is similar to the fixed case with PAF often 

taking the role of PCF for the fixed case. The MLV 

integrity monitor must also be modified to reflect the 

worst case biases in the positive and negative directions: 
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This is identical to the previous definition of MLV 

integrity except that the magnitudes of the means are 

applied in the direction that maximizes risk. That is, IFB 

is added when evaluated against positive errors and 

subtracted when evaluated against negative errors. This 

ensures conservatism in the integrity bound: 
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ANALYTICAL COMPARISON TO SIMPLEX 

SOLUTIONS 

The important metrics to be considered when comparing 

the simplex and triplex solutions are solution accuracy 

and solution availability of integrity. Availability of 

integrity is the percentage of time that a particular system 

can meet the specified integrity requirements in operation. 

The integrity risk equations for each type of solution 

provide the basis for making these assessments. 

For the float solution, consider that the integrity risk is a 

relatively simple expression since the solution is formed 

by weighted least squares without applying the integer 

constraints to the ambiguity resolution. Because of this 

there is no automatic integrity penalty for assuming that 

the integer ambiguities have been correctly resolved. This 

implies that correctly accounting for the integrity risk of 

MLV for float solutions can only decrease when 

compared to the simplex solution. Since the MLV 

equations apply to any arbitrary AL, the AL can be 

substituted with a PL to evaluate arbitrary levels of risk. If 

the level of risk corresponds to a desired accuracy level, 

e.g. 95%, then the MLV equation demonstrates that MLV 

also improves the accuracy of federated triplex float 

solutions when compared to simplex float solutions. 

Depending on the particular values of integrity risk and 

alert limits, MLV may provide sufficient improvement to 

make a float solution viable when it otherwise would not 

be. 

For the federated triplex fixed solution, MLV is not 

usually advantageous. Typically, the integrity risk for a 

fixed solution is limited by PCF, not by the accuracy of the 

fixed solution. Examination of the integrity equation for 

MLV fixed solutions shows that all three solutions are 

required to have simultaneously correct fixes. This drives 

the individual required PCF requirement to 1/3
rd

 the 

original simplex requirement. If a fixed solution is 

unavailable, or marginally available for the simplex case, 

it is less available for virtually all conditions in the 

federated triplex case. 

Federated triplex GERAFS solutions are not analytically 

clear cut. They have an analogous problem to the fixed 

solution in that the PNAF requirement for each solution 

becomes more demanding, but the impact of this change 

is not binary loss of availability as in the fixed case. 

Rather consider that GERAFS accounts for the impact of 

incorrect fixes in the EPIR by using the worst case IFB to 

bound the integrity risk. In this case, as long as the new 

PNAF requirement can be satisfied, the impact is absorbed 

in a possible increase in the IFB. Depending on the 

margin between the IFB and the AL, the larger IFB can be 

mitigated by a reduced tail probability from the 

application of MLV to the remaining solutions. 

SIMULATION METHODOLOGY  

A numerical covariance analysis tool was used to assess 

the performance of the federated triplex GERAFS 

solutions as compared to the simplex GERAFS solution. 

This tool is an updated version of the same availability 

model (AM) that was originally used to assess the 

availability of the GERAFS algorithm [4]. The model was 

updated to include the position solution and integrity 

bounds described in this paper and a more stringent 

integrity requirement to reflect the needs of unmanned air 

vehicles. All solutions are computed using the wide lane 

carrier phase and narrow lane code combination. 

The primary metric used to compare the performance of 

the two algorithms is solution availability. A solution is 

defined to be available at a given place and time if it 

satisfies both accuracy and integrity requirements. 

Accuracy compliance is assessed as a daily average 

accuracy at a given location for a given satellite 

constellation. Integrity is assessed as available if 

instantaneous solution integrity risk less than required. 

The AM evaluates algorithm performance on a worldwide 

grid of latitude and longitude at 15 minute intervals over a 

24 hour period. 

Because integrity is an instantaneous requirement, there 

are 96*NGridPoints assessments of availability of integrity. 

Alternatively, accuracy is a daily average for each 

location, so there are only NGridPoints assessments of 

availability of accuracy. Each worldwide grid point is 

given an availability value defined as follows with world 

wide availability is computed as the average over all grid 

points: 
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The error models used for the simulation include a 

thermal noise, multipath, and antenna bias model for 

carrier phase and pseudorange, lever arm translation 



errors, and propagation effects due to latency of reference 

receiver data. Both simplex and triplex GERAFS 

implementations use a float solution as a backup when the 

PCF and PAF requirements are not satisfied. This allows for 

graceful degradation of system average accuracy as the 

percentage of time that the GERAFS algorithm is unable 

to fix increases. 

SIMULATION RESULTS 

The results of the original GERAFS algorithm [] have 

been reproduced with an integrity risk requirement 

reduced to reflect the needs of an unmanned landing. 

These results plot the availability of the solutions as a 

function of the accuracy that they provide for varying 

ALs. There is a general trend for each solution that 

availability decreases with the AL. The GERAFS and 

Federated GERAFS solutions also have decreasing 

accuracy as the AL decreases as well. This trend is a 

result of the backup float solution having to be used when 

GERAFS is not able to satisfy the required integrity risk 

for the given AL. 

 

Figure 1: Worldwide availability of daily average 

accuracy for various solutions at varying alert limits 

The accuracy of the GERAFS solution exhibits significant 

variation depending upon the AL that it must satisfy. For 

the least restrictive AL = 4.4 m, The GERAFS solution 

provides the best accuracy performance, because it is 

almost always able to operate in the almost fixed mode. 

However, as the AL is reduced, GERAFS is less able to 

satisfy the specified PAF, which results in the use of the 

backup float solution. The direct results of the reduced 

AL are degraded average accuracy and reduced 

availability of integrity. For the specified integrity risk 

used in these simulations, GERAFS is usually unable to 

satisfy PAF for an AL of 1.5 m. As a result, for this 

combination of requirements, simplex GERAFS 

performance is roughly equivalent to simplex float 

performance. 

The triplex solution is often unable to satisfy the reduced 

PAF required to simultaneously fix all three solutions. This 

can be inferred from the fact that the triplex solution is 

not significantly more accurate than the simplex GERAFS 

solution. For AL equal to either 3.5 m or 4.4 m, the triplex 

solution is still able to fix the integers occasionally, but if 

the AL is 2.5 m or less, the triplex solution is operating in 

float mode. Even though the triplex solution is less able to 

fix the integers than the simplex solution, the MLV 

algorithm provides enough improvement in the float 

solution accuracy that the triplex solution provides better 

availability than simplex GERAFS for each AL 

considered and better accuracy at the 99.5% availability 

level for all ALs evaluated except 4.4 m. 

Table 1: World-wide availability for varying ALs for 

each solution 

Solution\
AL

 1.5 m 2.5 m 3.5 m 4.4 m 

Float .8239 .9977 .9999 .9999 

GERAFS .8117 .9929 .9984 .9990 

Triplex .9628 .9977 .9999 .9999 

Table 2: Daily average 70% accuracy for each solution 

at 99.5% availability or maximum obtained 

Solution\
AL

 1.5 m 2.5 m 3.5 m 4.4 m 

Float 33.8 cm 39.8 cm 39.9 cm 39.9 cm 

GERAFS 34.7 cm 35.8 cm 26.8 cm 24.3 cm 

Triplex 25.6 cm 27.5 cm 25.8 cm 24.9 cm 

These results indicate that for this set of requirements, the 

overall system performance will be optimized by 

performing MLV when the solutions are floating but by 

not taking any credit for MLV in the triplex GERAFS 

case. This allows each GERAFS solution to use the full 

PAF allocation and protect its own integrity while gaining 

the accuracy benefits of MLV. 

 

Figure 2: Alternative triplex implementation 

performance comparison 



Utilizing MLV in this alternate manner improves 

accuracy performance by increasing the likelihood of 

using the GERAFS solution while gaining the accuracy 

and integrity benefits of MLV for a float solution. If the 

final integrity requirements are close to a 1.5 m AL, then 

further algorithmic improvements will be needed to 

increase PAF. These may be obtained by using an 

integrated architecture, which will be analyzed in 

subsequent research. 

CONCLUSION 

Federated triplex solutions offer significant benefits to 

improve accuracy and availability of float solutions, but 

for likely levels of integrity risk and alert limits the 

additional burden of correctly fixing all three sets of 

integers prevents performance improvement for fixed or 

almost fixed solutions. The degree of improvement 

afforded by federated triplex float solutions makes them 

competitive with simplex GERAFS solutions. 

Unfortunately, this solution requires three active rover 

receivers at all times which would require even more 

receivers to be used to ensure system continuity. MLV for 

the GERAFS algorithm still provides improved accuracy 

even when no additional integrity credit is claimed. To 

alleviate the continuity risk and enhance integrity, future 

studies will examine integrated architecture alternatives 

which will provide performance improvements with fewer 

rover receivers. 
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