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WITH RICHARD B. LANGLEY

T
he combination of easily accessible low-cost 
GNSS spoofers and the emergence of increasingly 
automated GNSS-reliant ground vehicles prompts 
a need for fast and reliable GNSS spoofing 

detection. To underscore this point, Regulus Cyber, an Israeli 
cybersecurity company, recently spoofed a Tesla Model 3 on 
autopilot mode, causing the vehicle to suddenly slow and 
unexpectedly veer off the main road.

Among GNSS signal authentication techniques, signal-
quality monitoring (SQM) and multi-antenna could be 
considered for implementation on ground vehicles. However, 
SQM tends to perform poorly on dynamic platforms in urban 
areas where strong multipath and in-band noise are common, 
and multi-antenna spoofing detection techniques, while 
effective, are disfavored by automotive manufacturers seeking 
to reduce vehicle cost and aerodynamic drag. Thus, there is a 
need for a single-antenna GNSS spoofing detection technique 
that performs well on ground vehicles, despite the adverse 
signal-propagation conditions in an urban environment.

In a concurrent trend, increasingly automated ground 
vehicles demand ever-stricter lateral positioning to ensure safety 
of operation. An influential study calls for lateral positioning 
better than 20 centimeters on freeways and better than 10 
centimeters on local streets (both at a 95% probability level). 
Such stringent requirements can be met by referencing lidar 
and camera measurements to a local high-definition map, but 
poor weather (heavy rain, dense fog or snowy whiteout) can 
render this technique unavailable. 

On the other hand, progress in precise (decimeter-level) 

GNSS-based ground vehicle positioning, which is impervious to 
poor weather, has demonstrated surprisingly high (above 97%) 
solution availability in urban areas. This technique is based on 
carrier-phase differential GNSS (CDGNSS) positioning, which 
exploits GNSS carrier-phase measurements having millimeter-
level precision but integer-wavelength ambiguities.

Key to our promising results is the tight coupling of CDGNSS 
and inertial measurement unit (IMU) data, without which 
high-accuracy CDGNSS solution availability is significantly 
reduced due to pervasive signal blockage and multipath in 
urban areas. Tight coupling brings millimeter-precise GNSS 
carrier-phase measurements into correspondence with high-
sensitivity and high-frequency inertial sensing. Our particular 
estimation architecture incorporates inertial sensing via model 
replacement, in which the estimator’s propagation step relies on 
bias-compensated acceleration and angular rate measurements 
from the IMU instead of a vehicle dynamics model. As a 
consequence, at each measurement update, an a priori antenna 
position is available whose delta from the previous measurement 
update accounts for all vehicle motion sensed by the IMU, 
including small-amplitude high-frequency motion caused by 
road irregularities. Remarkably, when tracking authentic GNSS 
signals in a clean (open-sky) environment, the GNSS carrier-
phase predicted by the a priori antenna position and the actual 
measured carrier phase agree to within millimeters.

The research described in this article pursues a novel 
GNSS spoofing-detection technique based on a simple but 
consequential observation: it is practically impossible for a 
spoofer to create a false ensemble of GNSS signals whose 
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FIGURE 1  The UT RNL has developed a multi-modal 

ground-vehicle-mounted integrated perception 

platform call the Sensorium. It houses three 

different types of IMU, two triple-frequency GNSS 

antennas, three radar sensors and two cameras. 



carrier-phase variations, when received through the antenna 
of a target ground vehicle, track the phase values predicted by 
inertial sensing. In other words, antenna motion caused by 
factors such as road irregularities or rapid braking or steering is 
sensed with high fidelity by an onboard IMU but is unpredictable 
at the sub-centimeter-level by a would-be spoofer. Therefore, 
the differences between IMU-predicted and measured carrier-
phase values offer the basis for an exquisitely sensitive GNSS 
spoofing-detection statistic. What is more, such carrier-phase 
fixed-ambiguity residual cost is generated as a byproduct of 
tightly coupled inertial-CDGNSS vehicle position estimation.

Two difficulties complicate the use of fixed-ambiguity 
residual cost for spoofing detection. First is the integer-
ambiguous nature of the carrier-phase measurement, which 
causes the post-integer-fix residual cost to equal not the 
difference between the measured and predicted carrier phases 
(as would be the case for a typical residual), but rather modulo  
an integer number of carrier wavelengths. Such integer folding 
complicates development of a probability distribution for a 
detection test statistic based on carrier-phase fixed-ambiguity 
residual cost.

Second, the severe signal multipath conditions in urban 
areas create thick tails in any detection statistic based on 
carrier-phase measurements. Setting a detection threshold 
high enough to avoid false spoofing alarms caused by 
mere multipath could render the detection test insensitive 
to dangerous forms of spoofing. Reducing false alarms by 
accurately modeling the effect of a particular urban multipath 

environment on the detection statistic would be a Sisyphean 
undertaking, requiring exceptionally accurate up-to-date 3D 
models of the urban landscape, including materials properties.

Our work takes an empirical approach to these difficulties. It 
does not attempt to develop a theoretical model to delineate the 
effects of integer folding or multipath on its proposed carrier-
phase fixed-ambiguity residual cost-based detection statistic. 
Rather, it develops null-hypothesis empirical distributions for 
the statistic in both shallow and deep urban areas, and uses 
these distributions to demonstrate that high-sensitivity spoofing 
detection is possible despite integer folding and urban multipath.

MEASUREMENT MODEL

The full formulation of the measurement model for the 
tightly coupled GNSS-IMU estimator on which our spoofing 
detection technique is based is presented in a paper accepted 
for publication in the Institute of Navigation’s journal 
NAVIGATION. Below are key developments.

The estimator ingests pairs of double-difference (DD) 
GNSS observables at each GNSS measurement epoch, with 
each pair composed of a pseudorange and a carrier-phase 
measurement. After linearizing about the a priori state 
estimate, a measurement model for the innovations vector 
can be expressed by setting the difference between the 
measurement vector and its modeled value based on the a 
priori state estimate equal to the corresponding Jacobians 
(matrices of partial derivatives), the state estimate error 
vector, and the integer ambiguity vector. A short-baseline 

WHAT IS CARRIER PHASE? The 
obvious answer is: the phase of the 
carrier. But this is not helpful if you 
don’t know what a carrier is. A carrier is 
basically a harmonic electromagnetic 
wave — a pure continuous sinusoidal 
wave with a single constant frequency 
and amplitude.

Such a wave has limited uses. 
However, if we modulate or change 
the characteristics of the wave in 
some way, then the wave can carry 
information. Changing the amplitude 
by using a voice or music audio signal 
is amplitude modulation as used for 
AM radio. Instead, one could modulate 
a carrier by changing its instantaneous 
frequency, which is frequency 

modulation or FM and is used for high-
fidelity broadcasting. Yet another way 
to modulate a carrier is to change the 
instantaneous phase of the carrier, 
and that is how GNSS works.

GNSS carriers are phase-modulated 
by pseudorandom noise (PRN) codes 
and navigation messages. A GNSS 
receiver uses the PRN codes to produce 
the pseudorange observable with 
a precision in the tens of decimeter 
range. This is the most common 
observable for GNSS positioning.

But by stripping away the 
modulation of the received GNSS 
signals, the receiver can measure 
the phase of the underlying carrier. 
Changes in carrier phase over time 
reflect the change in the (pseudo)
range but are about two orders of 

magnitude more precise. One problem 
with carrier-phase measurements 
is that they have an initial cycle 
ambiguity that must be resolved, 
preferentially fixed to the correct 
integer value, before they can be 
used for positioning, but this can be 
achieved without too much difficulty.

While fixing the ambiguity of 
carrier-phase measurements 
might be considered a nuisance in 
GNSS positioning, it can help detect 
spoofing of GNSS signals where some 
other techniques might fall short. In 
this “Innovation” column, we look at 
how carrier-phase measurements 
combined with those from an inertial 
measurement unit can guard against 
a deliberate attack on an automated 
ground vehicle — something that 
cannot be discounted in our world 
these days.
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BY RICHARD B. LANGLEY

FEBRUARY 2023 

|
WWW.GPSWORLD.COM G PS WOR L D 37



regime is assumed for the DD measurements, which implies 
that ionospheric, tropospheric, ephemeris and clock errors 
are cancelled in the double differencing.

The CDGNSS measurement update of the tightly coupled 
GNSS-IMU estimator can be cast in square-root form for 
greater numerical robustness and algorithmic clarity. The 
measurement update can be defined as the process of finding 
the state estimate error vector and the integer ambiguity vector 
to minimize the cost function, a term borrowed from economics 
theory, which is essentially the sum of the squared errors. The 
cost function can be decomposed into three terms: a term that 
can be zeroed for any value of the integer ambiguity vector; a 
term corresponding to the residual cost of enforcing the integer 
constraint; and the irreducible cost that can be shown to be 
equivalent to the normalized innovations associated with the 
DD pseudorange measurements. We normalize the vector cost 
components by using square-root information matrices based 
on Cholesky  factorization followed by the cost decomposition 
using QR factorization. The equations are then solved to 
provide float (real number) values for the state estimate error 
vector and the integer ambiguity vector. Subsequently, the 
fixed solution is found via an integer least squares (ILS) solver.

TEST STATISTIC

Key to our spoofing detection statistic is the integer-fixed 
carrier-phase residual cost value, which also can be thought of as 
the ILS solution cost. This is equivalent to the second term of the 
decomposed cost function stated earlier. This is small whenever 
the carrier-phase measurements are consistent with the prior 
state estimate and the pseudorange measurements, and with 
the assumption of integer-valued carrier-phase ambiguities. It 
is one of several acceptance test statistics used to decide whether 
the fixed solution is correct with high probability. It has been 
incorporated, for example, in a statistic used to detect carrier 
cycle slips. It can be similarly used to detect false integer fixes, 
just as with other integer aperture acceptance test statistics, or 
the lingering effects of conditioning the real-valued part of the 
state on a previous false fix.

Furthermore, the test statistic provides a highly sensitive 
statistic for spoofing detection. When no spoofing is present, 
there is tight agreement between the IMU-propagated a priori 
state estimate and GNSS data resulting in a small statistic 
value. If the vehicle hits a bump in the road, the GNSS antenna 
phase center will rise by a few centimeters, and the inertial 
sensor will detect a corresponding acceleration, which will get 
propagated through to the a priori state. On the other hand, 
when spoofing is present, a discrepancy between inertial and 
GNSS data will arise at the carrier-phase level, leading to the 
statistic being larger than usual.

A windowed sum of test statistic values offers even greater 
sensitivity to false-fix events at the expense of a longer time-
to-detect. To detect spoofing in the tests reported in this 

article, we used the windowed fixed-ambiguity residual cost 
(WFARC). This is calculated over a moving window of fixed 
length of past GNSS measurement epochs. We used a window 
length of 10 past GNSS measurement epochs (amounting to 
a window of 2 seconds).

If the filter is consistent and the integer ambiguities are correctly 
resolved, then WFARC should be approximately �2-distributed 
with the degrees of freedom related to the number of DD carrier-
phase measurements. This distribution is approximate due to 
the “integer-folding” effect: large phase residuals are not possible 
because of integer-cycle phase wrapping. A statistical consistency 
test can be performed by choosing a desired false-alarm rate and 
declaring a false fix if WFARC is greater than a specified threshold 
calculated by evaluating the inverse cumulative distribution 
function of �2 at the false-alarm rate.

DATA COLLECTION

Data was gathered on the University of Texas (UT) 
Radionavigation Laboratory (RNL) Sensorium, an integrated 
platform for automated and connected vehicle perception 
research. It is equipped with multiple radars, IMUs, GNSS 
receivers and a lidar, as shown in FIGURE 1. With the Sensorium, 
the RNL produced a public benchmark dataset collected in 
the dense urban center of the city of Austin called TEX-CUP 
for evaluating multi-sensor GNSS-based urban positioning 
algorithms. The data captured includes a diverse set of multipath 
environments (open-sky, shallow urban and deep urban). 
The TEX-CUP dataset provides raw wideband intermediate 
frequency (IF) GNSS data with tightly synchronized raw 
measurements from multiple IMUs and a stereoscopic 
camera unit, as well as truth positioning data. This allows 
researchers to develop algorithms using any subset of the sensor 
measurements and compare their results with the true position.

For our analysis, only the raw GNSS IF samples from the 
primary antenna and inertial data were considered. Two-bit-
quantized IF samples were captured at the Sensorium and at 
the reference station through the RadioLynx, a low-cost L1+L2 
GNSS front end with a 5 MHz bandwidth at each frequency, 
and were processed with the RNL’s GRID software-defined 
radio (SDR). The system’s performance was separately 
evaluated using inertial data from each of the Sensorium’s 
two MEMS inertial sensors. The first, a LORD MicroStrain 
3DM-GX5-25, is an industrial-grade sensor. The second, a 
Bosch BMX055, is a surface-mount consumer-grade sensor.

TEX-CUP provides ground truth data for the vehicle 
position and orientation. The post-processed solution is 
accurate to better than 10 centimeters throughout the dataset. 
The effectiveness of the developed spoofing detection method 
is evaluated with the dataset subsets.

SPOOFING METHODOLOGY

The total signal at the victim receiver antenna is the sum 
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of the authentic signal, the spoofed signal and the received 
noise. Under a challenging spoofing attack, the spoofed 
signal contains a perfect null of the authentic signal and the 
received noise, which is entirely naturally generated — that 
is, not introduced by the spoofer.

Physical-Layer Spoofing. To artificially simulate a spoofing 
attack over-the-air, cable injection and digital signal injection 
spoofing were considered. Over-the-air attacks are possible, but 
are not authorized in urban areas. A cable injection attack would 
be permissible for a live experiment in an urban area, and digital 
signal combining, is a powerful after-the-fact spoofing technique. 
But in both cases it is challenging to explore a worst-case spoofing 
attack in which the authentic signals are entirely nulled by an 
antipodal spoofing signal. Experience with ds7 and ds8 from 
the Texas Spoofing Test Battery (http://radionavlab.ae.utexas.edu/texbat) 
revealed that such antipodal spoofing is difficult to maintain 
under even static laboratory conditions. The remnant authentic 
signal from an unsophisticated and imperfect spoofing attack 
sullies the test statistic, making detection too easy and leading 
to an overly optimistic performance assessment.

In short, physical-layer spoofing is challenging to conduct 
in such a way as to present a convincing worst-case spoofing 
attack to our detector.

Observation-Domain Spoofing. It is important to evaluate 
spoofing detection techniques on a worst-case spoofing attack, 
with the idea being that if the proposed detection strategy is 
effective on the worst-case scenario, it is even more effective 
on weaker attacks. Accordingly, we adopt observation-
domain spoofing. The spoofing in the observation domain 
is advantageous because the authentic signal is inherently 
nulled, presenting a subtle attack.

The first method of implementing observation-domain 
spoofing is position offset spoofing. With position offset 
spoofing, a position offset is added to the authentic measured 
position to generate a spoofed position. This is accomplished 
by altering the pseudorange and carrier-phase measurements 
from each satellite so that they correspond to the spoofed 
position with the desired additive position offset.

The second method of implementing observation-domain 
spoofing is timestamp spoofing. With timestamp spoofing, the 
measurements at a particular time are reassigned to have an 
alternate measurement timestamp. The authentic observables 
from time t+�t(t) are fed to the estimator as if they had 
occurred at time t. The timestamp-shifted observables are 
adjusted to account for the transmitting spacecraft’s orbital 
motion and clock evolution over the interval from t to t+�t(t).

In position offset spoofing, all vehicle motion reflected in 
the authentic carrier-phase observation is also present in the 
spoofed observation. This includes all high-frequency motion 
due to the road irregularities and other minor movements. A 
detection technique designed to detect small-amplitude, high-
frequency discrepancies in carrier-phase measurements via the 

WFARC would not actually see such discrepancies unless the 
change in carrier phase due to the position offset also included 
simulated high-frequency content.

By contrast, timestamp spoofing borrows spoofed carrier-
phase and pseudorange measurements from a different time 
instant, ensuring that high-frequency variations in these 
quantities will be different from those predicted by the a priori 
state based on IMU propagation. This is more representative 
of an actual spoofing attack scenario in which the attacker 
cannot predict the high-frequency vehicle motion. Moreover, 
by reducing the timestamp shift �t(t), one can realize ever-
subtler attacks that are increasingly hard to detect, allowing 
exploration of worst-case-for-detectability spoofing.

Thus, timestamp spoofing is representative of a case in 
which a well-financed attacker is able to place a single-satellite-
full-single-ensemble spoofer capable of full authentic-signal 
nulling along the line-of-sight from the target vehicle to each 
overhead GNSS satellite.

RESULTS

We analyzed the proposed test statistics in both the non-
spoofing case and against a worst-case attack, and present 
results with both the industrial- and consumer-grade IMUs.

Characterization of the Null Hypothesis. Our spoofing detector is 
premised on a hypothesis test between statistical models for the 
authentic and counterfeit GNSS signals. The statistics of the null 
hypothesis (no spoofing detected) must be fully characterized 
so that a statistical baseline is established, against which 
carrier-phase errors induced by spoofing in the same setting 
can be compared. The null hypothesis of dynamic ground 
vehicle scenarios includes natural effects such as blockage and 
multipath, which is the predominant source of error.

To analyze the null hypothesis, the WFARC was calculated 
in the nominal case through the entirety of the TEX-CUP 
dataset containing no spoofing. Because multipath is 
dependent on the surrounding environment, two categories 
were separately considered: shallow urban and deep urban. 
We separated measurements into these categories manually 
by identifying segments of the dataset where the vehicle 
resided in shallow urban and deep urban areas.

FIGURE 2 shows the complementary cumulative distribution 
function (CCDF) of the WFARC in shallow and deep urban 
environments for the nominal case with industrial- and 
consumer-grade IMUs. The test statistic in the deep urban 
case has a much longer tail, which is expected because of the 
extreme multipath and blockage in deep urban areas. The cyan 
line represents the largest value of the WFARC in the shallow 
urban environment and the purple line represents the largest 
value of the WFARC in the deep urban environment. These 
will be the thresholds used to detect spoofing. Because the test 
statistic in the null hypothesis is never larger than these values, 
it corresponds to having a false alarm probability of zero. A chi-
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squared test can be used to lower these thresholds but comes 
at the cost of having a fixed false positive rate. FIGURE 3 shows 
the time history of the WFARC over the TEX-CUP dataset.

It is important to note that the WFARC while using the 
consumer-grade IMU is generally smaller than the WFARC 
while using the industrial-grade IMU. This is expected 
because the consumer-grade IMU is of lesser quality, thus 
having more variance with each measurement. The a 
priori state estimate from IMU tight coupling has a larger 
uncertainty because the estimator has less confidence in the 
IMU measurements, leading corrupted measurements to be 
more believable. Once again, in the null hypothesis, spikes in 
the WFARC are caused by multipath and blockage.

Performance Against a Worst-Case Spoofing Attack. The 
following is an example of a worst-case spoofing attack in a 
shallow urban environment. In this scenario, the spoofing 
attack begins while the vehicle is stopped at a stoplight and 
continues as the vehicle begins to move. The WFARC in 
this scenario is shown in FIGURE 4 with both industrial- and 
consumer-grade IMUs. The vehicle starts moving at the 
163-second mark. The spoofing attack begins at the 163-second 
mark just before first movement and ends at the 175-second 

mark. As the vehicle begins to move, the position errors will 
grow gradually because the vehicle slowly begins to accelerate 
forward, inducing a position error. Three different time-shift 
attacks in the same scenario are shown in this figure. The shift 
of 0.15 seconds is the least subtle attack while the 0.05 second 
attack is the most challenging attack because the faults are much 
smaller. As the vehicle begins to move, the estimator recognizes 
inconsistencies between the spoofed GNSS measurements 
and the IMU because of the tight coupling. The rise in the 
WFARC above the thresholds shows this disagreement that 
is attributed to spoofing.

With the industrial-grade IMU and using the shallow urban 
threshold, all three time shifts spoofing attacks were identified 
within a second. The estimator knows that the IMU data are 
different than the GNSS measurements from the WFARC, 
much more than anything multipath would induce in the 
shallow urban environment. If the vehicle was in the deep 
urban environment, the 0.05-second shift spoofing attack 
would just be attributed to multipath. The sensitivity of the 
test is dependent on the multipath environment.

All three attacks were identified within two seconds while 
using the consumer-grade IMU. If the deep urban threshold 
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FIGURE 2  The complementary cumulative distribution function (CCDF) of the WFARC 

over the entire TEX-CUP dataset with the LORD MicroStrain 3DM-GX5-25 (industrial 

grade) IMU (top) and with the Bosch BMX055 (consumer grade) IMU (bottom). 
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FIGURE 3  A time history of the WFARC over the entire TEX-CUP dataset with the 

industrial grade IMU (top) and the consumer grade IMU (bottom).



had been applied, only the least challenging attack would have 
been identified. In all cases, the WFARC is significantly smaller 
compared to when the industrial IMU is used. Once again, this 
is because the estimator has more confidence in the spoofed 
GNSS measurements than the lower quality IMU. Interestingly, 
there is a spike in the WFARC after the spoofing attack is over. 
This happens because the estimator is showing trauma from 
the spoofing attack — the abrupt return of the true GNSS 
measurements, which were significantly different from what 
the previously ingested spoofed measurements were predicting.

The corresponding position errors in each attack are shown 
in FIGURE 5. The worst-case attack (time shift of –0.05 seconds) 
only introduces a 0.5 meter offset over 10 seconds, indicative 
of an extremely subtle attack. Even the least subtle attack (time 
shift of –0.15 seconds) only introduces a 2-meter offset after 
10 seconds, which is much more challenging than the attacks 
simulated in the related work.

FUTURE WORK

The results from our work are promising. It would be beneficial 
to collect even more data with the Sensorium to strengthen 
the empirical model. 
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FIGURE 4  WFARC during a worst-case spoofing attack in the shallow urban 

environment. The top plot is with the industrial grade IMU and the bottom plot is 

with the consumer grade IMU. 
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