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Abstract—This paper presents a novel headset tracking frame-
work designed for extended reality (XR) applications. The growth
of XR demands accurate and robust tracking mechanisms that
are suitable for both indoor and outdoor environments and offer
anchoring to a global reference frame. By loosely coupling a vi-
sual simultaneous localization and mapping (SLAM) algorithm to
a tightly-coupled carrier phase differential GNSS (CDGNSS) and
inertial sensor subsystem, the proposed system aims to achieve
centimeter-accurate, globally-referenced tracking that persists
during extended periods of GNSS degradation. Collaborative
and persistent XR experiences are enabled through accurate
map creation utilizing a bundle adjustment approach for map
generation and maintenance. Cloud or near-edge offloading of
computationally demanding steps in the pipeline is explored
to reduce the computational demand on the headset. Robust
tracking performance is evaluated in terms of odometric drift
under GNSS outages. This paper also explores the benefit of
additional headset tracking constraints offered by direction-of-
arrival measurements to nearby cellular base stations. Such
measurements will become available as future wireless standards
make increasing use of mmWave frequencies.

Index Terms—CDGNSS, SLAM, extended reality

I. INTRODUCTION

Extended reality (XR) is poised to dramatically alter the
way people interact with the world. Fully-immersive XR ex-
periences require determination of the position and orientation
of the user’s headset, allowing the user’s motion to be reflected
in a virtual environment. Outdoor headset tracking, this paper’s
focus, is possible under open-sky conditions and brief periods
of GNSS signal degradation [1], [2], but an immersive XR ex-
perience will require a precise headset position and orientation
(pose) during the longer-duration GNSS signal degradation
that occurs with outdoor use in urban environments.

Outdoor XR will allow for unlimited users to share collab-
orative and interactive XR experiences with persistent virtual
objects. A globally-referenced position is necessary to un-
lock the full potential of XR in outdoor environments, and
GNSS can provide this [1]. Precise outdoor headset localiza-

tion has been achieved using carrier-phase differential GNSS
(CDGNSS), but it struggles in environments with poor GNSS
coverage [1]. Nonetheless, some form of GNSS coupling
is crucial for a globally-referenced tracking solution. The
method of coupling CDGNSS with visual SLAM proposed
in this paper has the advantage of building off of previous
work in [1], [3]–[5] providing high-availability decimeter-
accurate CDGNSS positioning even in environments with
urban canyons and significant multipath.

Currently, commercial XR headsets are limited to indoor
and digitally fenced-in areas. Lighthouse-based tracking sys-
tems, which rely on external lighthouse stations to track the
user, provide impressive sub-millimeter precision, but are by
nature limited in usable space [6]. Furthermore, any occlusion
of the lighthouse signals interferes with tracking. Such an
approach is not scalable for a global XR experience. Alter-
natively, camera-based inside-out tracking uses simultaneous
localization and mapping (SLAM) algorithms to determine
the user’s relative pose without external hardware [7], [8].
Inside-out tracking utilizes a generated and stored map of
the user’s surrounding area, typically limiting the user to a
local coordinate frame that is not globally-referenced. Current
state-of-the-art SLAM algorithms such as OKVIS1/2 [9],
[10], ORB-SLAM1/2/3 [11]–[13], ICE-BA [14], ROVIO [15],
GEOSLAM [16], SLAM++ [17] each have different trade-offs
based on computational complexity, precision, and persistence
[18]–[20]. While real-time applications have adopted filtering
methods, windowed and global bundle-adjustment SLAM al-
gorithms have an advantage in accuracy and map generation.
For XR applications, a generated map will be essential for
shared experiences. Thus, a SLAM framework based on BA
is most attractive provided its computational cost can be
managed.

Given the complementary nature of GNSS and visual
SLAM, researchers have worked to couple solutions to create
a well-rounded tracking system. In particular, the outdoor,
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global-referencing capabilities of GNSS complement the lim-
itations of urban, locally-referenced SLAM. Coupling SLAM
with GNSS is often used for ground vehicles and unmanned
aerial vehicles to create an accurate local map and locate this
map in the global frame [16], [21]–[28]. The result of the
SLAM computation is typically coupled with standard GNSS,
providing meter-level precision as opposed to the centimeter-
accurate CDGNSS. However some previous work has also
coupled SLAM with CDGNSS using a filter based approach
[29]–[34]. As compared to filtering, an approach based on
bundle adjustment (BA), as proposed in the current paper, is
more accurate [18] and lends itself to batch partitioning and
cloud offloading of the most computationally expensive steps
in the estimation pipeline.

With recent increases in wireless communication speeds,
computationally expensive tasks are increasingly being of-
floaded to the cloud for small robotics applications [35]–[39].
A similar approach can be applied to XR headset tracking. The
process of image-based positioning has components that are
ideal for cloud offloading. After feature detection occurs, the
feature points and their descriptors are sparse, whereas the BA
calculation is computationally expensive. This means a small
amount of data can be sent over the network to exploit fast
cloud computing at large data centers or in near-edge resources
(e.g., arrays of graphical processing units (GPUs) co-located
with cellular base stations). Likewise, the result of the BA
process is lightweight and easily transported back over the
network, consisting primarily of the locally-relevant portion
of the 3D map. In addition, cloud-based processing allows
for user-contributed maps to be combined, forming larger,
collaborative maps that multiple users can exploit for both pose
estimation and XR applications [38]. This differs from current
approaches, which transport entire images to be processed in
the cloud, requiring higher data rates [36].

Future network architectures such as 6G may be the key
to providing the high-reliability, low-latency communications
needed for XR. In addition to increased bandwidth, 6G will
utilize beam forming to steer the receiver’s antenna towards
a base station to increase communications reliability. The
direction-of-arrival (DOA) of these signals from 6G base
stations can be exploited to further constrain the pose of the
XR headset [40].

Against the backdrop of the foregoing observations, this
paper makes three primary contributions. First, it develops
a framework for robust and precise globally-referenced XR
headset tracking that couples BA-based visual SLAM with
inertial and CDGNSS sensing. Second, it explores cloud
offloading of the BA to lighten the headset’s computational
load. Third, it evaluates DOA measurements, the by-product
of beamforming at the headset, as additional constraints for
further reducing headset pose errors.

II. OPEN-WORLD VIRTUAL REALITY

Open-world virtual reality (OWVR), first coined in [1], is a
concept that envisions a seamless connection between virtual

Fig. 1: Concept design for how sensors and communications
antennas could be incorporated into a XR headset. The base
sketch is the Valve Deckard VR headset.

and physical worlds—indoors and out—through correspon-
dence, customizability, and persistence. Correspondence refers
to a 3D reconstruction of the real world being mapped to
the virtual world. Customizability is the ability to alter this
3D reconstruction on demand. Persistence is the permanence
of this customization, allowing virtual objects to remain in
the same location forever. One can imagine a virtual XR
experience where users drop items or leave notes in the
virtual map for any user to find in the future. The objects
would remain persistently accessible at their original precisely
georeferenced location.

Previous work [1] achieved a rough implementation of
OWVR by separating the three requirements. A local map
was reconstructed via photogrammetry, altered within a game
engine, and traversed using a tightly coupled CDGNSS and
inertial unit. This tracking solution does indeed provide the
centimeter-and-degree accurate pose estimation needed for a
convincing XR experience while also being globally refer-
enced. However, its use cases depend greatly on an environ-
ment suited for CDGNSS integer fixing. In other words, while
one can traverse the open-sky rooftop of a parking garage, one
cannot walk through a busy city street lined with buildings and
overhangs. This limitation prevents the experience from being
truly open-world.

Achieving true OWVR requires a robust positioning so-
lution. Many environments such as urban cities and other
high multipath environments do not allow for continuous
centimeter-accurate positioning. On the other hand, the same
dense urban environments that a are detrimental to precise
CDGNSS based positioning are rich in landmarks and features
to support a robust visual SLAM based pose estimate. The
complementary nature of vision-based positioning and GNSS
allows their combination on a single headset—as envisioned
in Fig. (1)—for precise and robust pose estimation.

The block diagram in Fig. (2) gives an overview of this
paper’s headset tracking framework. Block-level subsystems
will be further described in following sections.

III. REFERENCE FRAMES

It will be convenient to define the following reference
frames:
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Fig. 2: Diagram of the full pose estimator.

C: The camera frame is centered at the camera center of
the primary camera with its x axis aligned with the long
axis of the focal plane pointing to the right. Its z axis is
boresight to the focal plane and the y axis is aligned to
complete the right-handed triad.

S: The local SLAM frame is equivalent to the camera frame
corresponding to the first image.

U: The IMU frame is centered at and aligned with the IMU
accelerometer triad.

B: The body frame has its origin at the phase center of
the headset’s primary GNSS antenna. Its x axis points
towards the phase center of the secondary antenna, its z
axis is aligned with the boresight vector of the primary
antenna, and its y axis completes the right-handed triad.

G: The global frame is the Earth-centered, Earth-fixed
(ECEF) reference frame

W: The world frame is a fixed geographic East-North-Up
(ENU) frame with its origin at the phase center of the
reference GNSS antenna, which is located at a fixed
location with known ECEF coordinates.

IV. GEOSLAM

This paper’s visual SLAM framework is called Globally-
referenced Electro-Optical SLAM (GEOSLAM). It is the
evolution of the framework of the same name developed in
[16]. This section offers an overview of GEOSLAM and
explains what makes it uniquely suitable for XR headset pose
estimation. It then details how GEOSLAM performs feature
extraction, determines structure from motion, and performs
bundle adjustment. It also discusses GEOSLAM’s ability to
constrain the pose estimate with CDGNSS measurements, and
the creation of collaborative maps.

A. GEOSLAM Overview
Unlike CDGNSS, SLAM algorithms are often used in

current XR headsets due to their cost effectiveness and their
tracking performance in most common indoor settings. Re-
quiring only a camera at minimum, SLAM algorithms extract
feature points from images and track those feature points to
derive a map reconstruction and camera pose. This works
especially well in areas with many distinct feature points,
e.g., a living room with a variety of furniture or a dense
urban sprawl lined with buildings. Conversely, environments
without distinct features, such as an open field, are not suitable
for SLAM: they lack the necessary feature points to robustly
calculate optical flow. From this, one can make the connection
that SLAM and CDGNSS complement each other as each
excel in environments where the other fails. Furthermore, a
tracking solution combining SLAM and CDGNSS will satisfy
two of OWVR’s three requirements: an appropriate SLAM
algorithm can create a precise correspondence through 3D
reconstruction, and CDGNSS provides the global reference
frame needed for persistent objects.

Two common approaches to SLAM are filtering and
keyframe-based bundle adjustment (BA). In terms of compu-
tational complexity, the authors of [18] discovered that with N
feature points and M keyframes, filtering SLAM is O(MN3)
whereas BA SLAM is O(NM2 + M3); importantly, the
authors also show that an increase in feature points increases
accuracy while an increase in keyframes increases robustness.
The current paper chooses a BA approach for two primary
reasons: (1) this paper aims to construct dense 3D maps that
provide centimeter-accurate visual tracking; the cubic feature-
number scaling of filtering would severely limit the density
of these maps, and (2) this paper aims to create a framework
suitable for cloud offloading, and this is done more cleanly
with batches of data from windowed BA than with filtering.
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Fig. 3: Frame from the TEX-CUP dataset [43] with features stereo matched between the left and right cameras.

The core of GEOSLAM is a bundle adjustment algorithm
that creates and store maps across multiple sessions. This
method supports the open-world XR concept by allowing
headset tracking to be a collaborative effort. For example,
a user walking through an area under marginal CDGNSS
conditions can create a map that may only be partially com-
plete. Then, if this map is stored on the cloud, another user
can walk through the same area and refine and extend the
map by leveraging the prior map to improve their CDGNSS
robustness. Additional iterations can further refine and extend
the map until it is fully connected and accurately globally-
referenced. The following sections will outline the details of
the GEOSLAM algorithm and its cost functions.

B. Feature Extraction and Matching

As shown in Fig. (1) the envisioned XR headset is equipped
with CDGNSS antennas, an inertial measurement unit, and
multiple cameras. The headset cameras are synchronized with
the CDGNSS sampling to capture globally shuttered images
whose timing is traceable to the GNSS receiver’s clock. A
collection of images taken simultaneously is referred to as
a frame. These images are undistorted according to each
camera’s calibration parameters, and stereo pairs are rectified.
Then, feature points are extracted according to the Scale-
Invariant Feature Transform (SIFT) to obtain each feature
point’s SIFT descriptor and 2D coordinates [41]. Fig. (3)
shows extracted and stereo-matched feature points. These
feature points are matched to a set of 3D map points via
the Fast Library for Approximate Nearest Neighbors [42].
As described in the Perspective-n-Point(PnP) problem [16],
a camera pose can be estimated from sufficient point matches,
with random sample consensus (RANSAC) being used to filter
out any outliers among the matched points. This initial pose
estimation allows for the reprojection of 3D map points onto
the estimated image plane. For each map point successfully
reprojected onto the image plane, a k-nearest-neighbor brute-
force matching is performed on all feature points within a
threshold distance of the reprojection, following which PnP
with RANSAC is performed once more.

As the headset moves through space, its cameras detect new
points not present in the current map database. If more than
one camera captures the same feature point, and if the baseline
between the cameras is known, then the point’s approximate
3D location can be derived and added to the map.

Let un
i denote the reprojection of map point i onto the

camera’s image plane on frame n. un
i = ∅ if i is not within

the camera’s view. For the nth frame, GEOSLAM’s tracking
module assembles:

1) a set of estimated 3D map points

Mn ≜ {i : un
i ̸= ∅}

In addition, let mi
S ∈ R3 denote the estimated 3D

coordinates of point i in the S frame.
2) a set of measured feature point matches

Un ≜ {ũn
i : i ∈ Mn}

where ũn
i ∈ R2 denotes the 2D coordinates of the

measured SIFT feature corresponding to point i in the
nth frame.

3) an estimated camera pose

(cnS ,θ
n
CS)

denoting the 6DoF (six-degrees-of-freedom) pose of the
primary camera on the nth frame where cnS is the location
in the S frame and θn

CS is the angle-axis representation of
the attitude of S with respect to the camera frame C. For
purposes of matrix multiplication, R(·) is the direction
cosine matrix of an input angle-axis orientation, e.g.,
R(θn

CS) is the rotation matrix corresponding to θn
CS.

Starting from these initial data and estimates, GEOSLAM re-
fines the camera poses and map points via bundle adjustment.

C. Structure from Motion

Given a sequence of images with 2D feature points, Struc-
ture from motion (SfM) is the process of both estimating
the 6DoF pose of the camera corresponding to each image
and estimate the 3D points corresponding to the 2D features.
Consider a pinhole camera model with focal length f , principal
point (px, py), and pose (cnS ,θ

n
CS). The projection of 3D map

point i on the camera’s image plane of frame n is [44]

un
i =


xn
i

zni
yni
zni

 ,

xn
i

yni
zni

 =

f 0 px
0 f py
0 0 1

 [R(θn
CS) −R(θn

CS)c
n
S

] [mi
S

1

] (1)

A single camera can capture a map resolved to within a
similarity transform. However, the envisioned XR headset is
equipped with multiple cameras. If the baseline distances be-
tween cameras are known, the rendered map will have correct
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scaling. Suppose that, in addition to the primary camera, the
headset contains an alternate camera with intrinsics f̄ and
(p̄x, p̄y). These two cameras are synchronized, i.e., the nth
image of the primary camera is taken at the same time as the
nth image of the alternate camera. Let (c̄C, θ̄C̄C) denote the
known transformation from the primary camera to the alternate
camera. Then the alternate camera’s reprojection function is
modified from (1) as

ūn
i =


x̄n
i

z̄ni
ȳni
z̄ni

 ,

x̄n
i

ȳni
z̄ni

 =

f̄ 0 p̄x
0 f̄ p̄y
0 0 1

 [Rn
C̄S −Rn

C̄Sc̄
n
S

] [mi
S

1

]
where

c̄nS = cnS +RT(θn
CS)c̄C,

Rn
C̄S = R(θC̄C)R(θn

CS)

Note that all cameras will have known, rigid transformations
relative to each other, so only one camera’s pose needs to be
estimated. However, reprojections are calculated with respect
to all cameras in which a map point is visible.

Given a matched feature point measurement ũn
i , the repro-

jection error is defined as

eni = ũn
i − un

i

Bundle adjustment finds the (cnS ,θ
n
CS) and mi

S, i ∈ Mn that
minimize a cost defined across all feature points. The cost
function for frame n is

Cn =
∑
i∈Mn

ρ
(
(eni )

T(Ωn
i )

−1eni
)

(2)

where ρ(·) is a loss function of choice (e.g., least squares or
Huber loss) and Ωn

i ∈ R2×2 is the covariance matrix associ-
ated with ũn

i . GEOSLAM solves this minimization—and all
subsequent BA minimization problems—using Google’s Ceres
solver [45].

1) Keyframe Bundle Adjustment: In a continuous video
stream, map points are expected to be shared between
frames. Thus, (2) must be modified to account for this
temporal connection. In the SLAM literature, certain frames
called keyframes, are designated as representative of nearby
frames. Only keyframes participate in the full BA. Keyframes
are stored to save past pose and reprojection information.
GEOSLAM chooses keyframes based on distance traveled and
number of new map points discovered, e.g., a frame is declared
a keyframe if it is taken more than 1 meter from the nearest
keyframe or if it contains fewer than 200 map matches. Each
feature designated as a map point must be present in at least
one keyframe, and the 3D coordinates of each map point must
be consistent across all keyframe reprojections.

The covisibility window of frame n is the set of all
keyframes that share at least T map points with n. This can be
applied recursively X times to retrieve an X-level covisibility
window, mathematically represented as

cov(n,X) ≜{
{k : |Mk ∩Mn| ≥ T} X = 1{
k : |Mk ∩

(
∪y∈cov(n,X−1)My

)
| ≥ T

}
X > 1

where |A| denotes the cardinality of the set A.
The cost function across the full X-level covisibility win-

dow of frame n is written as

Ccov
n =

∑
k∈cov(n,X)

∑
i∈Mn

ρ
(
(eki )

T(Ωk
i )

−1eki
)

2) CDGNSS Aiding: An unaided bundle adjustment is com-
puted in the S frame such that its origin aligns with the pose
of the first camera frame. The S frame is thus made relative to
the first camera pose. To enable map permanence, the S frame
must be anchored to a global reference frame G. GEOSLAM
does this by incorporating CDGNSS measurements into the
BA. These measurements (1) allow GEOSLAM to compute
an affine transformation between the headset’s local S frame
and the global G frame, and (2) constrain visual odometric
drift.

In order to align the local S frame and the global G frame,
GEOSLAM performs an initialization procedure in which
visual BA is performed while storing CDGNSS measurements
for each keyframe. After N keyframes, two sets of 3D points
are created: keyframe positions in the S frame by visual BA
and keyframe positions in the G frame by CDGNSS. Let zn

S
denote the antenna position according to visual BA and z̃n

G
denote the antenna position measurement from CDGNSS, for
frame n. Given the known baseline between the camera and
antenna, zn

S is derived from the camera pose (cnS ,θ
n
CS). Given

CDGNSS measurements and camera images, these two rigid
sets of camera poses will be similar to an affine transformation.
For a known stereo baseline between the cameras, the two sets
will also be of the same scale. Thus, a rotation and translation
from the G frame to the S frame, RSG and tSG respectively,
can be calculated by aligning the two sets of points. As shown
in [46], this can be modeled as the least squares optimization
problem

(RSG, tSG) = argmin
R∈SO(3),t∈R3

N∑
n=1

∥(Rz̃n
G + t)− zn

S ∥
2 (3)

and solved using singular value decomposition.
Once initialized, GEOSLAM requests a CDGNSS pose for

each frame. Let

enz ≜ (RSGz̃
n
G + tSG)− zn

S
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denote the CDGNSS error for frame n. This CDGNSS error
is added as a parameter block in the BA cost function to form
the augmented cost function

CG
n =∑

k∈cov(n,X)

[ ∑
i∈Mn

ρ
(
(eki )

T(Ωk
i )

−1eki
)
+ (ekz)

T(Γk)−1ekz

]

where Γk is the covariance matrix of z̃k
G.

3) Pose-graph Optimization: After BA is performed, if
enz is large and z̃n

G has low variance, a trajectory pose-
graph optimization is performed. This may occur e.g., after
a CDGNSS outage. Once a high confidence measurement z̃n

G
is available, pose-graph optimization will be performed. For
neighboring keyframes k and j, the delta-pose is defined as

δckjS ≜ ĉkS − ĉjS,

δθkj
CS ≜ θ

(
R
(
θ̂k

CS

)
RT
(
θ̂j

CS

))
where (̂·) denotes a state prior to pose-graph optimization, and
θ(·) outputs the angle-axis representation of an input direction
cosine matrix. GEOSLAM aims to estimate new keyframe
poses that preserve the delta-poses while ensuring consistency
with CDGNSS measurements and smoothness along the full
path. As the first step, frame n’s pose is adjusted assuming that
the CDGNSS measurement is correct. The keyframe poses

(ckS ,θ
k
CS)∀k ∈ cov(n,Xp)

over an Xp-level covisibility window are used to define the
pose-graph delta-pose error:

ekjc ≜
(
ckS − cjS

)
− δckjS ,

ekjθ ≜ θ
(
R
(
θk

CS

)
RT
(
θj

CS

))
− δθkj

CS

The pose-graph optimization can be performed by minimizing
the cost due to the delta-pose errors

Cpgo =
∑

k∈cov(n,Xp)

∑
j∈cov(k,1)

(
(ekjc )Tekjc + (ekjθ )Tekjθ

)
subject to the constraint that all keyframes with valid CDGNSS
measurements—including n—as well as keyframes at the edge
of an Xp-level covisibility window have their poses held fixed;
denote this fixed set Kf .(

ckS ,θ
k
CS

)
=
(
ĉkS , θ̂

k
CS

)
∀k ∈ Kf

This pose-graph optimization is followed by another BA
with an expanded covisibility window. By increasing the level
of the covisibility window, GEOSLAM extends its optimiza-
tion window beyond any CDGNSS outages.

4) Collaborative Mapping: After the BA operations, a
map is created which contains the collection of keyframes
with their 6DoF poses, feature points with descriptors, and
CDGNSS measurements. The included map points contain
the 3D G frame coordinates and SIFT feature descriptors.
Future GEOSLAM runs, e.g., future users, can draw upon this

stored map to aid pose estimation with or without CDGNSS
measurements. If a user ventures into unmapped regions he
or she will extend the map. For a user with an a priori map,
after BA is performed for frame n, GEOSLAM checks for a
merge event by matching to the set of map points not present
in recent keyframes {i : i /∈ ∪k∈cov(n,X)Mk}. If enough
matches are found, a map merge is executed. In this event,
GEOSLAM initially assumes the a priori map to be true
and adjusts the current frame’s pose to be consistent with it.
Afterward, pose-graph optimization is performed in the same
manner as noted in Sec. IV-C2. Following this, duplicate map
points are removed and a local BA is performed on the merged
map.

V. CLOUD OFFLOADING

XR headsets designed for outdoor use will have tight
constraints on power consumption and processing power to
maximize usable battery life. Offloading a portion of the
headset’s pose estimation to a cloud or near-edge resource
will reduce the computational demand on the XR headset.
The most computationally expensive portion of the pose
estimator is GEOSLAM. Table I shows the relative processing
time for each step of the GEOSLAM pipeline found using
Python’s native deterministic profiler. Note that this instance
of GEOSLAM was executed using only a central processing
unit; the addition of a GPU may speed up certain sections of
the pipeline. Nonetheless, it is clear that bundle adjustment is
the most computationally expensive part of GEOSLAM. This
section will explore multiple possible offloading paradigms
and the data rate required to support them.

TABLE I: Relative Processing Time

Process Relative Processing Time

Feature Extraction & Stereo Matching 00.825%
Map Matching 00.860%
Bundle Adjustment 97.925%
Misc. 00.390%

TABLE II: Data Type and Needed Transmit Data Rate.

Data Type Data Size Data Rate Required

Images 1.5 MB / frame 240 Mbps
Video (MPEG) 141.19 kB / frame 22.59 Mbps
Images Features (SIFT) 134 B × 1000 features 10.72 Mbps
Images Features (ORB) 38 B × 1000 features 3.04 Mbps
Map Matches 28 B × 300 matches 672 kbps
Pose 0.448 kB 35.84 kbps

Suppose that the full feature-extraction-to-BA pipeline is
done on the cloud. In this case, the headset must send the
full sequence of frames. Offloading the entire GEOSLAM
stack for cloud processing would reduce the computational
requirements of an XR headset; however, sending unprocessed
images requires a relatively high data rate. The dataset used
in this paper, described in detail in Sec. VII-A1, contains
stereo pairs of 2048×732 8-bit grayscale images at 10 Hz.
Sending the uncompressed stereo images results in a data
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rate of 240 Mbps, as shown in Table II. A higher resolution
camera, additional cameras, or a higher camera frame rate
would further increase the required data rate to offload the
raw images. One option to reduce the data rate is to compress
the video via MPEG or H.264 [47] or computer-vision-specific
compression such as Compact Descriptors for Visual Search
(CDVS) [49]. However, lossy compression leads to loss of
localization precision [48].

Feature extraction can be easily done locally on the headset
due to lower computation time. In this case, the headset must
send for each feature point (1) 2D pixel coordinates (two
16-bit integers) and (2) a SIFT feature descriptor (a 128-
element 8-bit vector). In a properly rectified image, stereo
matched points will share a single axis coordinate. This is
multiplied by the number of feature points, which varies
between images. On this paper’s dataset and implementation,
GEOSLAM images contained on average 1500 feature points,
reduced to ∼1000 stereo matches. The approximate data rate
to send the feature points to the cloud is shown in Table II
assuming an average of 1000 stereo-matched feature points
are extracted each frame. This is limited by the number of
pixels since there cannot be more feature points than pixels.
A similar analysis is performed with the ORB descriptor [50].
Which is more compact than the SIFT feature descriptor, but
comes with the cost of reduced precision [51]. If an image
is particularly dense with features, the data size could exceed
sending the image itself. It has been shown in the literature
that image features can be compressed [52], [53] to further
reduce the required data-rate.

Most feature points will be eliminated in the map matching
process, allowing for a reduced set of features to be sent to
the cloud. However, because the map database is stored on
the cloud, if matching is to be done within the headset then
the headset must download the map beforehand, e.g., during
initialization. This paradigm enables the headset to send map
keys in place of heavy feature descriptors; a map key may be a
map index or hash as long as each map point can be uniquely
identified. Table II assumes 300 map matches—each with 2D
feature point coordinates and 3D map point coordinates—for
each frame. The headset will still need to occasionally send
descriptors for new map points (in the case of exploration), but
the required data rate will will be low compared to sending
every feature point’s descriptor. The headset must also perform
feature matching, a process whose computational expense is
comparable to feature extraction, as shown in Table I.

All above paradigms must also send timestamped CDGNSS
based pose estimates to allow for globally-referenced BA; this
overhead is captured in Table II. For the return path, the cloud
provides the geo-referenced 3D map points local to the XR
headset. Treating these post-BA points as trustworthy markers,
the headset can perform parallel tracking and mapping [7], [8].

Offloading visual processing to the cloud has the added
benefit of allowing the map points and keyframes to be stored
on the cloud. This allows large precise maps to be built
collaboratively as described in Sec. IV-C4.

VI. DOA BASED POSITIONING

Immersive outdoor XR experiences will require high data
rates to deliver XR content to the user. In order to achieve high
data rates mmWave or subTHz spectrum is expected to be used
in future standards requiring high gain phased array antennas.
The narrow beams of the phased array antennas require the
receiver to perform precise alignment with the base station.
The precise DOA estimates produced by the cellular radio can
be utilized to aid in pose estimation of the XR headset. This
section outlines how a signal’s DOA estimates can be utilized
for pose estimation.

A. Time Constants for DOA Estimates

Beam coherence time is the average time interval a beam
formed by a phased array antenna is deemed to be valid.
The beam coherence time reveals insight into the rate DOA
estimation can be performed. The beam coherence time of
a channel is often longer than the channel coherence time,
causing DOA methods performed at each channel coherence
time to be unnecessary [54], [55]. When DOA estimates are
used for pose estimation, the beam coherence time represents
the time interval that a DOA estimate is reliable.

For slow rotations of the XR headset the beam coherence
time will be large and allow reliable DOA estimates. During
periods of high rate XR headset motion the beam coherence
may be quite small and highly dynamic motion may cause the
beam coherence time to be shorter than the time to compute a
DOA estimate. In a very low beam coherence time scenario,
the XR headset must omit the DOA estimates since they will
not accurately represent the pose. The beam coherence time
for translational motion was introduced in [55] but the rotation
included version is an open research field.

B. DOA Estimation Methods

The concept design XR headset structure in Fig. (1) contains
mmWave uniform planar antenna arrays that contribute to the
headset pose estimation by preforming DOA estimation of the
incoming cellular (5G/6G) signals. DOA estimation leverages
a multi-element antenna array to and the phases of an incoming
signal at each antenna element to determine the signal DOA
[56], similar to how a phased array antenna is steered.

One such DOA estimator is the Multiple Signal Classifi-
cation (MUSIC) algorithm [57]. The algorithm decomposes
the covariance matrix of the received signal to generate a
signal subspace. Using the orthogonality of the signal and the
noise subspace, the MUSIC algorithm estimates the DOA [56],
[58], [59]. The MUSIC algorithm measures different received
signals simultaneously with high precision, making it a good
candidate for DOA estimation for XR headset with multiple
base stations.

There are other versions of DOA estimators and MUSIC
algorithms with various various trade offs in implementation
and computation time [60], [61]. The MUSIC algorithm is
suitable for arbitrary system geometry but computationally
inefficient [61]. Despite the computationally inefficiency of
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MUSIC, it was selected as a basis for the analysis of DOA
estimates due to the tractability of its analysis.

C. DOA Estimate Error Covariance Bounds

For a linear array with n elements the MUSIC signal model
for the received signal from each transmitter y(t) when m
signals are present is a function of the complex signal x(t) =
[γ1(t)e

jωrx
1 t, . . . , γn(t)e

jωrx
n t]T with amplitudes γn and phase

ωrx
n at each antenna element.

y(t) = A(θθθ)x(t) + e(t) (4)

The matrix A(θθθ) represents a matrix of transfer vec-
tors a(ω) = [1, ejω, . . . , ej(m−1)ω]T where A(θθθ) =
[a(ω1), . . . ,a(ωn)] with the vector θθθ = [ω1, . . . , ωn] of angles
of arrival that produce m unique signals in y(t). The noise
e(t) is an n dimension zero mean and Gaussian distributed
with covariance σ2I . In order to analyze the benefit of utilizing
DOA estimates to aid headset positioning the estimator’s error
covariance is needed. The covariance matrix R of the received
signal is defined by the covariance matrix P of the signal x(t)
and the transfer vectors A(θθθ) as shown below.

R = E[y(t)y(t)∗] = A(θθθ)PA(θθθ) + σ2I (5)

The error covariance of an angle of arrival estimate θ̂ is
lower bounded by the Cramér–Rao bound (CRB). The CRB
for the MUSIC angle of arrival estimator is well studied in the
literature [62] and the explicit CRB for the MUSIC estimator
is known. The CRB of a signal with angle of arrival θ, is
a function of θ is dependent on the matrix A, a derivative
matrix D = [d(ω1), . . . , d(ωn)] where d(ωn) =

da(ω)
dω and

X = x(t)In×n.

CRB(θ̂) =
σ

2

{
N∑
t=1

Re[X∗(t)D∗

[I −A(A∗A)−1A∗]DX(t)]]

}−1
(6)

This however becomes intractable to as it is dependent on
the amplitude of the noise free signal at each array element
X(t). As the number of array elements m and the number
of measurements N of the received signal increases the CRB
approaches a lower bound that can be used to approximate the
variance of the angle of arrival estimate θ̂ [62] if the signals
are uncorrelated.

CRB ≥ 6

m3N
Im×mS (7)

Where S is a matrix of the SNR values of each of the m
signals.

S = [SNR1, SNR2, . . . , SNRm]
T (8)

For the high frequencies that will be used in the communica-
tions link for an XR headsets a large number of elements will
be required in the phased array satisfying the first assumption.
The waveforms will likely be OFDM which can be modeled

as Gaussian in the time domain. If neighboring base stations
utilize different pilot locations in the OFDM waveform, and
the number of sub carriers is large, signals from neighboring
base stations can be considered uncorrelated allowing the
approximate CRB shown in (7) to be used.

D. Simulating DOA Estimates

A simulated set of DOA estimates can be generated using
the know pose of a simulated cellular receiver. The poses of
the receiver rW shown in Fig. (5) defined in the world frame
are used to generate simulated DOA estimates. The cellular
antenna is modeled as two colocated linear arrays aligned with
the B frame x and z axis. The location of simulated base
stations Fig. (4) are each defined as bW in the world frame. A
unit vector d̂k

B at time k in the body frame defined according
to the model (9) pointing from the receiver to the base station
where R̄BW is the initial rotation matrix between the world
frame and the body frame and R(ê) is the estimated error
rotation matrix as a function of ê the estimated error Euler
angle.

d̂k
B =

rkW − bW
||rkW − bW||

(R(ê)R̄BW) (9)

The DOA estimate at time k is simulated as azimuth and
elevation angles. The azimuth θ̂k and the elevation angle ϕ̂k

at time index k are defined as

θ̂k = arctan

(
d̂
k

B · uBy

d̂
k

B · uBx

)
+ vθ (10)

ϕ̂k = arctan

 d̂k
B · uBz√

(d̂k
B · uBy)2 + (d̂k

B · uBx)2

+ vϕ (11)

in terms of the unit vector d̂k
B pointing to the base station and

the unit vectors uBx, uBy, uBz pointing the x,y,z directions
in the body frame.

The noise component of the DOA estimates vθ and vϕ are
modeled as zero mean and variance equal to the CRB shown
in (7). The MUSIC estimator is asymptotically efficient as
m and N are increased [62] so the CRB will represent a
lower bound on the estimate error covariance. This assumes the
MUSIC DOA estimator is an efficient estimator and achieves
the CRB in order to lower bound the variance of the estimator
to represent the best possible performance achievable from
MUSIC based DOA estimates.

E. DOA Aided Pose Estimation

The XR headset pose and twist are estimated by incorporat-
ing the measurement models of the DOA measurements into
PpEngine, the Radionavigation Laboratory’s (RNL) precise
positioning engine [1], [3]–[5]. PpEngine was modified to
incorporate DOA estimates produced by the DOA simulator
into PpEngine as DOA measurement. The DOA measurement
models utilized by PpEngine are the same models (10) and
(11) used to generate the simulated estimates of the azimuth
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Fig. 4: Plot of simulated base station locations. The red asterisk
represent the location of the simulated cellular base stations in
the W frame. The blue line shows the trajectory of the cellular
receiver relative to the base stations.

Fig. 5: Plot of XR headset trajectory in the W frame used to
generate simulated DOA estimates.

and elevation angles respectively. The DOA measurements are
brought into the estimator as shown in Fig. (2) along with the
measurement error covariance. Measurements from an inertial
measurement unit (IMU), GNSS observables from the GNSS
receiver are also incorporated into PpEngine. The state of the
PpEngine estimator X contains the pose and twist in addition
to IMU bias parameters as shown below:

X =
{
rkW,vk

W, e, baU, b
g
U

}
(12)

The position rkW, e, velocity vk
W, IMU accelerometer bias

baU, and IMU gyroscope bias bgU are estimated by PpEngine.
The pose and twist estimates produced by PpEngine are then
passed to GEOSLAM Fig. (2) to constrain the SLAM BA as
describe in previous sections.

VII. RESULTS

This section contains the results from performing visual
SLAM using the GEOSLAM algorithm against a test dataset
and evaluating the results. A simulation incorporating DOA
measurements into the pose estimator was performed to deter-
mine the benefit to the pose estimator during simulated GNSS
outages.

Fig. 6: Map showing the portion of the TEX-CUP dataset
tested. Starting from the bottom right, the car travels west and
then performs two loops as shown. Each loop is approximately
1 km.

A. GEOSLAM Results

1) Dataset: The GEOSLAM pipeline was tested on the
Texas Challenge for Urban Positioning (TEX-CUP) dataset
[43]. This dataset contains monochromatic 2048x732 reso-
lution images captured at 10Hz via stereo cameras, shown
in Fig. (3). The camera intrinsics were calibrated using
Kalibr [63]. In addition, the TEX-CUP dataset contains dual
frequency (L1/L2) GNSS observables recorded using the
RNL’s RadioLynx GNSS front-end and processed with the
PpRx software-defined GNSS receiver [4], [64]–[67] and
inertial measurements from a LORD MicroStrain 3DM-GX5-
25 AHRS industrial-grade IMU [43]. Other sensing sources are
included in the dataset but were not utilized in this experiment.

Ground truth for TEX-CUP is provided by the iXblue
ATLANS-C’s post-processing software and is sub-centimeter-
accurate.

2) GEOSLAM Performance: The performance of
GEOSLAM was tested using two different sections of
the TEX-CUP dataset consisting of two passes over the same
area, shown in Fig. (6). During the first pass through the
loop, GEOSLAM utilized stereo camera images and pose
estimates provided by PpEngine to produce camera poses
and a globally-referenced feature map. The errors in pose
estimate produced by GEOSLAM shown in Fig. (7) exhibit
a position RMSE of 1.38 cm and an orientation RMSE of
1.30◦.

The second test was performed on the segment of the TEX-
CUP dataset corresponding to the second loop around the
block shown in Fig. (6). For this test, no CDGNSS based pose
estimates were utilized by GEOSLAM. Instead, the feature
map generated from the previous test was used to test the
accuracy of the map. During this test Fig. (7) shows that a
larger error in the camera poses was observed with a position
RMSE of 5.47 cm. The map produced by GEOSLAM was able
to constrain the orientation errors with an orientation RMSE
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Fig. 7: Positional and orientation drift with respect to ground truth for the two loops. Left panels: Loop 1, performed with
CDGNSS aiding on unmapped terrain. Right panels: Loop 2, performed without CDGNSS aiding on Loop 1’s created map.

of 0.58◦.
This visual-only test showed that the map created is nearly

centimeter-accurate and that GEOSLAM can collaboratively
add to existing feature maps. Areas of larger error correspond
with poorer map quality. Further loops can prune out these
poor quality keyframes and further reduce error. Importantly,
the second loop exhibits higher amounts of jittering than
the first test. When implemented into an XR headset, this
jittering behavior may be disorienting for the user. This could
be reduced by increasing the length of the BA window or
by feeding back the camera poses into PpEngine, the GNSS
based pose estimator, to jointly estimate the drift rate of
the GEOSLAM camera poses. The latter would complete the
diagram introduced in Fig.(2).

B. DOA Simulation Results

The effect of incorporating DOA measurements on headset
pose estimation was performed by simulating DOA measure-
ments, as discussed in Section VI using a dataset of a GNSS
observables collected using the RNL’s RadioLynx GNSS front-
end and processed with the PpRx software-defined GNSS
receiver [4], [64]–[67]. The GNSS observables were then
coupled with IMU measurements and processed to create a
cm-accurate trajectory shown in Fig. (5). The simulated DOA
measurements were simulated using an array size of 16, an
SNR of 10 dB, and assuming one measurement of the received
signal is used for DOA estimation. The trajectory was then
used to simulate noisy DOA measurements that could be
incorporated into the pose estimator. It is important to note that
the DOA measurements did not take into account multipath
and assume the DOA of the signal is within line of sight.

The estimator was then tested by selectively removing the
GNSS observables to simulate a 10 second GNSS outage.
The outages repeated every 30 seconds and the position and

orientation errors were evaluated. The first experiment was
performed by simulating DOA measurements to 4 separate
base stations Fig (4) at a rate of 20 Hz. This resulted in a
pose estimate and orientation estimate that constrained the
error growth of the IMU during simulated GNSS outages as
shown in Fig. (8), with a position RMSE below 15 cm and
orientation RMSE of 0.17 degrees shown in Table III. This
is a large improvement compared to the case when no DOA
measurements were available during a simulated outage as
shown in Table III.

TABLE III: Pose RMSE During GNSS Outage

Base Stations DOA Rate (Hz) RMSE (meters) RMSE (degrees)

4 20 0.1438 0.1674
2 20 0.2266 0.2825
2 5 0.2446 0.5990
0 0 1.2174 0.9104

This experiment was repeated with more realistic simulated
DOA measurements. It is unlikely that a XR headset will
receive a signal from multiple base stations. To account for
this scenario the number of base stations was reduced to 2.
As a result the RMSE error increased as shown in Table III,
and the error time histories are shown in Fig. (8).

A third experiment was performed to determine the effects
of the DOA measurement rate. There is a trade-off between the
amount of time a communications receiver will be processing
a received signal for DOA estimation; for this reason, the rate
of simulated DOA measurements was reduced to 5 Hz. In
addition, one of the purposes of precise pose estimation is
for beam forming and the cellular radio will likely rely on
the estimated poses to inform beam forming during highly
dynamic motion, and it is likely that the DOA of a signal
will not be estimated. For this reason, for any simulated DOA
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: This figure shows the effect of simulated GNSS outages on the pose estimate in 6Dof. Panel (a) shows the plot of
position errors in the W frame in meters during simulated 10 second GNSS outages with 4 visible base stations. The red line
represents the position error without DOA measurements while the blue line is the position error with DOA measurements.
The red and blue shaded regions are the one standard deviation error of the position estimate for each case. Panel (b) shows
the attitude errors expressed as Euler angles during simulated 10 second GNSS outages with 4 visible base stations. The
dotted orange line represents the attitude error without DOA measurements while the blue line is the position error with DOA
measurements. Panels (c) and (d) are the same plots as (a) and (b) except with only 2 base stations visible to the receiver.
Panels (e) and (f) are the same as (c) and (d) except the DOA measurements are only given to the pose estimator at 5Hz, and
any measurement taken when the angular rate of the headset is above 180 degrees per second are thrown out.

measurement that occurred when the headset was rotating
faster than 180 degrees per second (dps), the simulated mea-
surement was discarded in the simulation. This resulted in
less precise pose estimates as shown in the increased pose

RMSE in Table III and in the time histories in Fig. (8). This
simulation highlights the limitations of DOA measurements for
pose estimation. Although the addition of DOA measurements
under ideal conditions when multiple base stations are visible,
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under more realistic conditions provide a sub-meter accuracy
on the position, and sub-degree accuracy of the orientation.
The results demonstrate that DOA measurements constrain the
error growth during a GNSS outage, but additional sources
of measurements—such as visual SLAM—will need to be
incorporated into the estimator to increase the precision of
the pose estimate during GNSS outages.

VIII. CONCLUSION

This paper outlined a method of pose estimation providing
a robust, outdoor, globally-referenced pose for XR headsets.
GEOSLAM produced cm-accurate globally-referenced feature
maps that were then used to produce cm-accurate pose esti-
mates. An efficient method of cloud offloading GEOSLAM
was developed which sends image feature points to allow bun-
dle adjustment, the most computationally expensive portion
of GEOSLAM, to be processed in the cloud. The proposed
cloud processing regime also allowed for the creation of
precise feature maps when CDGNSS is available that can be
utilized for periods of GNSS outages with a position RMSE
of 5.47 cm and orientation RMSE of 0.58 degrees. The pose
estimator’s resilience to GNSS outages was also demonstrated
by incorporating simulated DOA measurements. The addition
of DOA measurements was able to constrain the RMSE of
the position estimate during simulated GNSS outages below
25 centimeters.
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