Collaborative Opportunistic Navigation
Zak Kassas, Ken Pesyna, and Todd Humphreys

The Problem
GNSS signals are insufficient for anytime, anywhere navigation, particularly in deep urban canyons, indoors, and environments experiencing intentional jamming, as they attenuate \(\sim 30-50 \text{ dB} \).

Solution: Exploit SOPs
Ambient signals of opportunity (SOPs) may enhance and assist conventional navigation techniques.

Potential SOPs
- **GNSS**: GPS, GLONASS, Galileo
- **Other SVs**: Iridium
- **Cell**: CDMA, GSM, 4G LTE
- **Misc.**: Wi-Fi, HDTV, AM, FM

SOP Comparison

<table>
<thead>
<tr>
<th>SOP</th>
<th>Signal power (dBW)</th>
<th>Freq. stability</th>
<th>Tx position known?</th>
<th>Tx timing offset known?</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS</td>
<td>(~-150)</td>
<td>(10^{-12})</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CDMA</td>
<td>(~-110)</td>
<td>(10^{-10} - 10^{-11})</td>
<td>Sometimes</td>
<td>Rough sync, (~\mu\text{sec})</td>
</tr>
<tr>
<td>Iridium</td>
<td>(~-130)</td>
<td>(10^{-10} - 10^{-11})</td>
<td>(~100\text{m})</td>
<td>✓</td>
</tr>
</tbody>
</table>

State Definition
State:
\[
\begin{align*}
x_r &= \begin{bmatrix} r_r^T, \dot{r}_r, \delta r_r, \gamma_{0,r,s_1}, \ldots, N_{r,s_m} \end{bmatrix}^T \\
x_s &= \begin{bmatrix} r_s^T, \dot{r}_s, \delta r_s, \psi_{0,i}, \ldots \end{bmatrix}^T, \ i = 1,2,\ldots, m
\end{align*}
\]

Observability Analysis
Theorem: A collaborative opportunistic navigation environment consisting of \(n \) receivers with velocity random walk dynamics making pseudorange observations on \(m \) stationary SOPs is completely observable if and only if the initial state(s) of at least
- one receiver is fully-known, or
- one receiver is partially-known and one SOP is fully-known, or
- one SOP is fully-known and one SOP is partially-known.

Simulation Results
Environment with 1 fully-know SOP and 1 partially-known SOP

Experimental Results

References