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ABSTRACT

Statistical analysis techniques have been used to find and
decode the L1 BOC(1,1) signal of the first prototype
Galileo spacecraft, GIOVE-A.  The resulting pseudo-
random number (PRN) codes can be used by receiver
developers to test their devices on the GIOVE-A signals.
The analysis has used codeless techniques to acquire the
signal and to remove its carrier and binary offset carrier
(BOC) components, and it has determined the timing and
chip values of the PRN codes using optimal statistical
signal processing methods.  The resulting codes' per-chip
error probabilities are less than 10-10.  The period of the
pilot PRN code is 200 ms, which is twice the length
published in Galileo documentation.

INTRODUCTION

Galileo, Europe’s answer to the U.S. GPS system,
achieved a milestone on 28 December 2005 with the
launch of its first test satellite, GIOVE-A, which began
transmitting navigation signals in early January 2006.
After the launch, receiver developers around the world
were anxious to test their Galileo-capable receivers on the 
GIOVE-A signals.  Because the Galileo signal structure
documentation had not yet been finalized, however, only
approved groups involved in validation tests were
provided the PRN codes required to track the GIOVE-A
navigation signals.

Eager to study the Galileo signals and to develop Galileo-
capable receivers, the authors set out to determine whether 
the GIOVE-A L1 BOC(1,1) signal could be acquired and
the PRN codes uncovered using codeless acquisition and
statistical signal processing techniques.  The short answer: 
Yes!

Data were recorded using a digital storage receiver
connected to an inexpensive roof-mounted patch antenna
on Cornell University’s campus in Ithaca, NY.  The data
were then processed off-line in several stages.  A
schematic diagram of the data collection and analysis
system is shown in Fig. 1.  In the first step of the
processing, the nuisance GPS and SBAS C/A-code signals 
were tracked and removed.  The second step was to
determine the GIOVE-A L1 BOC(1,1) signal’s carrier
phase, Doppler shift, and BOC phase using codeless
acquisition techniques.  Next, the carrier and BOC signals 
were removed by mixing, and 1.023-MHz in-phase
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accumulations were computed.  Finally, the code timing,
data symbols, and secondary code chips were analyzed,
and the results were used to accurately determine the
primary PRN codes by averaging over many code periods.
The resulting PRN codes can be obtained on-line at
http://gps.ece.cornell.edu/galileo/.  This paper explains
how the codes were determined.

The remainder of this paper is divided into 3 sections plus 
conclusions.  Section II describes the codeless acquisition
scheme that was used to determine the signal's carrier
frequency and phase along with its BOC phase.  Section
III describes how base-band 1.023-MHz accumulations
were computed and then used to determine the GIOVE-A
PRN codes.  Section IV briefly describes the
characteristics of the GIOVE-A signal.  Section V
presents the paper's conclusions.

Fig. 1. Schematic block diagram of the data recording
hardware and the post-processing software
receiver.

II. CODELESS SIGNAL ACQUISITION

A. Signal Modal

The analysis has required a detailed understanding of the
Galileo L1 signal structure.  A coherent signal description 
was pieced together from early, publicly available drafts
of the Galileo ICD and other documentation 1,2.  Later
findings demonstrated that these documents are generally
accurate, with a few important exceptions.  In this section,
the GIOVE-A L1 BOC(1,1) signal structure is presented
as the authors currently understand it.

The BOC(1,1) signal is composed of two multiplexed
channels: the L1-B data channel and the L1-C pilot
channel.  The sampled Galileo L1 BOC(1,1) signal that
exits the RF front-end of Fig. 1 takes the form

yi  = A [bL1-B(τi)dL1-B(τi) - cL1-C(τi)sL1-C(τi)] sSC(τi)
× cos(2πfIFτi+φ0)  + νi (1)

at receiver sample time ti.  The quantities in Eq. (1) are the 
carrier amplitude A, the PRN code of the data channel
bL1-B(τi), the data symbol values dL1-B(τi), the primary PRN 
code of the pilot channel cL1-C(τi), the secondary code of
the pilot channel sL1-C(τi), the sine-phased BOC signal
sSC(τi) = sign[sin(2πfBOCτi)] with nominal BOC frequency

fBOC = 1.023×106 Hz, the intermediate value of the
nominal fL1 carrier frequency fIF, the initial carrier phase
φ0, the measurement noise νi, and the broadcast time

τi  = τ0 + (ti-t0)[1 + ωD0/(2πfL1)]
+ (ti-t0)2[0.5αD/(2πfL1)] (2)

This formula for the broadcast time accounts for the
effects of the initial carrier Doppler shift ωD0 and the
carrier Doppler shift rate αD on the received frequencies
of the data bits, the PRN code chips, and the BOC.

The PRN codes and the data time history in Eq. (1) take
the form

bL1-B(τi)  = ∑
∞

−∞=n
ciT,nmod -nTb c )()4092( τΠ (3a)

dL1-B(τi)  = ∑
∞

−∞=n
diTn -nTd d )(τΠ (3b)

cL1-C(τi)  = ∑
∞

−∞=n
ciT,nmod -nTc c )()8184( τΠ (3c)

sL1-C(τi)  = ∑
∞

−∞=n
siT,nmod -nTs s )()25( τΠ (3d)

where b0, ..., b4091 is the PRN code of the L1-B data
channel, ..., d0, d1, d2, ... is the navigation data symbol
sequence, c0, ..., c8183 is the primary PRN code for the
L1-C pilot channel, and s0, ..., s24 is the secondary PRN
code for the pilot channel.  The sequence elements take on 
+1/-1 values.  The function ΠT(t) is the usual rectangular
support function, which is equal to one over the interval
0 = t < T and zero elsewhere.

The goal of this project has been to determine the three
PRN code sequences b0, ..., b4091, c0, ..., c8183, and
s0, ..., s24.  The nominal chipping/symbol rates for these
sequences are 1/Tc = 1.023 MHz for the L1-B PRN code
and the L1-C primary PRN code, 1/Td = 250 Hz for the
L1-B data symbols, and 1/Ts = 125 Hz for the L1-C
secondary PRN code.  The L1-B PRN code has a nominal 
period of 4 ms. The combined L1-C PRN code has a
nominal period of  200 ms.  A graphical representation of
the data symbols and PRN codes is given in Figure 2.

B. Signal Acquisition Statistic

The signal has been acquired by maximizing a codeless
acquisition statistic.  This statistic has been computed
based on 2 types of in-phase and quadrature
accumulations.  Accumulations of the first type have been
computed after mixing to baseband using a replica of the
BOC signal and a replica of the in-phase or quadrature
carrier signal:

Ij(τ0,ωD0,αD)  = ∑
−

=

+ 11
)2()(

j

j

i

ii
iIFiSCi fcossy τπτ

for j = 0, ..., J-1 (4a)

Patch Antenna

yL1(t)
Mass

Storage

Matlab Software Receiver

Carrier/BOC
Removal & 

Accumulation

20 MHz 
L1 Filter

y(ti) ADC

Sample
Clock

Direct RF
Sampling
Front End

GPS/SBAS Removal & 
Codeless Acquisition

Analysis of 
data

symbols,
timing, & 

PRN chips

Digital Storage Receiver

1568



Fig. 2. Timing diagram of components of GIOVE-A L1 BOC(1,1) signal.

Qj(τ0,ωD0,αD)  = ∑
−

=

+ 11
)2()(

j

j

i

ii
iIFiSCi fsinsy τπτ

for j = 0, ..., J-1 (4b)

The BOC phase τ0, the Doppler shift ωD0, and the Doppler 
shift rate αD have been used implicitly in this calculation
because they affect the computation of the broadcast
sample time τi as a function of the received sample time ti

as defined in Eq. (2).  The accumulations have been
computed at the nominal 1.023 MHz chipping rate of the
L1-B and L1-C PRN codes.  They have been aligned with 
the jth chip interval as defined by the non-zero portion of
the function )( ciT -jTc τΠ  that appears in the summations
of Eqs. (3a) and (3c).  Thus, ij is the minimum value of i
such that j ≤  1.023×106τi.

The accumulations of the second type have been defined
to exploit the observed 200 ms periodicity of the total L1-
C pilot PRN code.  These latter accumulations are sums of 
accumulations from Eqs. (4a) and (4b):

ICj(τ0,ωD0,αD)  = ∑
−

=
+

1

0
00]204600[ ),,(

K

k
DDkjI αωτ

for j = 0, ..., 204599 (5a)

QCj(τ0,ωD0,αD)  = ∑
−

=
+

1

0
00]204600[ ),,(

K

k
DDkjQ αωτ

for j = 0, ..., 204599 (5b)

The number of elements in each
sum is K = floor(J/204600).  This 
is the number of full 200 ms
periods of the total L1-C PRN
code for which accumulations
have been computed in Eqs. (4a)
and (4b).  These new
accumulations can be used to
increase the signal detection
power of the acquisition along
with its sensitivity to carrier
Doppler shift.

A locally-most powerful
Neyman-Pearson-type acquisition
statistic 3 has been developed
using the accumulations in Eqs.
(4a)-(5b).  The original
acquisition statistic depended on
the unknown signal parameters
τ0, ωD0, αD, φ0, and A.
Development of a locally-most-
powerful statistic eliminates the
amplitude dependence by
computing the statistic in the
limit as A approaches 0 3.
Analytic optimization with
respect to the initial carrier phase 

φ0 eliminates one more unknown parameter.  Optimization 
of φ0 makes the statistic slightly sub-optimal for signal
detection purposes, which seems counter-intuitive, but this 
optimization is believed to further increase the statistic's
sensitivity to carrier Doppler shift ωD0.  The resulting
codeless acquisition statistic is

γ(τ0,ωD0,αD) = ])(4[ 22
2
1 cabca −+++ (6)

where the parameters a, b, and c are computed from the
accumulations in Eqs. (4a)-(5b):

a = ∑
−

=

1

0
00

2 ),,(
J

j
DDjI αωτ   + ∑

=

204599

0
00

2 ),,(
j

DDCjI αωτ

(7a)

b = ),,(),,( 00
1

0
00 DDj
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DDj QI αωταωτ∑

−
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=

204599

0
0000 ),,(),,(
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DDCjDDCj QI αωταωτ (7b)

c = ∑
−

=

1

0
00

2 ),,(
J

j
DDjQ αωτ   + ∑

=

204599

0
00

2 ),,(
j

DDCjQ αωτ
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The corresponding optimal estimate of the initial carrier
phase is φ0opt = )](,2[22

1 a-cb-tana .
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C. Search Strategy

The search for the GIOVE-A signal has determined τ0,
ωD0, and αD values that maximize γ(τ0,ωD0,αD).  The
search has used the NORAD tracking ephemerides for
GIOVE-A in order to determine a reasonable value for the 
Doppler shift rate value αD and a range of possible values 
for the initial Doppler shift ωD0.  The search has covered
one BOC period of possible τ0 values, i.e. 1/(1.023 MHz) 
= 977.517 ns.  The search has been conducted on a grid in 
(τ0,ωD0) space.  The τ0 granularity of the search grid has
been set to be about 0.1 BOC period, and the granularity
of the ωD0 search grid has been set to be approximately
2.5π/K rad/sec.  This grid spacing ensures that the peak
phase error due to Doppler shift error will be below π/4
radians over the entire data batch.

The search has started with a coarse phase and has
finished with a fine phase.  The coarse search has been
designed to execute more rapidly by using a reduced
number of accumulations and a reduced number of
frequency grid points because it is based on data from a
single L1-C code period (i.e., K = 1).  The Doppler shift
determined by the coarse phase has provided a starting
point for a fine search that has searched over a smaller
span of Doppler-shift uncertainty using an acquisition
statistic that has been computed over a larger number of
L1-C code periods.  The added data in this search and its
finer frequency grid have combined to yield an accurate
estimate of the received carrier phase time history.

D. Removal of GPS and SBAS Signals Prior to 
GIOVE-A Signal Processing

GPS and SBAS C/A-code signals can interfere with
codeless acquisition and analysis of the Galileo L1
BOC(1,1) signal.  C/A-code signals produce significant
power in the accumulations of Eqs. (4a) and (4b) when
their chip transition times occur halfway through an
accumulation interval.  This happens because changes of
their chip values mix with the sine-phased BOC signal to
produce non-zero averages.

Interference from GPS and SBAS signals has been
eliminated by tracking these signals and removing them
from the data.  This process is illustrated by the power
spectrum in Fig. 3.  The raw recorded data from the digital 
storage receiver has been used to acquire, track, and
remove all GPS and SBAS signals in view.  The power
spectral density of the raw data in Fig. 3 clearly shows a
central hump caused by the GPS and SBAS signals.  The
original hump disappears after removal of these signals,
revealing two distinct lobes to each side of the
intermediate frequency.  These two humps constitute the
expected signature of the GIOVE-A L1 BOC(1,1) signal.
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Fig. 3 L1-band power spectral densities: raw data and
data after removal of GPS and SBAS L1 C/A-
code signals.

E. GIOVE-A BOC(1,1) Acquisition Results

The acquisition procedure has been applied to data that
were recorded on 2 March 2006 and on 8 March 2006.
The two data sets were taken when GIOVE-A was visible 
both from Ithaca and from Europe during European
business hours -- a measure taken to increase the
likelihood that the satellite was broadcasting.  The
flyovers were predicted using NORAD elements. Figure
4 presents the results of a fine acquisition that has been
based on 1 second of data from March 8th.  It is a 2-
dimensional plot of the Eq.-(6) γ vs. τ0 and ωD0.  The plot's 
distinct peak indicates that the GIOVE-A signal is present.
The signal's BOC phase and Doppler shift have been
determined from their values at the peak.
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III. CODE BREAKING

Removal of the carrier and the BOC modulation leaves a
signal whose only components are the PRN codes and
noise.  Derivation of this signal is the next step.

A. In-Phase Accumulations

The signal that contains the PRN codes has been derived
by computing 1.023 MHz base-band accumulations that
are in-phase with the estimated carrier signal.  The
original 1.023 MHz in-phase and quadrature
accumulations from Eqs. (4a) and (4b) have been rotated
by the optimal initial carrier phase φ0opt in order to
produce the new in-phase accumulations:

φ
jI  = cosφ0opt Ij(τ0opt,ωD0opt,αDopt)

- sinφ0opt Qj(τ0opt,ωD0opt,αDopt) for j = 0, ..., J-1
(8)

The ()opt subscript denotes the values associated with the
acquisition peak in Fig. 4. The ()φ superscript indicates
that the φ0opt rotation has been applied.

An early indication of the presence and structure of the
GIOVE-A signal came from a plot of the circular
autocorrelation function of the φ

jI  accumulations, which
is shown in Figure 5 for a 2-second batch of data from
March 8th.  Its high central peak at zero delay is mainly
the result of a powerful noise component -- the SNR of the 
accumulations is -4.7 dB.  The secondary peaks at
multiples of 200 ms are caused by the L1-C pilot signal.
Many of the smaller peaks between the 200 ms peaks
occur at regular intervals of 4 ms, i.e., at the period of the 
L1-B PRN code.
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Fig. 5. Normalized circular autocorrelation of GIOVE-
A 1.023 MHz in-phase accumulations.

The peaks at 200 ms intervals were a surprise.  Prior to
seeing this plot, the authors had learned from Galileo
documentation that the L1-C PRN code period was 100
ms, but these peaks clearly indicated a 200 ms period.
The positive values of the smaller peaks that were
separated by 4 ms was a second surprise.  This sign
constancy indicated that the L1-B data bits were primarily
of a single sign.

B. Approximate PRN Code Timing

The first step in determining the PRN code chips from the 
φ
jI  accumulations has been to approximately estimate the

start/stop times of L1-B PRN code periods.  This has been 
accomplished by using a differential analysis to look for
times of probable data symbol transitions on the L1-B
signal.  This analysis has computed the following
differential time history:

Δl  = ∑ −
+

=
+

4091 2
4092)(

l

lj
jj II φφ for l = 0, ..., L-1 (9)

A plot of Δl vs. l will have a high value if l is the
accumulation index of the first chip of an L1-B PRN code 
period and if the two successive L1-B data symbols that
start at indices l and l +4092 have opposite signs.
Conversely, this plot will take on a low value at the start
of a pair of PRN code periods that have equal data symbol 
signs.  Noise makes it impossible to exactly determine the 
initial sample time of a code period based on a Δl vs. l
plot, but the occurrence of several peaks and dips at
multiples of 4092 accumulations will yield a rough
estimate of the L1-B PRN code timing.

Consider the plot of Δl vs. l /4092 in Fig. 6, which is based 
on 204 ms of data from 8 March 2006.  The plot has 4
sharp peaks at l /4092 ≅ 27.05, 29.08, 33.03, and 35.06.  It 
has two sharp dips at l /4092 ≅ 28.07 and 34.04.  The
average of the fractional parts of these l /4092 values can
be multiplied by 4092 in order to form an approximate
estimate of the initial sample index of the first L1-B PRN 
code period.  This estimate is lapp = 224.  Later results
have indicated that this approximation's error is less than
1% of a code period.  Note that the plateaus in Fig. 6
correspond to periods of prolonged constancy or
prolonged alternating variation of the L1-B data symbol
signs.

C. Determination of Data Symbols and Secondary 
Code Chips

The next step in unraveling the PRN codes is to determine 
the L1-B data symbol time history d0, d1, d2, ... and the
L1-C secondary code time history s0, ..., s24.  The φ

jI
accumulations and the approximate times of the L1-B
PRN code periods can be used to determine the +1/-1
values for these quantities.
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Let the mth approximate L1-B code period consist of the
accumulations with indices jm = lapp+4092m to jm+1-1 =
lapp+4092(m+1)-1.  The determination of L1-B symbols
and L1-C secondary code chips starts with a determination 
of "soft" linear combinations of these unknowns:

Um  = φ
Δ

Δ

φ
Δ ]4092[

4091

0
][ mj

j
j appapp

II ++
=

+∑ ll for m = 1, ..., M-1

(10)

Um is the cross correlation between the 1.023 MHz
accumulations of the 0th L1-B PRN code period and those 
of the mth code period.  The maximum number of such
cross correlations is M-1 = floor[(J-lapp)/4092] - 1.

If there were no noise in the accumulations and if the
carrier amplitude were constant, then the computed Um
values would take on 5 possible levels: -Unom, -0.5Unom, 0, 
+0.5Unom, and +Unom.  The values -Unom, 0, and +Unom
occur when m is even, and the values -0.5Unom and
+0.5Unom correspond to odd values of m. Um ≅ +Unom
implies that the L1-B data symbol and the L1-C secondary 
code chip both have the same sign as they have when
m = 0. Um ≅ -Unom implies that they both have the
opposite signs, and Um ≅ 0 occurs when one has the same 
sign and the other has the opposite sign.  Similarly,
Um ≅ +0.5Unom implies that the L1-B data symbol has the
same sign as when m = 0, and Um ≅ -0.5Unom implies that 
it has the opposite sign.  Nothing can be said about the
L1-C secondary code chips for these odd-m cases because 
the m = 0 case corresponds to a different half of the L1-C
primary code than do the cases m = 1, 3, 5, ...

The indeterminate Um ≅ 0 cases are resolved by
computing new correlations with the 1.023 MHz

accumulations from one of these cases: 

Vm  = φ
Δ

Δ

φ
Δ ]4092[

4091

0
]4092[ mj

j
mj appzapp

II ++
=

++∑ ll

for m = 1, ..., M-1, m ≠ mz (11)

where mz is one of the even-valued correlation indices that 
yields zmU ≅ 0.  These new correlations also take on the 
approximate values -Unom, -0.5Unom, 0, +0.5Unom, and
+Unom.

A plot of the Vm correlations vs. the Um correlations can
be used to determine the L1-B data symbols and half of
the L1-C secondary code chips, as in Fig. 7.  The figure's
blue points correspond to even values of m and yield fully 
determined L1-B symbol signs and L1-C secondary PRN
code chip signs.  The red points, which correspond to
odd-valued m, yield L1-B symbol signs, but the L1-C
secondary PRN code chips are undetermined.  The
symbol/chip sign determinations are made using the
discriminator lines shown in the figure.  Note that the
nominal correlation magnitude for this figure is
Unom ≅ 50000.
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The undetermined L1-C secondary code chip values can
be resolved by performing a similar analysis that reverses
the roles of the even and odd indices.  It starts with a
modified version of Eq. (10) that replaces φ

Δ ][ japp
I +l  by

φ
Δ ]4092[ ++ japp

I l .  This new analysis re-confirms the L1-B
symbol signs, and it produces a sequence of L1-C
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secondary code chips for the odd-m code periods.  These
new chips are identical to the chips produced by the even-
m analysis, except that they have an offset either one
index ahead or one index behind the even-m chip
sequence.  Thus, no new information about the +1/-1
values of the sj secondary L1-C code chips is obtained.
Rather, the new information concerns whether the  8 ms
L1-C primary PRN code periods line up with the pairs of
4 ms L1-B data bits (d0, d1), (d2, d3), (d4, d5), ... or with
the pairs (d1, d2), (d3, d4),  (d5, d6), ...

The data symbols and the secondary code chips
determined by this analysis constitute the sequences d0, d1,
d2, ..., dM-1 and s0, s1, s2,..., s(M-2)/2 that appear in Eqs. (3b) 
and (3d). The values of d0 and s0 are assigned to be +1 in 
order to be consistent with the above analysis. As a
check, one can verify that the L1-C secondary PRN code
satisfies the 25-chip periodicity condition: sp = sp+25.  Note 
that these values have a sign ambiguity; i.e., d0, d1, d2, ..., 
dM-1 may all change sign together, and s0, s1, s2,..., s(M-2)/2
may do the same.  The possibility of a sign reversal is
caused by a 180 deg carrier phase ambiguity.  An
additional ambiguity is that the true start chip of the L1-C
secondary code sequence could be any of its 25 chips.
For example, the Galileo program may consider the true
sequence to be s7, ..., s24, s0, ..., s6.

Blind Alleys.  The project went down three blind alleys
on its way to determining the d0, d1, d2, ..., dM-1 and s0, s1,
s2,..., s(M-2)/2 values.  The first wrong conjecture was that
the L1-C primary code maintained a length of 4092 chips
and that its 200 ms period was caused by a lengthening of 
the secondary code from 25 chips to 50 chips.  Under thus 
assumption, there would be 50 L1-C secondary PRN code 
chips to be determined: s0, ..., s49.

This wrong assumption and some additional analysis
indicated that there should be 3 possible nominal levels of 
Um: -Unom, 0, and +Unom.  The actual data showed the 5
nominal levels: Unom, -0.5Unom, 0, +0.5Unom, and +Unom.

This discrepancy led to the second wrong conjecture: that
the signal contained four 4092-chip PRN codes and that
each of these codes carried one data symbol or one
secondary code chip per period.  This conjecture
explained the 5 nominal levels of Um.  It was tested by
computing the Vm values defined in Eq. (11) and by
making the plot shown in Fig. 7.  Note how the points on
the plot are organized into groups at the vertices of a
diamond and at the centers of two of its sides.  The
lengths of the diagonals of this diamond are 2Unom ≅ 105.
If the four-code hypothesis had been correct, then there
should have been three additional groups of points, one at 
the origin and two at the centers of the other two sides of
the diamond.

The Fig.-7 plot caused the 4-codes conjecture to be

discarded, but it led to a third wrong conjecture: that the
sm secondary code chips could take on 3 values: -1, 0, and 
+1.  The red points on Fig. 7 seemed to correspond to
zero values.  Armed with this hypothesis, the lines shown
on Fig. 7 were used to discriminate the dm data symbol
values and the sm secondary code chip values.  It was
found that the sm chips did have a periodicity of 50, i.e.,
sm = sm+50.  It was also found that the zero-valued sm chips 
were the odd chips, i.e., 0 = s1 = s3 = s5 = ...

Although this hypothesis was wrong, it was completely
consistent with the data, and it allowed the determination
of the entire L1-B PRN code and half of the L1-C primary 
PRN code.  The error in this hypothesis was not
discovered until after the initial publication of the PRN
codes.  In response, a colleague forwarded a pre-print of
Ref. 4 to the authors.  Reference 4 demonstrates that the
primary L1-C PRN code is 8184 chips long rather than
4092 chips long and that the L1-C secondary code is 25
chips long with no zero-valued chips.  In hindsight, the
authors should have realized this fact because the
existence of zero-valued chips would have had severe
negative ramifications for the ability of the GIOVE-A L1
transmitter to maintain a constant carrier power level.

D. Determination of Primary PRN Code Chips

The L1-B PRN code, the L1-C primary PRN code, and
the PRN code timing have been determined
simultaneously by solving a maximum a posteriori
estimation problem.  Suppose, without loss of generality,
that the already determined L1-B data symbols d2p and
d2p+1 correspond to the same 8 ms as the L1-C secondary
code chip sp for all p = 0, 1, 2, ..., (M-2)/2.  Then
minimization of the following re-scaled negative-log-
likelihood cost function yields the maximum a posteriori
estimates of the L1-B code chips b0, ..., b4091, the L1-C
primary code chips c0, ..., c8183, the accumulation
amplitude AI, and the code start-time index, m:
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This cost function amounts to a sum of the squared errors
between the in-phase accumulations computed in Eq. (8)
and modeled values of these accumulations that can be
derived from Eqs. (1)-(4b) and (8).

The β cost function in Eq. (12) can be minimized by using 
a mixed integer/real optimization scheme.  A brute-force
outermost integer optimization searches over every m in a 
range of possible values near lapp -- recall that lapp is the
rough approximation of the code start index. For each
fixed m value in this range, β is minimized in an
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intermediate real-valued optimization of the amplitude AI
that is wrapped around an inner minimization with respect 
to b0, ..., b4091 and c0, ..., c8183.  The latter minimization is
accomplished by brute-force consideration of all possible
+1/-1 combinations of the chip values.  This inner
minimization is simplified by the following fact:  The cost 
terms that depend on each 3-tuple [bj, cj, cj+4092] are
independent of all of the other cost terms if AI is held
fixed.  Therefore, each set of cost terms can be minimized 
by considering only 23 = 8 different chip combinations.
The cost function for the intermediate AI optimization is
piece-wise quadratic in AI, and it can be minimized by
using a Newton-like method 5.

This optimal estimation problem has been solved twice
using independent 2-second data sets, one from 2 March
2006 and one from 8 March 2006.  Figure 8 shows the
outermost optimization of β as a function of m for the
March 8th data.  It is obvious from the figure that the code 
start time has a unique optimum.  The optimal PRN codes 
have been found to be identical for the two data sets.  As
with the L1-B data symbols and the L1-C secondary code 
chips, these code chips have a sign ambiguity so that
b0, ..., b4091 can all change sign together as can c0, ..., c8183.
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Fig. 8. Dependence of cost β on PRN start time m after
optimization of PRN code chips and
accumulation amplitude.

A conservative method has been used to evaluate the
probability of a chip error in the determined PRN codes.
This method solves for "soft" values of the PRN code
chips by treating the quantities AIb0, ..., AIb4091 and
AIc0, ..., AIc8183 as real-valued unknowns and by
minimizing the β cost function with respect to these
unknowns using linear least-squares techniques 5.  The
signs of the resulting values equal the integer-valued chip
estimates from the mixed integer/real optimization.  The
distributions of these values' magnitudes can be used to
estimate the probability of a chip sign error due to random 

noise effects.  This probability is less than 8.5×10-11; the
chip estimates are highly reliable.

IV. GIOVE-A L1 BOC(1,1) SIGNAL PROPERTIES

The PRN codes have been used to determine that the
GIOVE-A signal behaves nominally.  For example, Fig. 9 
compares the experimentally determined shape of the
L1-B PRN code's correlation function with its theoretical
shape.  The blue curve has been computed by correlating a 
replica PRN code with measured in-phase data from 100
code periods.  The green-dotted theoretical curve is very
closely aligned with the blue experimental curve.  The red 
curve shows the correlation between the replica PRN code 
and the measured quadrature signal.  This latter
correlation is nearly zero, as it should be.
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Fig. 9. Comparison between theoretical and
experimental L1-B PRN code correlation
functions

Additional GIOVE-A signal properties are as follows:
The signal power has been found to be about 5.8 dB
weaker than the strongest GPS L1 C/A-code signals when 
GIOVE-A is at a 45 deg elevation.  The measured
Doppler shift has been found to be within 10 Hz of the
expected value based on NORAD data, which is within
the margin of error of the receiver clock and the NORAD
ephemerides.

V. SUMMARY AND CONCLUSIONS

A method has been developed for determining the PRN
codes of a Galileo satellite's L1 BOC(1,1) signal.  This
method involves codeless acquisition, computation of
1.023 MHz baseband in-phase accumulations, and
analysis of these accumulations to determine PRN code
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start times and chip values.  These techniques have been
applied to GIOVE-A data collected using a patch antenna 
and a digital storage receiver.  The PRN codes have been
determined independently from two sets of 2-second data
batches that were recorded 6 days apart from each other.
The resulting PRN codes are identical, and the error
probability of each chip is less than 8.5×10-11.  Subsequent 
analysis of the GIOVE-A signal has determined that it has 
power levels about 6 dB lower than the strongest GPS L1 
C/A signals and that its structure has the expected
properties of a BOC(1,1) signal.
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