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Abstract—This paper presents bounds, estimators, and signal
design strategies for exploiting both known pilot resources and
unknown data payload resources in time-of-arrival (TOA)-based
positioning systems with orthogonal frequency-division multi-
plexing (OFDM) signals. It is the first to derive the Ziv-Zakai
bound (ZZB) on TOA estimation for OFDM signals containing
both known pilot and unknown data resources. In comparison to
the Cramer-Rao bounds (CRBs) derived in prior work, this ZZB
captures the low-signal-to-noise ratio (SNR) thresholding effects
in TOA estimation and accounts for an unknown carrier phase.
The derived ZZB is evaluated against CRBs and empirical TOA
error variances. It is then evaluated on signals with resource
allocations optimized for pilot-only TOA estimation, quantifying
the performance gain over the best-case pilot-only signal designs.
Finally, the positioning accuracy of maximum-likelihood and
decision-directed estimators is evaluated on simulated low-Earth-
orbit non-terrestrial-network channels and compared against
their respective ZZBs.

Index Terms—OFDM; positioning; Ziv-Zakai bound; NTN

I. INTRODUCTION

POSITIONING services within existing wireless communi-
cations networks are becoming an increasingly important

source of accurate localization. Such services can provide
exceptional accuracy due to their access to large bandwidths
and widespread deployment, making them an attractive alter-
native to traditional global navigation satellite system (GNSS)
positioning. Low-Earth-orbit (LEO) non-terrestrial-networks
(NTNs) in particular are a prime candidate for accurate user
positioning services because of their ability to provide near-
global coverage and strong signals with exceptionally large
bandwidths [1], [2]. These LEO NTNs are undergoing a mas-
sive expansion in satellite deployment [3], further increasing
their viability as the new standard for global positioning while
simultaneously providing high-throughput communications.

An overwhelming majority of communications networks, in-
cluding the 5G NTN standard [3], operate through orthogonal
frequency-division multiplexing (OFDM), which divides the
spectrum into time and frequency resource elements that may
be allocated with either known pilot resources or unknown
data resources. Since the structure of these pilot resources
is known to users in the network, users may obtain time-of-
arrival (TOA) estimates by correlating their received signal
against the known pilot resources. These TOA estimates may
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then be used in positioning protocols such as pseudorange
multilateration, time-difference-of-arrival (TDOA), or round-
trip-time (RTT) [4]. But this scheme creates a challenging
design tradeoff: allocating additional pilot resources improves
positioning accuracy at the expense of data throughput, since
OFDM resources must be diverted from data [5]. This tradeoff
becomes especially complex for satellites in NTNs, which
must additionally manage their power consumption when bal-
ancing the tradeoff between communications and positioning
services [2]. Such a “zero-sum game” poses problems for
rapidly expanding NTNs tasked with handling an ever-growing
demand for both increased positioning accuracy and higher
data rates. However, a new and enticing scheme emerges if
users exploit both pilot resources and data resources in their
TOA estimation.

Two approaches exist for users to exploit data resources in
their TOA estimation: decision-directed (DD) and maximum
likelihood (ML) estimation. The decision-directed estimator
makes hard decoding decisions on the unknown data and
then correlates the received signal against both the pilot
resources and decoded data to improve estimation accuracy.
While DD estimators are efficient and effective at high signal-
to-noise ratios (SNRs), they are prone to decoding errors.
Although these decoding errors may be mitigated through
error correcting codes, such codes may not be usable for
data resources intended for other users since networks may
intentionally obfuscate the coding from other users; witness
the scrambling by the Radio Network Temporary Identifier
in long term evolution (LTE) and 5G new radio (NR). In
contrast to DD estimators, ML estimators, commonly referred
to as non-data-aided (NDA) estimators in prior work when no
known pilots are used [6], [7], do not make hard decoding
decisions but instead evaluate the likelihood of data resources
over all symbols in the constellation. Since an overwhelming
majority of the spectrum in communications networks is
allocated to data resources, these DD and ML estimators can
harness a much greater amount of signal power compared to
the pilot-only estimator, resulting in significantly reduced TOA
estimation errors.

When evaluating signals for TOA estimation, it is crucial to
consider the impact that resource allocation has on the TOA
likelihood function, which exhibits a mainlobe centered around
the true TOA, sidelobes located away from the true TOA
outside the mainlobe, and grating lobes caused by aliasing. At
high SNR, TOA estimation errors will be concentrated near
the true TOA within the mainlobe. At low SNR, however,
TOA estimates may latch on to sidelobes, significantly in-
creasing estimation error variance [8]–[10]. Bounds such as
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the Barankin bound [11], [12] and Ziv-Zakai bound (ZZB)
[13] were derived to capture the behavior of this thresholding
effect, which is ignored by the simpler Cramer-Rao bound
(CRB). When only pilot resources are used in TOA estimation,
the likelihood function is closely related to the autocorrelation
function. However, the inclusion of unknown data resources
in the likelihood function alters its shape in a complex man-
ner, potentially introducing new sidelobes and sharpening the
mainlobe. A bound that captures both the effects of unknown
data and low SNR is needed to accurately characterize the
positioning performance of DD and ML estimators.

LEO NTNs are especially amenable to positioning with
unknown data resources. The large satellite constellation sizes
increase the likelihood of a line-of-sight (LOS) path between
users and satellites. Furthermore, phased arrays at both ends
provide exceptional multipath mitigation. Finally, LEO satel-
lites may be able to pre-compensate for Doppler due to their
highly directive beams and small cell size. As a result, the fad-
ing in the post-beamforming channels remains exceptionally
flat across wide bandwidths — as large as 240MHz in the case
of Starlink [14]. Under these favorable channels conditions,
users only need to estimate and compensate for the TOA
and carrier phase to equalize the received signal and begin
decoding data.

This paper derives the ZZB on TOA estimation error vari-
ance for OFDM signals containing both pilot resources and
unknown data resources. The derived ZZB is then compared
against CRBs derived in prior work and against empirical
TOA estimation error variance. Empirical TOA estimates are
obtained with both ML and DD estimators. Three variants
of ML estimators are considered: one that exploits only pilot
resources, another based on only data resources, and a third
that harnesses both pilot and data resources. These will be
referred to as the pilot-only, data-only, and pilot-plus-data
ML estimators, respectively. Candidate resource allocations
are then generated over a range of SNRs that optimize the
placement of positioning reference signals (PRSs) in the
frequency domain to minimize the pilot-only TOA ZZB. The
pilot-plus-data TOA ZZB is then evaluated on these optimized
signals to quantify the reduction in TOA estimation error that
can be achieved over the optimal allocations for pilot-only
estimation. Finally, LEO NTN channels are simulated for a
satellite constellation servicing a single cell. The positioning
accuracy of a user in the serviced cell is evaluated using
Monte Carlo methods for the pilot-only ML, data-only ML,
pilot-plus-data ML, and DD estimators. These results are then
compared against the derived ZZB.

A. Prior Work

Prior work has studied several TOA-based positioning al-
gorithms with OFDM signals. Algorithms such as TDOA,
pseudorange multilateration, and RTT are supported within
the existing 5G NR standards [4]. More advanced approaches
have demonstrated accurate positioning with 5G NR signals
using both TOA and angle-of-arrival (AOA) measurements in
an extended Kalman filter [15] and using multipath parameter
estimates obtained from signals with optimized beam power

allocations [16]. Alternatively, LTE [17] and 5G NR [18], [19]
signals have been used as signals-of-opportunity (SOPs) for
positioning, a paradigm that requires no cooperation between
the user and the network. While exceptional positioning ac-
curacy is demonstrated in this prior work, both the network-
supported and SOP methods only obtain position estimates
from known reference signals embedded in the OFDM signal
and do not exploit the vast quantity of unknown data resources
that are present in typical LTE and 5G NR downlink signals.
The presence of OFDM reference signals has also been
detected in a cognitive manner for SOP positioning [19], [20],
but this approach still relies on the allocation of reference
signals by the network.

The analysis of positioning within communications net-
works has been extended to the context of LEO NTNs.
Scheduling for LEO constellations providing both commu-
nications and positioning services has been analyzed in [2].
The authors in [21] optimized LEO beamforming and beam
scheduling to minimize the user positioning CRB. This work
demonstrates the potential improvements LEO positioning
services may provide over existing GNSS solutions. However,
prior work has not yet analyzed OFDM resource allocation
for LEO positioning nor explored the potential for exploiting
data resources in TOA estimation.

Outside of positioning, DD and NDA estimation have been
thoroughly studied in the context of communications. Prior
work has analyzed DD estimators for OFDM frequency-offset
estimation [22], OFDM channel estimation in high-velocity
channels [23], and multiple-input multiple-output (MIMO)
channel tracking [24]. The authors in [25] propose a DD chan-
nel estimator for overcoming pilot contamination in cell-free
massive MIMO networks. This body of work demonstrates
the potential improvements in estimator accuracy that may
be gained through hard decoding decisions on unknown data.
Similarly, prior work has analyzed NDA estimators for OFDM
frequency-offset estimation [26], OFDM timing recovery [27],
and OFDM SNR estimation [28]. Prior work has also studied
the CRBs of NDA estimation. Bellili et al. derived a CRB
for NDA time [29] and frequency [6] estimation for square-
QAM constellations that is tighter than the simpler Modified
Cramer-Rao bound (MCRB). The authors in [30] also propose
a NDA TOA estimator that uses importance sampling to reduce
computational costs, and they compare its performance against
the MCRB.

Whereas prior work has extensively studied NDA and DD
estimators for communications purposes, only a limited body
of work has studied their applicability to positioning. The
authors in [31] proposed a NDA AOA estimator for posi-
tioning with Gaussian frequency-shift-keying signals. Wang
et al. proposed a semiblind OFDM range tracker which, after
initialization with known pilot resources, tracks the multipath
components of the channel using DD decoding decisions and
a Kalman filter [32]. Similarly, the authors in [33] proposed a
semiblind channel estimator for positioning that improves its
estimates of the multipath components of the channel using
DD decoding, comparing performance against the MCRB.
Mensing et al. proposed a DD TOA estimator for TDOA
positioning with intercell interference [34]. This work demon-
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strates how unknown data payloads can be exploited, either
through NDA or DD estimation, to improve positioning accu-
racy within communications networks. However, these papers
do not compare NDA and DD estimators against one another
to understand how each estimator’s errors change with SNR.
Furthermore, [31] and [33] did not consider OFDM signals,
and [31] did not consider TOA-based positioning. Finally, [31],
[33], [34] compared estimator accuracy only against the CRB,
which is unable to capture low-SNR thresholding effects.

To overcome the limitations of the CRB, several studies
have used the ZZB for analyzing positioning performance
in OFDM systems with pilot-only TOA estimation. Prior
work has used the ZZB to characterize the TOA precision of
different parameterizations of OFDM pilot resource allocations
[5], [35]–[37]. Furthermore, the ZZB has been used as an opti-
mization criteria to solve for OFDM pilot resource allocations
that minimize TOA estimation errors [38]. The ZZB on direct
position estimation has also been derived in [39]. However,
prior work has not derived the ZZB in the context of unknown
data or for NDA estimation.

B. Contributions

The main contributions of this paper are as follows:
• A novel derivation of the ZZB on TOA estimation error

variance for OFDM signals with unknown data resources.
This novel bound is compared against the CRB, MCRB,
and empirical errors from Monte-Carlo simulation.

• A comparison of the pilot-only and pilot-plus-data ZZBs
for OFDM signals with resources optimized for pilot-
only TOA estimation. This comparison provides insights
into the potential gains achieved by exploiting unknown
data and informs how pilot resources can be allocated to
minimize overhead while meeting TOA accuracy require-
ments.

• Evaluation of the empirical positioning errors achieved by
both ML and DD estimators on simulated LEO satellite
channels in comparison to the ZZB.

The remainder of this paper is organized as follows. Sec-
tion II introduces the signal model. Section III defines the
TOA CRBs and derives the TOA ZZB for OFDM signals
with payloads containing unknown data. Section IV defines
the ML estimators for the pilot-only, data-only, and pilot-
plus-data cases as well as the DD estimator. Section V-A
compares the derived ZZB against the CRBs and Monte Carlo
TOA errors. Section V-B evaluates the pilot-plus-data ZZB
on signals with resource allocations optimized for pilot-only
estimation. Section V-C evaluates the positioning accuracy of
the pilot-only ML, data-only ML, pilot-plus-data ML, and DD
estimators on simulated LEO NTN channels, comparing them
against the derived ZZB. Finally, Section VI closes the paper
by drawing conclusions from the results.

Notation: Column vectors are denoted with lowercase bold,
e.g., x. Matrices are denoted with uppercase bold, e.g., X .
Scalars are denoted without bold, e.g., x. The ith entry of a
vector x is denoted x[i] or in shorthand as xi. The Euclidean
norm is denoted ||x||. The cardinality of a set S is denoted
|S|. Real transpose is represented by the superscript T and

conjugate transpose by the superscript H . The Q-function is
denoted as Q(·). Zero-based indexing is used throughout the
paper; e.g., x[0] refers to the first element of x.

II. SIGNAL MODEL

Consider an OFDM signal with K subcarriers, Nsym sym-
bols, a subcarrier spacing of ∆f Hz, and a payload xm[k] for
symbol indices m ∈ M and subcarrier indices k ∈ K, where
M = {0, 1, . . . , Nsym−1} and K = {0, 1, . . . ,K−1}. Let d[k]
be the mapping from subcarrier indices to offsets in frequency
from the carrier in units of subcarriers. This map is defined
as d[k] = k for k = 0, 1, . . . , K2 − 1 and d[k] = k − K for
k = K

2 ,
K
2 + 1, . . . ,K − 1. This signal propagates through

a doubly-selective channel at a carrier frequency fc with
baseband frequency-domain channel coefficients hm[k] and
experiences a LOS time delay τ , phase shift ϕ, and additive
white Gaussian noise (AWGN) vm[k] ∼ CN (0, σ2). Assuming
negligible intercarrier interference due to small Doppler and
negligible intersymbol interference due to a sufficiently long
cyclic-prefix, the baseband received signal ym[k] is modeled
in the frequency domain as

ym[k] = αm[k]xm[k] + vm[k], (1)
αm[k] = hm[k] exp (−j2πd[k]∆fτ + jϕ) . (2)

If the channel coefficients are constant across frequency and
time, the complex gain αm[k] can be instead modeled as

αm[k] =
√
g exp (−j2πd[k]∆fτ + jϕ) , (3)

where g is the channel gain. The bounds and estimators of
this paper are derived under the frequency-flat time-invariant
model in (3), while the simulated channels in the results use
the frequency-selective time-varying model in (2).

The payload xm[k] may contain either pilot resources, data
resources, or be empty. Define KP

m as the set of subcarrier
indices containing pilot resources, KD

m as the set of subcarrier
indices containing data resources, and K̃m ≜ KP

m

⋃
KD

m as
their union, during symbol m. Each data resource is modeled
as randomly selected from a symbol constellation C with
uniform probability and statistical independence from all other
resource elements. This is expressed as xm[k] = cm[k] and
P (cm[k] = csym) = 1

|C| for m ∈ M, k ∈ KD
m, and

csym ∈ C. Furthermore, the constellation is modeled as having
unit average power such that E

[
|xm[k]|2

]
= 1.

III. TOA ESTIMATION ERROR BOUNDS

Let τ̂ be an unbiased estimate of the true TOA τ and define
γm[k] = |αm[k]|2

σ2 as the SNR at subcarrier k during symbol
m. This section will define bounds on the TOA estimation
error variance E

[
(τ̂ − τ)2

]
under the simplified signal model

in (3).

A. Cramer-Rao Bounds
The simplest bound is the CRB when τ̂ is estimated using

only pilot resources, which takes the form [40]

E
[
(τ̂ − τ)2

]
≥ σ2

CRLB,P = I−1
CRLB,P (4)

ICRLB,P ≜ 8π2∆2
f

∑
m∈M

∑
k∈KP

m

d2[k]γm[k]. (5)
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In comparison to the pilot-only CRB, the derivation of the
CRB for the data-only estimator is more difficult since the
likelihood function for each resource element is a Gaussian
mixture distribution function with each Gaussian centered at
each symbol in the constellation C. One simplifying approach
is to derive the MCRB [41] by conditioning on the unknown
symbols. This simplifies to a form similar to the pilot-only
CRB

E
[
(τ̂ − τ)2

]
≥ σ2

MCRLB = I−1
MCRLB (6)

IMCRLB ≜ 8π2∆2
f

∑
m∈M

∑
k∈KD

m

d2[k]γm[k]. (7)

A tighter CRB for unknown data is derived in [6] without
using the MCRB. While this bound was derived for frequency
estimation, it is easily mapped to TOA estimation with OFDM
signals. This CRB takes the form

E
[
(τ̂ − τ)2

]
≥ σ2

CRLB,D = I−1
CRLB,D, (8)

where

ICRLB,D ≜ 8π2∆2
f

∑
m∈M
k∈KD

m

(
1 + γm[k]

A2
ψ(γm[k])− γm[k]

)

× d2[k]γm[k], (9)

and ψ(·) and A2 are defined in [6, Eqs. (37)-(38)].
These CRBs are useful for analyzing the high-SNR preci-

sion of TOA estimators, and the CRB from [6] importantly
captures the increased errors caused by uncertainty in the
symbol selected from the constellation, making the bound
in (9) tighter than the MCRB in (7). These fundamental
error bounds can provide valuable insights into the efficiency
of estimators and can serve as an optimization criteria for
evaluating different signal designs and resource allocations.
However, the CRBs ignore the impact that sidelobes in the
likelihood function have on estimation error, making these
bounds inapt at lower SNRs [5].

B. Ziv-Zakai Bounds

The ZZB is superior to the CRB for TOA estimation
analysis because it captures the low-SNR thresholding effects
caused by sidelobes. The bound considers a binary detection
problem with equally-likely hypotheses: (1) the received signal
experienced delay τ0 and phase ϕ0, and (2) the received signal
experienced delay τ0+τ1 and phase ϕ0+ϕ1 (mod 2π). Define
θ ≜ [τ, ϕ]T , θ0 ≜ [τ0, ϕ0]

T , and θ1 ≜ [τ0+τ1, ϕ0+ϕ1
(mod 2π)]T . θ is treated as a random variable with a known
a priori distribution. The hypothesis test can be expressed as

p(y|θ=θ0)

p(y|θ=θ1)

H0

≷
H1

ν,
H0 : θ = θ0
H1 : θ = θ1

, (10)

where y is the vector containing all ym[k] for m ∈ M and k ∈
K̃m, and ν is the detection threshold. The ZZB is concerned
with the minimum error probability of this hypothesis test,
which corresponds to a threshold of ν = 1 when H0 and H1

are assumed equally-likely.
As in [38], the time delays will be normalized by the OFDM

sampling period Ts =
1

K∆f
, creating z ≜ τ

Ts
, z0 ≜ τ0

Ts
and z1 ≜

τ1
Ts

. The minimum error probability of this detection problem
is assumed to be shift-invariant, allowing the hypotheses to be
simplified without loss of generality by assuming τ0 = 0 and
ϕ0 = 0. Then the log of the likelihood ratio in (10) can be
denoted

log Λ(y,θ1) ≜ log p(y|θ=θ0)− log p(y|θ=θ1), (11)

and the minimum error probability of the hypothesis test is
defined as the probability that the log-likelihood ratio in (11),
conditioned on θ = θ0, is less than zero:

Pmin(z1, ϕ1) ≜ P (log Λ(y,θ1) < 0|θ=θ0). (12)

Define Rθ as the estimation error covariance of θ and
V{·} as the valley-filling function [42]. Assuming a priori
knowledge that the TOA is uniformly distributed on [0, Ta]
and the phase is uniformly distributed on [0, 2π], and noting
the scale-invariance of the valley-filling function, the ZZB on
TOA error variance can be defined as [43]

E
[
(τ̂ − τ)2

]
= aTRθa (13)

≥ σ2
ZZB

≜
1

Ta

∫ Ta

0

τ1V{(Ta − τ1)max
ϕ1

[Pmin(τ1/Ts, ϕ1)]}dτ1

=
T 2

s

Na

∫ Na

0

z1V{(Na − z1)max
ϕ1

[Pmin(z1, ϕ1)]}dz1,

where Na ≜
Ta
Ts

.
Expressions for Pmin(z1, ϕ1) will now be derived. The

likelihood of y is

p(y|θ) =
∏

m∈M

∏
k∈K̃m

p(ym[k]|θ), (14)

which follows from the independence of each resource ele-
ment. The log-likelihood ratio in (11) can be expressed as

log Λ(y,θ1)

=
∑

m∈M

∑
k∈K̃m

log p(ym[k]|θ=θ0)− log p(ym[k]|θ=θ1)

=
∑

m∈M

∑
k∈K̃m

log Λ(ym[k],θ1), (15)

where log Λ(ym[k],θ1) ≜ log p(ym[k]|θ=θ0) −
log p(ym[k]|θ=θ1) is the log-likelihood ratio for the
resource at symbol m and subcarrier k. Similarly, the
minimum error probability in (12) can be expressed as

Pmin(z1, ϕ1) (16)

= P

 ∑
m∈M

∑
k∈K̃m

log Λ(ym[k],θ1) < 0

∣∣∣∣∣θ=θ0

 .

To derive this probability, the distribution of log Λ conditioned
on the parameter vector θ = θ0 must be analyzed. Accord-
ingly, all expectations through the remainder of this section
are conditioned on θ = θ0.
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Unknown Data Resources: First consider the case of un-
known data resources. The likelihood of ym[k] conditioned
on the parameter vector θ and conditioned on knowledge of
the symbol cm[k] is

p(ym[k]|cm[k],θ) (17)

=
1

πσ2
exp

(
−1

σ2
|ym[k]− µm[k]νk(θ)|2

)
,

where νk(θ) ≜ exp (−j2πzd[k]/K + jϕ) and µm[k] ≜√
gcm[k]. Assuming equally-likely symbols in the constella-

tion, the likelihood of ym[k] is given by

p(ym[k]|θ) = 1

|C|
∑

csym∈C
p(ym[k]|cm[k] = csym,θ), (18)

which is a Gaussian mixture distribution function. The log-
likelihood of ym[k] then becomes

log p(ym[k]|θ) (19)

= log
1

|C|
+ log

∑
csym∈C

p(ym[k]|cm[k] = csym,θ)

= log
1

πσ2|C|
+ log

∑
csym∈C

exp

(
−1

σ2
|ym[k]− µm[k]νk(θ)|2

)
= log

1

πσ2|C|
− 1

σ2
|ym[k]|2

+ log
∑

csym∈C
exp

(
1

σ2

(
2R{y∗m[k]µm[k]νk(θ)} − g|csym|2

))
.

With this log-likelihood defined, log p(ym[k]|θ=θ0) and
log p(ym[k]|θ=θ1) can be substituted into (15), resulting in

log Λ(ym[k],θ1) (20)

= log
∑

csym∈C
exp

(
1

σ2

(
2R{y∗m[k]µm[k]} − g|csym|2

))
− log

∑
csym∈C

exp

(
1

σ2

(
2R{y∗m[k]µm[k]νk(θ1)} − g|csym|2

))
.

The distribution of this log-sum-exp form in (20) is dif-
ficult to analyze. Conditioned on a specific symbol cm[k],
ym[k] becomes Gaussian distributed and (20) becomes the
difference of the log of two lognormal sums. Prior work
has approximated the log of lognormal sums as Gaussian-
distributed [44]. Likewise, the log-likelihood ratio in (20) will
be approximated as a Gaussian distribution matching the first
and second moments.

Since the log-likelihood is a function of a Gaussian random
variable conditioned on knowledge of the symbol cm[k], its
moment generating function is easily expressed as

Mlog Λ(t) ≜ E [exp (t log Λ(ym[k],θ1))|θ=θ0] (21)
= E [E [exp (t log Λ(ym[k],θ1))|cm[k],θ=θ0]]

=
1

|C|
∑

csym∈C
E [exp (t log Λ(ym[k],θ1))|cm[k] = csym,θ=θ0] ,

where the smoothing property allows the expectation to be
conditioned on the symbol cm[k]. The inner expectation is

taken over the noise vm[k]. The first moment can then be
computed as

E [log Λ(ym[k],θ1)|θ=θ0] =
∂

∂t
Mlog Λ(t)

∣∣∣∣
t=0

(22)

=
1

|C|
∑

csym∈C
E [log Λ(ym[k],θ1)|cm[k] = csym,θ=θ0] ,

and the second moment can be computed as

E
[
(log Λ(ym[k],θ1))

2|θ=θ0
]
=

∂2

∂t2
Mlog Λ(t)

∣∣∣∣
t=0

(23)

=
1

|C|
∑

csym∈C
E
[
(log Λ(ym[k],θ1))

2 |cm[k] = csym,θ=θ0

]
.

Since these expectations are taken over a complex Gaus-
sian distribution, they can be approximated using a Gauss-
Hermite quadrature [45, 25.4.46]. Consider a Gauss-Hermite
quadrature of size N with weights w[n] and nodes δv[n] for
n ∈ 0, 1, . . . , N−1. Then define δ̃v[nI, nQ] ≜ δv[nI]+jδv[nQ].
Note that conditioned on cm[k] = csym, the expected value of
ym[k] is µm[k] =

√
gcsym. The expectation in (22) can then

be expressed as

E [log Λ(ym[k],θ1)|cm[k] = csym,θ=θ0] (24)

≈
N−1∑
nI=0

N−1∑
nQ=0

w[nI]w[nQ] log Λ
(
µm[k] + δ̃v[nI, nQ],θ1

)
.

Similarly, the expectation in (23) can be expressed as

E
[
(log Λ(ym[k],θ1))

2|cm[k] = csym,θ=θ0
]

(25)

≈
N−1∑
nI=0

N−1∑
nQ=0

w[nI]w[nQ]
(
log Λ

(
µm[k] + δ̃v[nI, nQ],θ1

))2

.

Finally, the variance of the log-likelihood ratio for the resource
at symbol m and subcarrier k is

Var (log Λ(ym[k],θ1)|θ=θ0) = (26)

E
[
(log Λ(ym[k],θ1))

2|θ=θ0
]
− E [log Λ(ym[k],θ1)|θ=θ0]

2
.

The mean and variance of the log-likelihood ratio for unknown
data resources is now quantified.

Known Pilot Resources: Now consider the case of known
pilot resources. The log-likelihood ratio takes the form

log Λ(ym[k],θ1) (27)
= log p(ym[k]|θ=θ0)− log p(ym[k]|θ=θ1)

=
1

σ2

(
|ym[k]− µm[k]νk(θ1)|2 − |ym[k]− µm[k]|2

)
=

2

σ2
(R{y∗m[k]µm[k]} − R{y∗m[k]µm[k]νk(θ1)})

=
2

σ2
R{y∗m[k]µm[k] (1− νk(θ1))}.
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Since (27) is a linear function of a Gaussian random variable
ym[k], the log-likelihood ratio is itself Gaussian distributed.
The mean of the log-likelihood ratio can be expressed as

E [log Λ(ym[k],θ1)|θ=θ0] (28)

=
2

σ2
|µm[k]|2 (1− cos (2πz1d[k]/K + ϕ1))

=
2α2

m[k]

σ2
|cm[k]|2 (1− cos (2πz1d[k]/K + ϕ1)) ,

and the variance of the log-likelihood ratio can be expressed
as

Var (log Λ(ym[k],θ1)|θ=θ0) (29)

=
4

σ2
|µm[k]|2 (1− cos (2πz1d[k]/K + ϕ1)) .

The probability of error using only pilot resources simplifies
to the form seen in [46]. However, expressing the mean and
variance of the log-likelihood ratio allows pilot resources and
data resources to be combined together in the ZZB.

Unified Expression for Pmin(z, ϕ): Now that expressions
have been derived for the mean and variance of the log-
likelihood ratio at each resource element for both unknown
data resources and known pilot resources, the distribution of
the sum log-likelihood ratio log Λ(y,θ1) can be quantified. By
approximating the log-likelihood ratio of the data resources
as Gaussian, it follows that the sum log-likelihood is also
approximately Gaussian. Furthermore, for large numbers of
subcarriers, this approximation will improve by the central
limit theorem. The mean of the sum log-likelihood ratio
log Λ(y,θ1) is

E [log Λ(y,θ1)|θ=θ0] (30)

=
∑

m∈M

∑
k∈K̃m

E [log Λ(ym[k],θ1)|θ=θ0] ,

and its variance is

Var (log Λ(y,θ1)|θ=θ0) (31)

=
∑

m∈M

∑
k∈K̃m

Var (log Λ(ym[k],θ1)|θ=θ0) .

Finally, the probability of error in (16) can be expressed as

Pmin(z1, ϕ1) (32)

≈ Q
(
E [log Λ(y,θ1)|θ=θ0] /

√
Var (log Λ(y,θ1)|θ=θ0)

)
,

which can be substituted into (13) to compute the ZZB. When
only pilot resources are used, the probability of error in (32)
simplifies to the form in [46].

IV. MAXIMUM LIKELIHOOD ESTIMATION

In the results presented in the following section, the bounds
in Section III will be evaluated against ML estimators and a
DD estimator. Recall that three variants of ML estimator are
considered: the pilot-only, data-only, and pilot-plus-data ML
estimators. The pilot-only ML estimator can be expressed as

θ̂P = argmax
θ1

∑
m∈M

∑
k∈KP

m

log p(ym[k]|θ=θ1). (33)

The data-only ML estimator is expressed as

θ̂D = argmax
θ1

∑
m∈M

∑
k∈KD

m

log p(ym[k]|θ=θ1). (34)

And the pilot-plus-data ML estimator is expressed as

θ̂ = argmax
θ1

∑
m∈M

∑
k∈K̃m

log p(ym[k]|θ=θ1). (35)

Note that (33)-(35) differ in the sets of subcarriers in the
summation.

The DD estimator requires an initial estimate of the signal
parameters θ and therefore will only be applied when both
pilot and data resources are present in the signal. After ob-
taining the pilot-only ML parameter estimate θ̂P, ML decoding
decisions are made:

ĉm[k] = argmax
csym∈C

log p(ym[k]|cm[k] = csym,θ=θ̂P). (36)

It is important to note that this DD estimator uses no error
correction codes, which, as mentioned in Section I, cannot be
assumed to be of benefit in the current context because they
are user-specific whereas this paper’s scheme is designed to
exploit all data. After decoding the data resources, another
ML parameter estimate is obtained using both pilot and data
resources by treating the decoded data resources as known
symbols:

θ̂DD = argmax
θ1

∑
m∈M

∑
k∈KP

m

log p(ym[k]|θ=θ1) (37)

+
∑

m∈M

∑
k∈KD

m

log p(ym[k]|cm[k] = ĉm[k],θ=θ1).

The argmax operations in (33)-(35) and (37) are evaluated
using a grid search with quadratic peak interpolation. The TOA
z has a discretized grid spanning from 0 to Na in intervals
of size ∆z , while the phase ϕ has a discretized grid spanning
from 0 to 2π in intervals of size ∆ϕ.

V. RESULTS

A. Bounds

Fig. 1 compares the derived ZZB in (13), the CRB in (9),
and the MCRB in (7) on TOA estimation against Monte-
Carlo-simulation-based RMSEs assuming the data-only ML
estimator in (34). The TOA RMSEs are scaled by the speed of
light and plotted in units of meters. The OFDM signal consists
of K = 64 subcarriers, Nsym = 1 symbols, a subcarrier
spacing of ∆f = 15 kHz, and an a priori TOA duration of
Ta = 6.25 µs. All 64 resource elements are allocated as data
resources. Empirical TOA RMSEs were estimated over 20000
Monte Carlo iterations of random noise at each SNR. The grid
search was conducted with intervals of ∆z = 1/8 sample and
∆ϕ = 15◦.

The MCRB is the loosest bound, only converging with the
empirical RMSEs at high SNRs above 10 dB for QPSK and
17 dB for 16QAM. The CRB in (9) remains tighter than the
MCRB over a larger range of SNRs, capturing the slight
deviation from the MCRB above 7 dB SNR for QPSK and
14 dB SNR for 16QAM. Below these SNRs, the empirical
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Fig. 1: A comparison of the Monte Carlo empirical root mean
square errors (RMSEs), MCRB, CRB, and ZZB on TOA
estimation using a priori unknown data. Results are shown
for both QPSK and 16QAM constellations.
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Fig. 2: A comparison of the Monte Carlo empirical RMSEs
and bounds for pilot-only, data-only, and pilot-plus-data esti-
mation. Results are shown for a single OFDM symbol with
64 subcarriers, QPSK modulation, and 8 sparsely-placed pilot
resources.

TOA errors experience the low-SNR thresholding effect and
RMSEs increase suddenly, a phenomenon not captured by
the CRB. The ZZB provides a much tighter bound in this
thresholding regime than the MCRB and CRB. Asymptotically
as SNR decreases, the ZZB and empirical RMSEs converge
to different values since the empirical TOA estimator is ML,
not minimum mean square error. Accordingly, the ZZB RMSE
converges to

√
Ta/12 s, the standard deviation of a uniform

distribution with duration Ta s [47].
Fig. 2 provides a different perspective and compares the

empirical RMSEs against their ZZBs for the four types of
estimators: pilot-only ML, data-only ML, pilot-plus-data ML,
and DD. The OFDM signal is parameterized identically to
the signal in Fig. 1 but is additionally allocated with a sparse
placement of 8 pilot resources. The pilot resource placement
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Fig. 3: A plot of the maximin probability of error
maxϕ [Pmin(z, ϕ)] against delay z computed as part of the ZZB
in (13) for pilot-only, data-only, and pilot-plus-data estimation.
Results are shown for the same signal in Fig. 2 at 5 dB SNR.

is optimized to minimize TOA error at 0 dB SNR using
the integer-optimization routines in [38]. Power is allocated
equally across all resources.

Below 8 dB SNR, the pilot-only estimator reduces error
compared to the data-only estimator. Above this SNR, how-
ever, the data-only estimator reduces TOA errors significantly
over the pilot-only estimator, ultimately achieving an RMSE
of 3.0m compared to the pilot-only estimator’s RMSE of
5.8m at 15 dB SNR. The pilot-plus-data estimator achieves
the lowest RMSE across all SNRs. This is most notable in
the thresholding regime, with the pilot-plus-data estimator
achieving an RMSE of 11.8m compared to pilot-only RMSE
of 54.5m and data-only RMSE of 338.2m at 5 dB SNR.
Meanwhile, the DD estimator is only capable of improving
upon the pilot-only estimator at and above 6 dB SNR, after
which it plateaus near the same RMSE as the pilot-plus-data
estimator.

Fig. 3 provides insight into how the different types of
estimation affect the probability of error in (16), thereby
changing the ZZB in (13). As seen in Fig. 2, all three ZZBs at
5 dB SNR are experiencing the low-SNR thresholding effect
to varying degrees. At this SNR, Fig. 3 shows that the pilot-
only probability of error exhibits high sidelobes and a wide
peak near the true delay, resulting in the large RMSE in
Fig. 2. Meanwhile, the data-only probability of error exhibits
a sharper peak but higher sidelobes that remain relatively flat
across all delays. This elevated sidelobe presence significantly
increases the likelihood of TOA estimates occurring outside of
the mainlobe. As a result, data-only estimation has the highest
RMSE in Fig. 2 at 5 dB SNR despite the sharpened mainlobe.
In contrast, the pilot-plus-data probability of error exhibits
both the sharpest mainlobe peak and the lowest sidelobe
probability, allowing pilot-plus-data estimation to mitigate the
low-SNR thresholding effect significantly and achieve a lower
RMSE than the pilot-only and data-only estimators.
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B. Sparse Resource Optimization

Now consider the problem of allocating PRSs in an OFDM
signal designed for both positioning and communications.
To minimize the reduction in data rate, the PRSs will be
allocated sparsely throughout the bandwidth of the signal.
Consider an OFDM signal consisting of K = 240 subcarriers,
Nsym = 4 symbols, a subcarrier spacing of ∆f = 240 kHz,
and an a priori TOA duration of Ta = 156.25 ns. Assume
the subcarriers are divided into 20 resource blocks of 12
subcarriers each, where each resource block is restricted to
containing either a PRS block or a data block filled with QPSK
data resources. Letting NPRS denote the number of resource
blocks that are allocated with a PRS block, the allocation
problem is to determine the best placement of these NPRS PRS
blocks among the 20 available resource blocks.

Each PRS block has been arbitrarily chosen to consist of
pilot resources placed in a size 4 comb pattern, similarly to
the PRS in 5G NR, which is visualized in Fig. 4. All non-
pilot resource elements in each PRS block are allocated as
data resources.
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Fig. 4: A visualization of the optimized OFDM resource
allocation for NPRS = 3 at 0 dB SNR.
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Fig. 5: The ZZB on TOA RMSE for the PRS-optimized
resource allocations. Results are shown for NPRS ∈ {2, 3, 4}.

The pilot-only ZZB was evaluated for all permutations
of PRS allocation for NPRS ∈ {2, 3, 4} at each SNR. The
pilot-optimal allocation at each SNR was then chosen as the
allocation that minimized the ZZB. The pilot-plus-data ZZB
was then evaluated on the pilot-optimal allocations. Fig. 5
plots both the pilot-only and pilot-plus-data ZZBs of the pilot-
optimal allocations against SNR. Increasing the number of
PRS resource blocks reduces the ZZB for both pilot-only and
pilot-plus-data estimation, yielding the greatest improvement
at lower SNRs where the additional pilot resources can miti-
gate the low-SNR thresholding effect. However, this improve-
ment becomes negligible for the pilot-plus-data ZZBs above
approximately 6 dB SNR where the bounds converge. In this
high SNR regime, the pilot-plus-data ZZBs show significant
reductions in error compared to the pilot-only ZZBs. At 10 dB
SNR, all three pilot-plus-data ZZBs have a RMSE of 2.1 cm
compared to RMSEs of 6.1 cm, 7.0 cm, and 12.9 cm for the
pilot-only ZZBs. Into low SNRs, the pilot-plus-data ZZBs still
show notable improvements over their respective pilot-only
ZZBs even though the PRS allocations are optimized for pilot-
only estimation at every SNR.

C. LEO Satellite Positioning

Positioning with LEO satellite downlink signals is a par-
ticularly apt application for the ML and DD TOA estimators
discussed in Section IV. LEO channels can span wide band-
widths, enabling highly-accurate TOA estimates and therefore
accurate user positioning services. Furthermore, LEO channels
experience minimal fading especially when combined with
highly-directional phased arrays at both the transmitter and
receiver, resulting in flat channel responses across the wide
signal bandwidths. Finally, LEO satellites provide commu-
nication services to large cells which are likely to contain
many network users, increasing the amount of downlink
data resources that will need to be allocated. If the LEO
satellites transmit in bursts to manage power consumption
[2], downlink resources are likely to be fully allocated to
maximize throughput. One example is the downlink Starlink
signal which consists of frames with fully allocated data [14].
In such a fully allocated burst, the allocation of PRSs comes
at the cost of decreased throughput. Therefore, it may be
beneficial to allocate fewer resources to positioning services
and instead have receivers exploit the unknown data resources
to obtain accurate positioning. In this section, the positioning
performance of the ML and DD TOA estimators is evaluated
on a simulated LEO downlink channel.

Setup: The simulated environment consists of four LEO
satellites and one receiver. The receiver’s cell receives down-
link service from each satellite in a time-duplexed manner
with the interval between downlink bursts from each satellite
denoted as Tburst. During each downlink burst, the servicing
satellite directs its beam to the center of the cell and pre-
compensates for the expected Doppler shift experienced by a
stationary user at the center of the cell. For simplicity, the
receiver is stationary and located at the center of its cell. The
receiver also has perfect knowledge of each satellite’s relative
position and applies conventional beamforming weights to its
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Fig. 6: A visualization of the four satellites in the simulated
LEO constellation and each satellite’s downlink beam.

phased array elements to direct its beam in the known direction
of the servicing satellite. Fig. 6 shows a graphical depiction
of the simulation setup and the downlink beams.

Each burst consists of Nsym = 4 OFDM symbols. The
OFDM signal parameters and simulation parameters are listed
in Table I. Simulated frequency-selective, time-varying chan-
nels are generated using QuaDRiGa [48]. Two channel models
are considered: QuaDRiGa NTN DenseUrban LOS [49] and
5G-ALLSTAR DenseUrban LOS [50].

For each channel model, 1000 channel realizations were
generated. For each channel realization, 1000 realizations of
AWGN were generated. Pseudorange estimates were obtained
for each channel and AWGN realization using each of the
estimators Additionally, the ZZB was computed for each
channel realization.

Let ri be the east-north-up (ENU) coordinates of satellite i
for i ∈ {0, 1, 2, 3}, r be the ENU coordinates of the receiver,
and δt be the clock offset between the receiver and the satellite
constellation. Define c as the speed of light, ϵρ as pseudorange
estimation error, and θρ ≜ [rT , cδt]

T . Additionally define

hi(θρ) ≜ c||ri − r||+ cδt, (38)

which is expressed in vector form as h(θρ) ≜
[h0(θρ), h1(θρ), h2(θρ), h3(θρ)]

T . Then the vectorized
pseudorange measurement equation for all satellites becomes

ρ = h(θρ) + ϵρ. (39)

Letting Σρ be the covariance of the pseudorange error ϵρ,
a positioning solution can then be obtained by solving the
weighted nonlinear least-squares problem:

θ̂ρ = argmin
θρ

∣∣∣∣ρ− h(θρ)
∣∣∣∣2
Σ−1

ρ
. (40)

The error covariance of this estimate can be approximated by
linearizing the pseudorange residuals at the true values of θρ.
Defining the matrix

A ≜

[ r0−r
||r0−r||2

r1−r
||r1−r||2

r2−r
||r2−r||2

r3−r
||r3−r||2

1 1 1 1

]T
, (41)

TABLE I: LEO Simulation Parameters

OFDM Parameters

K 240 subcarriers
∆f (Subcarrier Spacing) 240 kHz
Symbol Duration 4.167 µs
Cyclic Prefix Duration 0.521 µs
Bandwidth 57.60MHz
Symbol Constellation QPSK

Simulation Parameters

fc (Carrier Frequency) 10.7GHz
Polarization LHCP @ RX & TX
TX Gain 34dB
TX Beamwidth 3.67◦

RX Array 32× 32 URA (λ/2 spacing)
RX Gain 30dB
RX Beamwidth 3.58◦

EIRP −15dBW/4kHz
σ2 (Resource Noise Power) −173.8 + 10 log10(∆f) dBm
Ta (a priori TOA Duration) 156.25ns
Tburst (Burst Interval) 1ms
Satellite Altitude 550 km
Satellite Constellation Walker-Delta 53◦:1584/22/39
Elevation Mask 30◦

Channel Models QuaDRiGa NTN DenseUrban LOS
5G-ALLSTAR DenseUrban LOS

the error covariance of θ̂ρ can then be described as Q ≜(
ATΣ−1

ρ A
)−1

. The diagonal elements of this error covariance
are defined as [σ2

x, σ
2
y, σ

2
z , σ

2
cδt]

T ≜ diag(Q).
Since each pseudorange is obtained independently, Σρ is a

diagonal matrix consisting of elements σ2
ρ0

, σ2
ρ1

, σ2
ρ2

, and σ2
ρ3

.
These variances are obtained either from the ZZB or from the
empirical error variance of the TOA estimates over AWGN
realizations for a single channel realization. It is important to
note that the distribution of the TOA errors is unknown and not
guaranteed to be Gaussian. However, the ZZBs and empirical
error variances can be compared through this linearized model.
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Data

Fig. 7: The complementary cumulative distribution functions
(CCDFs) of horizontal RMSE over channel realizations using
the QuaDRiGa channel model, comparing the pilot-only, data-
only, pilot-plus-data, and DD estimators. Results are shown for
both the ZZB and empirical data.

LEO Results: Fig. 7 and Fig. 8 plot the CCDF over channel
realizations of the horizontal RMSEs and vertical RMSEs
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Fig. 8: As Fig. 7 but for vertical RMSE.
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Fig. 9: The 95% horizontal positioning error ellipses for
the QuaDRiGa channel model. Results are obtained using
the Chebyshev inequality with both the ZZB and empirical
RMSEs over all channel realizations.

using the QuaDRiGa NTN DenseUrban LOS channel model.
Both the ZZBs and empirical RMSEs are depicted for each of
the estimators. The pilot-only estimator results in the greatest
errors, having a 90th percentile horizontal RMSE of 1.15m
and vertical RMSE of 3.05m. The decision-directed estimator
yields moderate improvements over the pilot-only estimator,
having a 90th percentile horizontal RMSE of 0.64m and verti-
cal RMSE of 1.68m. Accuracy is improved significantly with
the data-only estimator, having a 90th percentile horizontal
RMSE of 0.16m and vertical RMSE of 0.41m. Finally, the
pilot-plus-data estimator achieves the best accuracy, having a
90th percentile horizontal RMSE of 0.15m and vertical RMSE
of 0.40m.

Fig. 9 provides an alternative depiction of these results,
visualizing the 95% error ellipses using both the ZZB and
empirical RMSEs over all channel realizations. Since the
error distribution is not guaranteed to be Gaussian, the 95%
error ellipses are computed using the multivariate Chebyshev
inequality [51], resulting in a 2D ellipse corresponding to 6.32

standard deviations. The Chebyshev inequality allows confi-
dence intervals to be constructed for any arbitrary distribution
with a finite variance. This depiction highlights how the data-
only and pilot-plus-data estimators reduce positioning error
significantly compared to the pilot-only estimator and even
the DD estimator. The data-only and pilot-plus-data ellipses
have a semi-major axis of approximately 0.9m compared to
the DD ellipse’s 3.6m and pilot-only ellipse’s 6.9m. The ZZB
ellipses are nearly coincident with the empirical ellipses for
data-only and pilot-plus-data estimation, while the ZZB ellipse
for pilot-only estimation has a gap compared to the empirical
ellipse and a semi-major axis of 3.7m.

The pilot-plus-data and data-only estimators are capable
of outperforming the pilot-only estimator by exploiting sig-
nificantly more resources in the signal. Compared to the
DD estimator, these estimators are not negatively impacted
by errors in the hard decoding process. As a result, the
DD estimator requires much higher SNRs to approach the
performance of the pilot-plus-data and data-only estimators.
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Fig. 10: The CCDFs over channel realizations of horizontal
RMSE using the 5G-ALLSTAR channel model, comparing
the pilot-only, data-only, pilot-plus-data, and DD estimators.
Results are shown for both the ZZB and empirical data.
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Fig. 12: The 95% horizontal positioning error ellipses for
the 5G-ALLSTAR channel model. Results are obtained using
the Chebyshev inequality with both the ZZB and empirical
RMSEs over all channel realizations.

Figs. 10 and 11 plot the CCDF over channel realizations
of the horizontal RMSEs and vertical RMSEs using the 5G-
ALLSTAR DenseUrban LOS channel model, similar to Figs. 7
and 8. Different patterns emerge with this channel model, as
greater fluctuations in SNR are simulated. Similar to the results
in Figs. 7 and 8, the pilot-plus-data estimator achieves the
greatest accuracy, having a 90th percentile horizontal RMSE of
0.52m and vertical RMSE of 1.32m. However, the data-only
estimator only outperforms the DD and pilot-only estimators in
approximately 70% of channel realizations. In the remaining
30% of channel realizations, the low SNRs cause the data-only
estimator to enter its thresholding regime, resulting in RMSEs
surpassing those achieved using only pilots. The data-only
estimator has a 90th percentile horizontal RMSE of 11.96m
and vertical RMSE of 32.00m. Meanwhile, the DD estimator
exhibits less improvement over the pilot-only estimator in this
channel model, having a 90th percentile horizontal RMSE of
1.52m and vertical RMSE of 4.16m compared to the pilot-
only estimator’s 90th percentile horizontal RMSE of 1.71m
and vertical RMSE of 4.73m.

Fig. 12 visualizes the 95% error ellipses for the 5G-
ALLSTAR channel model, similar to Fig. 9. As with the
results in Fig. 10 and Fig. 11, the data-only estimator ex-
hibits significant errors due to the poor channel conditions.
Meanwhile, the pilot-plus-data estimator reduces postioning
error compared to both the pilot-only and DD estimators. The
pilot-plus-data ellipse has a semi-major axis of approximately
4.5m compared to the DD ellipse’s 8.0m, pilot-only ellipse’s
9.6m, and data-only ellipse’s 52m.

The large SNR fluctuations in the 5G-
ALLSTAR DenseUrban LOS channel model resulted in
the estimators entering their low-SNR thresholding regimes.
The pilot-plus-data estimator provides robustness against
these thresholding effects at low SNR while simultaneously
maximizing accuracy in high SNR. In comparison to Fig. 7
and Fig. 8, the ZZBs are much looser due to the bound not
being as tight in the low-SNR thresholding regime as in the

high-SNR regime.

VI. CONCLUSIONS

This paper has derived a novel ZZB on TOA estimation
with OFDM signals containing unknown data resources. This
ZZB serves as a lower bound to both ML and DD estimators
that can exploit unknown data resources to improve estimation
accuracy. The ZZB was shown to be tighter to empirical errors
than the CRB and MCRB derived in prior work, making
it a useful criterion for evaluating different OFDM resource
allocations for TOA estimation. Comparisons were then made
between four different types of estimators: pilot-only ML,
data-only ML, pilot-plus-data ML, and DD, demonstrating
that the pilot-plus-data estimator can significantly improve
TOA estimation accuracy. The ZZB was then used to evaluate
different allocations of PRSs within a wideband OFDM signal,
which can guide resource allocations that minimize overhead
while still achieving TOA accuracy requirements. Finally, the
ZZBs and TOA estimators were evaluated on simulated LEO
channels, quantifying the distribution of positioning RMSEs
across channel realizations. These results highlight the poten-
tial for OFDM networks to significantly improve positioning
performance while still prioritizing data throughput.
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