THE UNIVERSITY OF TEXAS AT AUSTIN RADIONAVIGATION LABORATORY

Precision Limits of Low-Energy GNSS Receivers

Ken Pesyna and Todd Humphreys The University of Texas at Austin September 20, 2013

The GPS Dot

Todd Humphreys **TED** Austin x = independently organized TED event

Site: www.ted.com Search: "gps" ^{2 of 25}

Tradeoffs

- <u>Size</u>
- Weight
- <u>Cost</u>
- Precision
- <u>Power</u>

Tradeoffs

- Weight
- •_<u>Cost</u>
- Precision
- <u>Power</u>

Improvements Since 1990

Stagnation in battery energy density motivates the need for low power receivers: Batteries are not getting smaller

Simple Ways to Save Energy

Modify parameters of interest:

- 1. Track fewer satellites, Nsv
- 2. Reduce the sampling rate, f_s
- 3. Reduce integration time, T_{coh}
- 4. Reduce quantization resolution, N bits

Assumptions

Correlation and Accumulation

- Given K = f_s *T_{coh} samples to correlate
- K N-bit multiplies and K-1 (N+log₂K)-bit adds
 - An N-bit add needs N 1-bit full adders
 - An N-bit multiply needs (N-1)*N 1-bit full adders
- Total number of 1-bit full adders N_A in a CAA

$$V_A = \underbrace{(K-1)(N + \log_2 K)}_{\text{Accumulation Cost}} + \underbrace{K(N-1)(N)}_{\text{Multiplication Cost}}$$
$$\approx K(N + \log_2 K + N^2 - N) \text{ for large K}$$
$$= K(N^2 + \log_2 K)$$

Energy Required for Correlation and Accumulation

- Each 1-bit addition takes E_A energy
- Energy consumed by a CAA, $E_{CAA} = E_A \cdot N_A$
- Total energy consumed by all CAA operations

 $E_{\rm Total} = N_{\rm SV} * 6 * E_{\rm CAA}$

Problem Statement

 Given a fixed amount "E_{Total}" of Joules, what choices of T_{coh}, f_s, N, and N_{sv} should we make to maximize positioning precision?

Step 1: Positioning Precision

- Positioning precision can be characterized by the RMS position-time error σ_{xyzt}
- Geometric Dilution of Precision (GDOP) relates σ_{xyzt} to the pseudorange error σ_u : $\sigma_{xyzt} = \sigma_u \cdot \text{GDOP}$

• GDOP =
$$\sqrt{\mathrm{Tr} (G^T G)^{-1}}$$

• Optimal geometry:

• GDOP_{MIN} =
$$\sqrt{\frac{10}{N_{\rm SV}}}$$
 [Zhang 2009]

Step 2: Code Tracking Error

• Lower bound on coherent early-late discriminator design [Betz 09]:

$$\sigma_{u,\text{EL}}^{2} = \frac{\int_{-f_{s}/2}^{f_{s}/2} G_{s}(f) \sin^{2}(\pi f \Delta) df}{2(2\pi)^{2} T_{\text{coh}} \frac{C_{s}}{N_{0}} \left(\int_{-f_{s}/2}^{f_{s}/2} f G_{s}(f) \sin(\pi f \Delta) df \right)^{2}}$$

• As the early-late spacing $\Delta \rightarrow 0$, $\sigma_{u,EL} = \sigma_{u,CRLB}$

Step 3: Effective Carrier-to-Noise Ratio

- The C_s/N₀ is affected by the ADC quantization resolution N
- [Hegarty 2011] and others have shown that quantization resolution "N" decreases the overall signal power, C_s
- The effective signal power at the output of the correlator C_{eff} =C_s/Lc

Function of Quantization Precision "N"

Effective Carrier-to-Noise Ratio

*Hegarty, ION GNSS 2010, Portland, OR

Quick Recap

- 4 parameters of interest: f_s, N_{sv}, T_{coh}, N
- Derived baseband energy consumption: $E_{CAA} = E_A \cdot (N^2 + \log_2[f_s \cdot T_{coh}]) \cdot f_s \cdot T_{coh}$ $E_{Total} = N_{SV} * 6 * E_{CAA}$
- Derived lower bound on positioning precision:

$$\sigma_{\text{xyzt}} = \sigma_{\text{u,EL}} \cdot \text{GDOP}$$

$$\sigma_{\text{u,EL}}^2 \rightarrow \frac{1}{4T_{\text{coh}} \frac{1}{T_{\text{c}}} \frac{C_{\text{eff}}}{N_0} \left(f_s - \frac{\sin(f_s \pi T_{\text{c}})}{\pi T_{\text{c}}} \right)} \text{ as } \Delta \rightarrow 0$$

Optimization Problem

• We have set up a constrained optimization problem to minimize σ_{xyzt} for a given E_{Total}

 $\begin{array}{c} \text{minimize} \\ N_{SV}, N, f_s, T_{\text{coh}} \\ \text{subject to} \end{array}$

 $\sigma_{xyzt}(N_{SV}, N, f_s, T_{\rm coh})$

 $E_{\text{Total}} \leq \beta$

Tradeoff 1: Sampling Rate, f_s vs Integration Time, T_{coh}

Tradeoff 2: Sampling Rate, f_s vs Quantization Resolution, N

Tradeoff 3: Number of SVs, N_{sv} vs Integration Time, T_{coh}

Optimization Solution versus Declining Energy

Conclusions

- 1. Investigated how certain parameters relate to energy consumption and positioning precision
- 2. Posed an optimization problem that solves for optimal values of the 4 parameters of interest under an energy constraint
- 3. Showed that the industry has come to anticipate many of the same conclusions

THE UNIVERSITY OF TEXAS AT AUSTIN RADIONAVIGATION LABORATORY

http://radionavlab.ae.utexas.edu