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Abstract—This paper proposes a method of passively esti-
mating the parameters of frequency-modulated-continuous-wave
(FMCW) radar signals with a wide range of structural parameter
values and analyzes how a malicious actor could employ such
estimates to track and spoof a target radar. When radars are
implemented to support automated driver assistance systems, an
intelligent spoofer has the potential to substantially disrupt safe
navigation by inducing its target to perceive false objects. Such
a spoofer must acquire highly accurate estimates of the target
radar’s chirp sweep, timing, and frequency parameters while
additionally tracking and compensating for time and Doppler
shifts due to clock errors and relative movement. This is a difficult
task for millimeter-wave radars due to severe Doppler shifts and
fast sweep rates, especially when the spoofer uses off-the-shelf
FMCW equipment. Algorithms and techniques for acquiring and
tracking an FMCW radar are proposed and verified through
simulation, which will help guide future decisions on appropriate
radar spoofing countermeasures.

Index Terms—FMCW, radar, passive, spoofing, mmWave

I. INTRODUCTION

Frequency-modulated continuous-wave (FMCW) radars op-
erate by transmitting a sequence of multiple linear chirps
called a frame. After reflecting off an object, the received
signal is mixed with a replica of the transmitted chirp se-
quence, resulting in a sinusoid whose frequency indicates the
range to the reflecting object. By examining the phase shifts of
this sinusoid across multiple chirps, a radar can estimate the
object’s relative velocity. Furthermore, an FMCW radar can
estimate an object’s direction by examining the phase shifts
across elements in its antenna array.

Millimeter-wave (mmWave) radars have significantly im-
proved radar precision [1], providing benefits over alternative
sensors for use in automated driver assistance systems (ADAS)
and autonomous vehicle (AV) platforms [2], [3]. Radars are
currently deployed in ADAS for adaptive cruise control, for-
ward collision avoidance, and lane-change assist, among others
[4]. In more advanced systems, these radars may be used for
imaging by providing point cloud data to computer vision
systems within AVs [2]. Beyond the automotive industry, these
radars can provide precise sensing for urban air mobility
applications [5]. With an ever increasing number of automated
systems relying on mmWave FMCW radar, it is crucial that
these sensors remain secure against potential threats.

Since typical fast-chirp mmWave FMCW radars use an
intermediate frequency (IF) bandwidth in the 10s of MHz and

chirp slopes in the 10s of MHz/µs, these radars only sample
a thin sliver of the time-frequency spectrum at any instant,
making it unlikely that persistent interference will appear in
the band of sensitivity and manifest as a false reflecting object
[6], [7]. However, existing fast-chirp processing is susceptible
to deliberate spoofing. By controlling the time-of-arrival and
frequency offset of the spoofing signal, an attacker can induce
the target receiver to perceive fake objects at any arbitrary
range and velocity. Since FMCW radars are the most widely
used radars in automotive vehicles [8], such spoofing could
have widespread ramifications.

Previous studies on radar spoofing have focused directly
on the mechanics of a spoofing attack, demonstrating FMCW
spoofing attacks with commercial-off-the-shelf (COTS) de-
vices [9], [10], [11], with custom boards [12], and with an
AV testbed [13]. However, this work assumes that the spoofer
already knows the target radar’s waveform, which is unlikely
in a real-world scenario. Furthermore, the advanced spoofing
attack in [13] was carried out using high-end test equipment,
which may not be representative of the most common radar
spoofing threats. Separate from spoofing literature, the related
problem of FMCW parameter estimation and synchronization
has been examined. Gardill et al. proposed a method of finding
an unknown FMCW signal by analyzing the time-frequency
spectrum of interference when mixed with a local fast-sweep-
rate FMCW signal [14]. Their study was then extended to
demonstrate how such a tactic could be used to first estimate
signal parameters, switch the local mixer to a CW signal to
obtain precise timing, and then switch the local mixer to a
time-aligned replica of the transmitted signal [15]. While these
studies did not directly address FMCW spoofing, they show
that synchronization schemes are practical and that issues such
as timing jitter can be accounted for. However, the papers do
not propose a rigorous method of chirp parameter estimation
and tracking. Other work has focused purely on synchronizing
FMCW systems when the signal shape is known [16], [17].
Work on counter-adversarial tracking has also analyzed the
estimation and countering of cognitive radars [18].

Prior work has studied passive FMCW parameter estimation
and FMCW spoofing attacks but falls short of detailing a com-
prehensive attack that can be carried out using COTS radars
without prior signal knowledge. This paper addresses these
gaps so future work can evaluate effective countermeasures.
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II. SYSTEM MODEL

Consider an environment where there is a set of radars I,
all with standard FMCW architectures, and each having one
or more transmit and receive antennas. Each radar has a signal
generator that creates linear frequency chirps. A sequence
of these chirps, called a frame, is generated and processed
coherently. The number of chirps depends on the desired
Doppler resolution and can range between tens and hundreds
of chirps per frame. Each chirp signal is sent to one or more
transmit antennas and to a mixer that takes its other input from
the receive antennas. Let the transmitted signal of the kth chirp
in the ith radar’s frame be denoted as sik(t), where i ∈ I and
k ∈ Ki, with Ki being the set of chirps in one frame from
radar i. The kth chirp has a start frequency fik, a chirp slope
βik, a phase offset φik, and a duration Tik. A baseband model
of the ith radar’s kth chirp is

cik(t) =

{
exp

(
j2π

(
fikt+ βikt

2

2

)
+ jφik

)
t ∈ [0, Tik)

0 otherwise .
(1)

This chirp signal is sent to one or more transmit anten-
nas with some complex weighting. Assume that radar i has
NTX,i transmit antennas and NRX,i receive antennas. Let the
vector of transmit antenna weights for chirp k on radar i
be wik ∈ CNTX,i×1. For this paper, wik is assumed to be
one-hot, meaning that it contains only one nonzero element.
However, MIMO radars may use orthogonal codes such as
Hadamard codes across multiple antennas, in which case every
element of wik would contain ±1 in accordance with the
code. Additionally, wik may apply a binary phase-shift keying
(BPSK) or quadrature phase-shift keying (QPSK) phase code
across each chirp k. Each chirp signal is delayed ∆tik seconds
after the beginning of the frame and weighted by the vector
wik, creating the transmitted signal

si(t) =
∑
k∈K

wikcik(t−∆tik), (2)

which propagates along several paths to the receive anten-
nas. Let Ril be a set of paths from radar l to radar i. In the
case of monostatic radar, the transmit and receive radars are
the same, and this set can be written as Rii. Focusing on the
monostatic case, the signal in each path r ∈ Rii experiences a
propagation delay ∆tr and arrives with a receive magnitude
αir. Due to the antenna array manifold, relative phase shifts
are imparted on the signal depending upon the angles of
departure and arrival of each path. The transmitter array phase
shift is given by aTX,ir ∈ CNTX,i×1 and the receiver array
phase shift is given by aRX,ir ∈ CNRX,i×1 for the rth path.
Lastly, the signal propagating along the rth path experiences
a Doppler shift fD,r arising from the motion of the radar and
the reflecting object. This shift is modeled as a multiplication
of the signal by νr(t) = exp (j2πfD,rt). The received signal
across all receive antennas is then given by the vector

xi(t) =
∑
r∈Ri

i

αiraRX,ira
>
TX,irsi(t−∆tr)νr(t). (3)

In addition to this monostatic signal, radar i will receive inter-
ference from other radars in the environment. The interference
signal received at radar i is

x̃i(t) =
∑

l∈I\{i}

∑
r∈Ri

l

αiraRX,ira
>
TX,lrsl(t−∆tr)νr(t). (4)

The sum xi(t)+x̃i(t) is mixed with the conjugate transpose of
radar i’s local signal given in (2), passed through a lowpass
anti-aliasing filter with impulse response h(t), and sampled
with period Ts, creating the NRX,i ×NTX,i matrix Yi[n]:

Yi(t) = (xi(t) + x̃i(t)) s
H
i (t). (5)

Yi[n] =

∫ ∞
−∞

h(nTs − τ)Yi(τ) dτ. (6)

Consider the mixed signals originating from a different
radar. Let mikr

lk̃
(t) be the resulting signal when the k̃th

transmitted chirp from radar l is received along path r by
radar i and mixed with its kth chirp:

mikr
lk̃

(t) = clk̃(t−∆tr)c
∗
ik(t)νr(t) (7)

= exp
(
j2π
(

(flk̃ − fik)t− βlk̃∆trt+ fD,rt− flk̃∆tr

+ 1
2 (βlk̃ − βik)t2 + 1

2βl,k̃∆t2r

)
+ j(φlk̃ − φik)

)
.

This is a linear chirp with a slope of βlk̃ − βik, a start
frequency of flk̃ − fik − βlk̃∆tr + fD,r, and a phase shift of
−2πflk̃∆tr + πβlk̃∆t2r + φlk̃ − φik.

Real-world radar systems are prone to clock errors, and
the system model must account for their effects, especially
in the case of bistatic propagation where the two radars are
unsynchronized. Therefore, the clock frequency and phase
drifts are modeled with the two-state model described in
[19, Chapter 9.3]. This model is parameterized by two Allan
variance parameters, h0 and h−2. Consider two white-noise
processes, Fi(t) and Gi(t), with spectral densitiesSf,i ≈ h0

2
and Sg,i ≈ 2π2h−2, respectively. The time perceived at radar
i is t̃i(t), a function of the true time t:

t̃i(t) = t+

∫ t

0

Fi(τf ) +

∫ τf

0

Gi(τg) dτg dτf . (8)

Considering only the azimuth dimension, propagation path
r has an angle of arrival θAOA,r and an angle of departure
θAOD,r. Each radar’s antennas have a gain as a function of
angle, GRX,i(θ) and GTX,i(θ). The signal experiences a path
loss of Lprop,r, which may be one-way for a direct path,
or two-way for a reflected path. The reflection in the path
has a radar cross section of σRCS,r. The total received power
is PRX,ir = PTX,lGRX,i(θAOA,r)GTX,l(θAOD,r)L

−1
prop,rσRCS; the

received magnitude is αir =
√
PRX,ir.

III. FMCW ENTRAINMENT

Consider an instance of the signal model where the set of
radars includes one target radar l and one spoofer radar i. The
spoofer aims to transmit a false replica of the target’s signal,
causing the target radar to perceive a fake object. However,
the spoofer is assumed to have no prior knowledge of the
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TABLE I: Required Signal Parameters

Tframe Frame interval
∆tframe Frame timing offset
Tk Duration of the kth chirp in the frame
∆tk Start time of the kth chirp after the frame start
∆fk Start frequency of the kth chirp
βk Slope of the kth chirp
K Number of chirps in a frame
φk Phase shift applied to the kth chirp

target’s signal structure other than it taking the form of a
mmWave FMCW signal with repeating frames. To recreate
the target signal accurately for spoofing, the spoofer must
have an estimate of the parameters in Table I. These are
the parameters as perceived by the spoofer which may be
different from the true target parameters due to ambiguities
caused by the clocks, timing, Doppler, and chirp phase shifts.
Furthermore, the spoofer is assumed to use COTS FMCW
radar equipment. While a wideband mmWave receiver may be
capable of easily estimating these parameters after capturing
the entire chirp sequence, the small IF bandwidth of COTS
FMCW radars complicates this task. Instead, the spoofer must
strategically design its mixing signal to collect information
about the spectrum and the target signal, only receiving useful
samples when the target and mixing signals are close in
frequency. The spoofing scheme proposed here offers one
possible strategy for estimating the target signal’s parameter
under these constraints.

The proposed FMCW spoofing attack can be divided into
three stages: (1) an identification stage where the spoofer
samples the spectrum to discover a target radar signal and
coarsely estimates the target’s parameters, (2) a tracking stage
where the spoofer refines its parameter estimates and tracks the
signal with greater precision, and (3) a spoofing stage where
the spoofer transmits a signal with the intent of appearing
as a fake object to the target radar. This paper focuses on
the first two stages, which will collectively be called signal
entrainment.

A. Identification

During the identification stage, the spoofer operates pas-
sively and attempts to find an FMCW radar to target. Through-
out this stage, the spoofer restricts its signal to a constant
frequency tone with frequency ftone. First, the spoofer attempts
to detect the presence of an FMCW signal. From (7), the
mixed output of a chirp with a constant frequency tone (i.e.,
fik = ftone and βik = 0) is a chirp whose instantaneous
frequency is βlk̃(t−∆tr) +flk̃−ftone +fD,r. Due to the anti-
aliasing filter, this signal will be filtered out except for the short
time-span when the instaneous frequency is near zero. Fig. 1
visualizes one instance of such a signal. Due to the one-way
path loss of the target-spoofer system and beamforming, this
signal is easily detectable above the noise floor without any
pulse integration. Recall that wik and, consequently, si(t) are
assumed to be one-hot. From (5), this assumption means Yi[n]
has only one non-zero column. Let this column be written as
yi[n] with shape NRX,i×1 in this specific case. Beamforming
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Fig. 1: Complex samples of the signal modeled in (7) during an interval in
which the mixing signal crosses the received signal in time and frequency,
fik = ftone, and βik = 0.
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Fig. 2: A visualization of the detections obtained during the two captures
in the identification stage when mixing with a 76.25 GHz tone. The target
signal’s frame interval Tframe and frame timing offset ∆tframe are highlighted.

is performed with an FFT [3], [20] of yi[n] across the receive
antenna dimension, creating the beamformed vector ỹi[n],
whose bth element corresponds to the bth beamforming bin.
Assuming an oversampling factor of Nos, ỹi[n] has the shape
NosNRX,i × 1.

First, the spoofer determines which sample index n
and beamforming bin b contain the maximum power:
{n̂max, b̂max} = argmaxn,b | (ỹi[n])b |2. The spoofer then uses
a constant false alarm rate (CFAR) detector [21, Chapter 6.5]
on the power-maximizing beamformed signal (ỹi[n])b̂max

to
create a set of detections Dsample containing sample indices
and frequencies (n̂, f̂). The frequencies come from the known
frequency of the spoofer’s mixer, ftone. The set of detections
Dsample is consolidated by replacing groups of neighboring
sample indices n̂ with a single detection at the center sam-
ple of each group. Lastly, a new set D is created where
D = {(nTs, f) : (n, f) ∈ Dsample}, converting the sample
indices to times.

Now, the spoofer estimates the frame interval Tframe and
frame timing offset ∆tframe, which are defined graphically as
shown in Fig. 2. The spoofer collects two captures of samples
while mixing the received signal with a constant frequency
tone for Tcapture seconds each. Tcapture is chosen to be long
enough to contain at least two repetitions of the target radar’s
frame, whose interval Tframe is unknown to the spoofer but
can be reasonably bounded. The samples from both captures
are passed through the same CFAR detector, creating two sets
of detections: D1 and D2. Note that f1 = f2 = ftone since
the mixing frequency has not changed. These detections are
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Fig. 4: (a) The sum kernel likelihood between D1 and D2 for different lag
times. The distance between each peak provides an estimate of the frame
interval. (b) The refined kernel likelihood used for estimating the error in the
initial frame interval estimate.

visualized in relation to the frame parameters in Fig. 2 and to
the chirp parameters in Fig. 3. Since the spoofer currently has
no reference of the target’s frame timing, the spoofer does not
yet know which frame each detection belongs to. To estimate
the frame timing under this ambiguity, the spoofer analyzes the
periodicity of the detections. This is done by evaluating how
well these two sets match over shifts in time using a Gaussian
kernel likelihood function k(t1, t2, σ) = exp

(
−|t1−t2|2

σ2

)
.

This approach is inspired by kernel correlation techniques
used in point-set registration [22]. The sum kernel likelihood
between the sets for a lag l is

d(l) =
∑

(t1,f1)∈D1

∑
(t2,f2)∈D2

k(t1, t2 − l, σ). (9)

The kernel standard deviation σ is chosen to be greater than
the longest possible chirp interval and less than the shortest
possible frame interval, causing the function d(l) to smooth
over small time differences between the two sets. The result
is a function that exhibits multiple peaks with an inter-peak
distance approximately equal to the frame interval, from which
one may obtain an estimate T̂frame. Fig. 4a shows an example
of this sum kernel likelihood function.

The spoofer then estimates the frame timing offset ∆tframe.
Since there is an inherent ambiguity between the frame timing
offset and the chirp timing offsets relative to the frame start,
the spoofer has flexibility in selecting this value. However, it is
important that the chosen offset does not cause the estimated

frames to contain detections from two of the target’s frames.
To minimize this possibility, ∆tframe is chosen as the time that
minimizes the mean squared distance between the detection
times and the center of the nearest frame. The two sets of
detections are combined to form D = D1∪D2, and the frame
offset ∆tframe is estimated as

∆t̂frame = (10)

argmin
∆tframe∈[0,T̂frame]

∑
(t,f)∈D

∣∣∣∣∣((t−∆tframe) mod T̂frame)−
T̂frame

2

∣∣∣∣∣
2

.

With an estimate of the frame interval and a frame time
offset that centers the chirp sequence in the frame, the spoofer
can now partition its detections into each frame and further
refine its frame interval estimate. Similar to the first frame
interval estimation, a kernel likelihood measure is used. First,
define a function g(t, l) = (t − ∆t̂frame) mod (T̂frame − l),
and let σref be a refined kernel standard deviation, which is
chosen to be less than the minimum chirp duration but larger
than the spoofer’s desired time resolution. Then the sum kernel
likelihood using the refined kernel is

dref(l) =
∑

(t1,f1)∈D

∑
(t2,f2)∈D

k(g(t1, l), g(t2, l), σref). (11)

The frame interval estimate error is given by the value
l that maximizes the refined kernel likelihood: l̂max =
argmaxl dref(l). This likelihood function is visualized in
Fig. 4b. Using this error, the spoofer creates a new set of
detections that accounts for the refined frame timing estimate:

Dframe = {(g(t, l̂max), f) : (t, f) ∈ D}. (12)

Finally, the frame interval estimate T̂frame is adjusted by
l̂max seconds for future captures. Frame timing estimation is
complete now that the spoofer has estimates T̂frame and ∆t̂frame.

Next, the spoofer identifies each chirp in the frame. Chirps
from different frames are matched by their proximity in time in
the new set Dframe. The matching criterion for (t1, f1) ∈ Dframe
and (t2, f2) ∈ Dframe is (t1 − t2)

2
< σ2

chirp. Each unique set
of matching detection times is considered a detected chirp,
creating an initial estimate of the set of chirps K̂. Each chirp’s
time offset is set equal to the average of the detection times
matched to that chirp. The chirp timing threshold σchirp is
chosen to be larger than the worst-case timing jitter and less
than the minimum inter-chirp time.

Now that the spoofer has a sense of the target radar’s frame
timing and chirp locations, the spoofer can begin sampling
frequencies to determine each chirp’s duration Tk, start time
∆tk, start frequency ∆fk, and slope βk. The spoofer captures
samples for Msearch frames, mixing with a different constant
frequency tone fm, ∀m ∈ {1, . . . ,Msearch} in the mth frame.
In this paper, fm were linearly spaced in frequency, but
other strategies are possible. As before, the spoofer creates
a set of detections Dsearch, from which it estimates each
chirp’s parameters using Algorithm 1, which associates likely
detections with each chirp, performs a least-squares regression,
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Fig. 5: A visualization of the detections obtained after a frequency search and
how the chirp estimation algorithm operates. The circles indicate detections
already associated with a chirp, the cones indicate the acceptable likelihood
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detections to be associated with each chirp. On the leftmost chirp, the
prospective detection is accepted. On the rightmost chirp, the prospective
detection is excluded.

and updates the covariance of its parameter estimates. This
process is visualized in Fig. 5. The inputs to the algorithm are
an initial estimated time for the chirp ∆tk, the set of detections
Dsearch, and a prior measurement variance for detection fre-
quencies σ2

freq. The output is a chirp slope estimate β̂k, a linear
regression frequency offset f̂k, a vector of detection times
tmatch,k associated with the chirp, and a vector of frequencies
fmatch,k associated with the chirp. This algorithm is run for
each chirp k ∈ K̂. Let nstart,k = argminn (tmatch,k)n, the index
of the first occuring matched detection. Then the kth chirp’s
start frequency is estimated as ∆f̂k = (fmatch,k)n. The start
time is estimated using the linear regression frequency offset
as ∆t̂k = (∆f̂k − f̂k)/βk. The spoofer now has an estimate
of all signal parameters required to recreate the target signal
accurately enough to begin tracking.

Algorithm 1 Iterative Chirp Parameter Estimation
Input: ∆tk, Dsearch, σ

2
freq

Output: β̂k, f̂k, tmatch,k, fmatch,k

1: β̂k ← 0, f̂k ← 0, K ← diag{[∞,∞]}
2: D′ ← Dsearch sorted by distance from ∆tk
3: (t1, f1)← 1st entry in D′, D′ ← D′ \ (t1, f1)
4: tmatch ← [t1], fmatch ← [f1]
5: for {t, f} ∈ D′ do
6: f̂k ← β̂kt+ f
7: x← [t 1]
8: σ̂2

freq ← xKxH + σ2
freq

9: if |f−f̂k|
σ̂freq

< 2 then
10: tmatch,k ← [t>match,k t]

>, fmatch,k ← [f>match,k f ]>

11: X ← [tmatch,k 1]
12: [β̂k f̂k]> ← (XHX)−1XHfmatch,k

13: K ← σ2
freq(X

HX)−1

14: else
15: exit
16: end if
17: end for

B. Tracking

After identifying the target radar’s signal as described, the
spoofer can track the signal using more traditional FMCW

signal processing, similar to the processing described in [3].
During this tracking phase, the individual chirp parameters
are refined to produce a mixed signal mikr

lk̃
(t) similar to what

would arise when tracking a genuine reflection. Rather than
using continuous frequency tones, as in the identification stage,
the spoofer uses its estimated target signal in its mixer.

Recall that the spoofer collects a vector of samples during its
frame denoted as yi[n]. Rather than sampling continously over
the entire frame, the spoofer now only samples during each
chirp. The vector of sample indices corresponding to chirp k
can be denoted as nk, containing Nsample samples, assuming
the same number of samples are collected during each chirp.
These samples can be structured into a 3-dimensional tensor
(Y

(k)
i )an = (yi[(nk)n])a, where the 1st dimension is the

receive antenna index a, the 2nd dimension is the sample index
n, and the 3rd dimension (denoted with the superscript) is the
chirp index k. In the radar literature, this tensor is commonly
referred to as the “radar data cube.”

The spoofer beamforms across receive antennas with an FFT
across the 1st dimension of the radar data cube, creating Ỹ

(k)
i .

The spoofer also performs range and Doppler processing with
an FFT, as in [3], over the 2nd and 3rd dimensions of this
tensor, creating Y̆

(d)
i , where d is the post-FFT Doppler bin

index. Note that this FFT processing assumes homogenous
chirp slopes. For non-homogeneous chirps, the FFTs must be
transformed to align in range, the details of which are omitted
in this paper. Next, the spoofer determines the beamforming,
range, and Doppler bin indices (b, n, and d) that maximize
the power of this processed tensor:

b̂max, n̂max, d̂max = argmax
b,n,d

∣∣∣(Y̆ (d)
i

)
bn

∣∣∣2 . (13)

These indices are then converted into an angle θ̂ in radians, a
time delay ∆t̂ in seconds, and a Doppler frequency f̂D in Hz.
The spoofer implements a simple 1st-order tracker to place
the peak at a desired time delay and Doppler frequency.

Due to inaccurate chirp timing and chirp slope estimates,
the processed signal may appear spread out in range and
Doppler, reducing or eliminating any clear peak. To address
this, the spoofer first refines its individual chirp estimates
using the beamformed signal prior to range and Doppler
processing Ỹ

(k)
i . The spoofer takes the b̂maxth row of Ỹ

(k)
i ,

denoted (z
(k)
i )>, to beamform in the target’s direction. Then,

it performs only range processing through an FFT of this
vector, creating z̆

(k)
i . This differs from Y̆

(d)
i since only the

power-maximizing beam is used and Doppler processing is
not performed, creating a separate range signal for each chirp.
The range index n with the peak power is found as

n̂max,k = argmax
n

∣∣∣(z̆(k)
i

)
n

∣∣∣2 . (14)

The complex values at these peak-power range indices are
pk = (z̆

(k)
i )n̂max,k . Then, the range indices n̂max,k are converted

into time delay estimates δt̂k. Let δt̄ be the average of δt̂k over
k. The spoofer shifts the start time of the kth chirp by δt̂k−δt̄
seconds to align all chirps at the same range.
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Fig. 6: The estimated chirp phases at the peak power bin after range processing
and beamforming, prior to (a) and after (b) correction. The phases exhibit
a phase rotation over time due to residual Doppler while also showing a
random 180◦ phase shift due to the coding. After correction, the phases can
be quantized based on the detection regions shown.

Additionally, the spoofer can refine its estimate of each
chirp’s slope. By (7), slope error causes the mixed signal
to have a residual linear frequency slope. This is addressed
by searching for the chirp slope rate that, when mixed with
the samples prior to range processing, maximizes the power
in the peak of the range FFT. For a residual slope β̂, the
slope-correction signal is mβ̂ [n] = exp(jπβ̂(Tsn)2), ∀n ∈
{1, . . . , Nsample}, denoted in vector notation as mβ̂ . This is

mixed with the beamformed sample signal creating z
(k)

iβ̂
=

z
(k)
i �mβ̂ (with � being a Hadamard product). Then, the

spoofer performs its range FFT, creating z̆
(k)

iβ̂
. The residual

slope is estimated as

δβ̂k = argmax
β

max
n

∣∣∣(z̆(k)
iβ

)
n

∣∣∣2 . (15)

The spoofer then adjusts the slope for the kth chirp by
−δβ̂k. The last chirp-level parameters to be estimated and
compensated for are the chirp phase shifts φk, ∀k ∈ K̂,
which arise from both transmit phase weightings and the
physical placement of transmit antennas. Recall the values
pk obtained earlier, containing the complex values at the
power-maximizing range bin for each chirp, which can be
stacked into a vector p. Fig. 6a shows an example of the
phases of p where residual Doppler is present, despite the
Doppler tracking. Therefore, a Viterbi and Viterbi (V&V)
Algorithm [23] is used to wipe off any phase modulation
for refined Doppler estimation. Assuming a modulation order
of Mmod which is a power of 2, the modified values are
pV,k = p

log2(Mmod)
k . The spoofer then finds the index cor-

responding to the peak of the FFT of pV,k. This index is
converted into a frequency estimate f̂V and a phase estimate
φ̂V. Let Tc be the average chirp interval. A correction signal
is created m̂V[n] = exp(j2πf̂VTck+ jφ̂V), ∀k ∈ K̂, denoted
in vector notation as m̂V. This signal is multiplied with p,
giving pcorr = p � m̂V. In this new signal, phase shifts due
to any residual Doppler are approximately removed, and the
relative phase shift of each chirp can be estimated. The spoofer
decodes the phase modulation of each chirp through detection
regions defined by the modulation order Mmod, creating an
estimate φ̂k. This FFT-based approach relies on the chirp

(a)

(b)

Fig. 7: The spoofer’s range-Doppler processing in the 1st (a) and 12th (b)
frames of the tracking stage. The signal is highly spread in range and Doppler
in the 1st frame. The Doppler spreading is refined by correcting the chirp
slope, timing, and phase code in the 12th frame, producing a clear peak.

spacing being approximately uniform, but could be extended to
use a non-uniform DFT when chirp spacing is non-uniform.
Fig. 6b shows the phases of pcorr derived from the same p
shown in Fig. 6a with QPSK detection regions overlaid.

IV. RESULTS

The results shown are from MATLAB simulation. The
simulated scenario has one target radar, one spoofing radar,
and one point reflector colocated with the target radar. The
target radar transmits a frame with a standard time-multiplexed
MIMO configuration across 3 transmit and 4 receive antennas.
The IF bandwidth is 10 MHz and the target’s chirps sweep a
bandwidth of 500 MHz in 32 µs. A random binary phase code
is applied to each chirp’s weighting which repeats each frame.
The spoofer radar is equipped with the same antenna elements
and RF chains, but has 8 receive antennas. The radars are
placed 50 m apart and have a relative velocity of 14.14 m/s.

Fig. 7a and Fig. 7b show the range-Doppler map that the
spoofer perceives during the tracking stage. In Fig. 7a, the
spoofer has just finished its identification stage. Due to coarse
estimates of the chirp timings and slopes, the power is spread
out in range and Doppler. Furthermore, the spoofer’s tracker
aims to place this signal at a perceived range of 100 m and
Doppler of 0 Hz. In Fig. 7b, the tracker has shifted the signal
to its desired range and refined its individual chirp timing and
slope estimates, concentrating the power in range. The tracker
has also corrected for its chirp phase estimates, concentrating
the power in Doppler. The performance of the tracker can be
quantified with three metrics: power concentration in range,
power concentration in Doppler, and RMSE of the chirp slope
estimates. Fig. 8a shows the concentration in range, measured
by the width around the peak that contains 50 % of the signal’s
power. As the chirp timing and slope are refined, this width
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Fig. 8: (a) The width around the peak of the range-Doppler map containing
50 % of the signal power in the range dimension. (b) The width around the
peak of the range-Doppler map containing 50 % of the signal power in the
Doppler dimension. (c) The RMSE of the chirp slope estimates.

reduces to near 0.54 m. Fig. 8b shows the same analysis for
Doppler. No improvement in Doppler spread is seen until
frame 12 when the phase estimates are applied, decreasing the
spread to near 63 Hz. After frame 12, some fluctuation is seen
due to TX-dependent phase shifts from the array manifold as
the target radar moves.

V. CONCLUSION

These results demonstrate how an intelligent adversary may
succesfully identify and track a mmWave FMCW radar using
a COTS FMCW radar itself. This adversary does not require
any prior knowledge of the target’s signal’s timing and chirp
parameters, making such an attack effective in the real-world
where the target’s signal is unknown. After the described
entrainment, the spoofer may transmit its signal, inducing the
target to perceive very precisely controlled spoofed objects. In
future analysis, it will be crucial to consider such an adversary
when evaluating spoofing countermeasures.

ACKNOWLEDGMENT

Research was sponsored by the U.S. Department of Trans-
portation (USDOT) under the University Transportation Center
(UTC) Program Grant 69A3552047138 (CARMEN), and by
affiliates of the 6G@UT center within the Wireless Network-
ing and Communications Group at The University of Texas at
Austin.

REFERENCES

[1] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Wald-
schmidt, “Millimeter-wave technology for automotive radar sensors in
the 77 GHz frequency band,” IEEE Transactions on Microwave Theory
and Techniques, vol. 60, no. 3, pp. 845–860, 2012.

[2] S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO radar for advanced
driver-assistance systems and autonomous driving: Advantages and
challenges,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 98–
117, 2020.

[3] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive radars:
A review of signal processing techniques,” IEEE Signal Processing
Magazine, vol. 34, no. 2, pp. 22–35, 2017.

[4] F. Engels, P. Heidenreich, A. M. Zoubir, F. K. Jondral, and M. Win-
termantel, “Advances in automotive radar: A framework on compu-
tationally efficient high-resolution frequency estimation,” IEEE Signal
Processing Magazine, vol. 34, no. 2, pp. 36–46, 2017.

[5] W. A. Lies, L. Narula, P. A. Iannucci, and T. E. Humphreys, “Long-
range, low SWaP-C FMCW radar,” IEEE Journal of Selected Topics in
Signal Processing, pp. 1–1, 2021.

[6] M. Ahrholdt et al., “D12.1-study report on relevant scenarios and
applications and requirements specification,” European Commission:
MOre Safety for All by Radar Interference Mitigation (MOSARIM),
2010.

[7] M. Kunert et al., “D1.5-study on the state-of-the-art interference mitiga-
tion techniques,” European Commission: MOre Safety for All by Radar
Interference Mitigation (MOSARIM), 2010.

[8] S. Alland, W. Stark, M. Ali, and M. Hegde, “Interference in automotive
radar systems: Characteristics, mitigation techniques, and current and
future research,” IEEE Signal Processing Magazine, vol. 36, no. 5, pp.
45–59, 2019.

[9] R. Komissarov and A. Wool, “Spoofing attacks against vehicular FMCW
radar,” in Proceedings of the 5th Workshop on Attacks and Solutions in
Hardware Security, 2021, pp. 91–97.

[10] N. Miura, T. Machida, K. Matsuda, M. Nagata, S. Nashimoto, and
D. Suzuki, “A low-cost replica-based distance-spoofing attack on
mmWave FMCW radar,” in Proceedings of the 3rd ACM Workshop on
Attacks and Solutions in Hardware Security Workshop, 2019, pp. 95–
100.

[11] M. Ordean and F. D. Garcia, “Millimeter-wave automotive radar spoof-
ing,” arXiv preprint arXiv:2205.06567, 2022.

[12] P. Nallabolu and C. Li, “A frequency-domain spoofing attack on FMCW
radars and its mitigation technique based on a hybrid-chirp waveform,”
IEEE Transactions on Microwave Theory and Techniques, vol. 69,
no. 11, pp. 5086–5098, 2021.

[13] Z. Sun, S. Balakrishnan, L. Su, A. Bhuyan, P. Wang, and C. Qiao,
“Who is in control? Practical physical layer attack and defense for
mmWave-based sensing in autonomous vehicles,” IEEE Transactions
on Information Forensics and Security, vol. 16, pp. 3199–3214, 2021.

[14] M. Gardill, J. Schwendner, and J. Fuchs, “In-situ time-frequency analysis
of the 77 GHz bands using a commercial chirp-sequence automotive
FMCW radar sensor,” in 2019 IEEE MTT-S International Microwave
Symposium (IMS). IEEE, 2019, pp. 544–547.

[15] ——, “An approach to over-the-air synchronization of commercial chirp-
sequence automotive radar sensors,” in 2020 IEEE Topical Conference
on Wireless Sensors and Sensor Networks (WiSNeT). IEEE, 2020, pp.
46–49.

[16] S. Roehr, P. Gulden, and M. Vossiek, “Method for high precision
clock synchronization in wireless systems with application to radio
navigation,” in 2007 IEEE Radio and Wireless Symposium. IEEE,
2007, pp. 551–554.

[17] F. Lampel et al., “System level synchronization of phase-coded FMCW
automotive radars for RadCom,” in 2020 14th European Conference on
Antennas and Propagation (EuCAP). IEEE, 2020, pp. 1–5.

[18] V. Krishnamurthy, K. Pattanayak, S. Gogineni, B. Kang, and M. Ran-
gaswamy, “Adversarial radar inference: Inverse tracking, identifying
cognition, and designing smart interference,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 57, no. 4, pp. 2067–2081, 2021.

[19] R. G. Brown and P. Y. Hwang, Introduction to Random Signals and
Applied Kalman Filtering. Wiley, 2012.

[20] R. Mucci, “A comparison of efficient beamforming algorithms,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 32, no. 3,
pp. 548–558, 1984.

[21] M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed.
New York: McGraw-Hill, 2014.

[22] Y. Tsin and T. Kanade, “A correlation-based approach to robust point
set registration,” in European conference on computer vision. Springer,
2004, pp. 558–569.

[23] A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated
carrier phase with application to burst digital transmission,” IEEE
Transactions on Information theory, vol. 29, no. 4, pp. 543–551, 1983.

7


